COP 3503 – Computer Science II – CLASS NOTES - DAY #24

Euler Circuits
Consider the three figures (a) – (c) shown below. A puzzle for you to solve is to reconstruct these three figures using a pencil and paper drawing each line exactly once without lifting the pencil from the paper while drawing the figure. To make the puzzle even harder, see if you can draw the figure following the rules above but have the pencil finish at the same point you originally started the drawing. Try to do this before you read any further in the notes.

(a)

 (b)

(c)

It turns out that these puzzles have a fairly simple solution. Figure (a) can only be drawn within the specified rules, if the starting point is the lower-left or lower-right hand corner, and it is not possible to finish at the starting point. Figure (b) is easily drawn with the finishing point being the same as the starting point (see the last page of the notes for one possible solution). Figure (c) cannot be drawn at all within the specified rules, even though it appears to be the simplest of the drawings! These puzzles are converted into graph theory problems by assigning a vertex to each intersection. Then the edges are assigned in the natural manner. The corresponding graphs are shown below.

(a)

 (b)

(c)

Once the puzzle has been converted into the graphs as shown above, we need to find a path that visits every edges exactly once. If the extra challenge is to be solved, then a cycle must be found that visits every edge exactly once. This problem was solved in 1736 by the mathematician Euler and is commonly regarded as the beginning of graph theory. This problem is referred to as an Euler path or Euler circuit problem, depending upon the specific problem statement. The Euler path and Euler circuit problems, although slightly different problems, have the same basic solution and we will focus only on the Euler circuit problem.

For a given graph to have an Euler circuit certain properties must hold in the graph. Namely, since an Euler circuit must begin and end on the same vertex, such a circuit is only possible if (1) the graph is connected and (2) each vertex in the graph has an even degree. If any vertex were to have an odd degree, then eventually you would reach the point where only one edge into that vertex is “unvisited”, and taking that edge into that vertex would strand you at that vertex. If exactly two vertices have an odd degree, then a Euler path is still possible (since you are not required to begin and end on the same vertex in an Euler path) if the path begins on one of the odd degree vertices and ends on the other odd degree vertex. If more than two vertices have an odd degree, then an Euler path is not possible. Looking at the puzzles from above and applying this knowledge we see that for puzzle (a) has only an Euler path beginning at either the lower left or lower right corners which are the two vertices with an odd degree. All other vertices in this graph have an even degree of either 2 or 4. Puzzle (c) has neither an Euler circuit nor an Euler path since there are four vertices in this graph which have an odd degree. Puzzle (b) however has no vertices of odd degree and thus does have an Euler circuit (as well as an Euler path).

The necessary and sufficient condition for a graph to have an Euler circuit turns out to be exactly the conditions we have described above. Thus, any connected graph in which all the vertices have even degree, must have an Euler circuit. It also turns out that this circuit can be found in linear time! The basic algorithm which is capable of performing this operation is a basic depth-first search. The basic problem that must be overcome by such an algorithm is that only a portion of the graph may have been visited before you return to the original starting vertex. If all the edges coming out of the start vertex have been traversed. then part of the graph will be untraversed. The easiest way to fix this problem is to find the first vertex on the path which has an untraversed edge, and perform another depth-first search from this node. This will give another circuit, which can be spliced into the original. This process is continued until all edges have been traversed.

As an example, consider the graph shown below. It should be easy for you to verify that this graph, does in fact, have an Euler circuit.

Graph for Euler Circuit Example
Suppose we start our Euler circuit at vertex 5, and traverse the circuit 5, 4, 10, 5. Then we are stuck, and most of the circuit is still untraversed. This would look like the figure shown below, with the edges that have been traversed removed from the graph.

We then continue from vertex 4, which still has unexplored edges. A depth-first search might produce the path 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4. If this path is spliced into the previous path of 5, 4, 10, 5, then we arrive at a new path of 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5. This graph is shown in the next figure.

Notice that in this last graph all the vertices must have even degree, so we are guaranteed to find a cycle that can be spliced into our current path. This graph however, might not be connected (in our example it isn’t), but this is not important at this stage because it is our traversal process and path splicing that has produced the unconnected graph, the original graph was connected. The next vertex along the path which still has unvisited (untraversed) edges is vertex 3 (again starting from the first vertex in the circuit being constructed). At this point, a possible circuit would be 3, 2, 8, 9, 6, 3. When this is spliced into the current circuit, we have the path 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5. This graph is shown below.

Finally, along the current path, the next node with untraversed edges is node 9, and the algorithm should find the circuit 9, 12, 10, 9. When this final circuit is spliced into the current circuit we have: 5, 4, 1, 3, 2, 8, 9, 12, 10, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5 resulting from the graph shown below:

Since all edges have now been traversed, our circuit that has been spliced together is: 5, 4, 1, 3, 2, 8, 9, 12, 10, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5 an Euler circuit for the original graph.

The implementation issues that concern any algorithm which determines an Euler circuit are concerned mainly with the efficiency of the circuit splicing operation. To do this efficiently requires that the circuit being constructed be maintained as a linked list so that new sub-circuits can be easily added to the middle of an existing circuit as we did in the example above. To avoid repetitious scanning of the adjacency lists which define the graph it is best to maintain (for each list) a record of the last edge traversed. When a path is spliced in, the search for a new vertex from which to perform the next depth-first search must begin at the start of the splice point. This will guarantee that the total work performed on the vertex search phase is O((E() during the entire lifetime of the algorithm. With the appropriate data structures in place, the running time of an algorithm to determine the Euler circuit will be O((E(+ (V().

There is another classic problem in graph theory which is closely related to the Euler circuit problem called the Hamiltonian cycle problem. The Hamiltonian cycle problem requires finding, in an undirected graph, a simple cycle which visits every vertex in the graph. Although this problem seems very similar to the Euler circuit problem in which every edges must be visited, there is no known algorithm which is guaranteed to run in polynomial time that solves the Hamiltonian cycle problem! The best known algorithms to solve this problem will require exponential time for some input (graphs). Consider a similar problem. To prove that a given graph has a Hamiltonian cycle, you need to simply produce one (proof by example). However, to prove that a given graph does not have a Hamiltonian cycle is a much more difficult task. It is so difficult, that no one has yet demonstrated a polynomial time algorithm to solve this problem. The only solutions, so far, require the enumeration of every cycle in the graph and checking these cycles one by one, an exponential (in terms of the number of vertices) time algorithm. [For those of you who have had Discrete Structures, this means that the Non-Hamiltonian cycle problem is not known to be in the NP.]

Minimum Spanning Trees
Now we’ll consider the problem of finding for a given undirected graph, the minimum spanning tree (see the earlier set of notes defining graph terminology for the definition of the minimum spanning tree). This problem can also be applied to directed graphs, but this is a more difficult problem so we will focus on undirected graphs. A minimum spanning tree for a graph G exists iff G is connected. A properly implemented algorithm should be able to detect the connectedness of G and handle it appropriately, but we will assume that G is a connected graph. Consider the two graphs shown below in Figures (a) and (b). Figure (b) represents the minimum spanning tree for the graph of Figure (a). [In this particular example, the minimum spanning tree happens to be unique, this can happen in certain graphs, but it is unusual as most graphs may have several minimum spanning trees.]

2

 4

 1

 3

10

2

7

 5

 8

 4
 6

1

Figure (a) – A weighted undirected graph

2

 1

2

 4
 6

1

Figure (b) – The minimum spanning tree for Figure (a) above

Notice that the number of edges in the minimum spanning tree is (V(- 1. The minimum spanning tree is a tree because it is acyclic, it is spanning because it covers every vertex, and it is minimum for the obvious reason.

Before we go any further, I can hear a few of you asking, “why is this important beyond a theoretical interest?” The answer is this, suppose that you are an electrician and your job is to wire a new house for electricity. How much cable do you order if you want to do the job with the minimum amount of cable (to keep your costs down)? The problem you need to solve (all other constraints, i.e., county codes aside) is a minimum spanning tree. Suppose you want to visit a number of different cities which you can get to in using a variety of different routes, if you would like to use as little $1.45/gallon gasoline as possible you need to find the minimum spanning tree for your set of cities. Thus, this type of graph theoretical question does in fact have real practical applications. This is why its important!

For any spanning tree T, if an edge e that is not in T is added, a cycle will be created. The removal of any edge on the cycle will reinstate the spanning tree property. The cost of the spanning tree is lowered if e has a lower cost than the edge that was removed. If, as a spanning tree is created, the edge that is added is the one with the minimum cost, the creation of the cycle will be avoided and the cost associated with the tree cannot be improved because any replacement edge would have an associated cost of at least as much as the edge already included in the spanning tree. This leads us to the simple conclusion that a greedy approach can be applied to create a minimum spanning tree. There are several different algorithms that construct minimum spanning trees. They differ primarily in the technique which is employed to select the next edge to be included in the spanning tree. We will examine only one of these algorithms, called Prim’s Algorithm (named for its initial developed R. C. Prim working at Bell Labs in 1957 in the support of the development of the U.S. telephone system).

Prim’s technique is to grow the minimum spanning tree (MST) in successive stages. In each stage, one node is selected from a forest of nodes (trees) and is selected as the root and an edge is added with its associated vertex to the minimum spanning tree being constructed. At any point during the execution of the algorithm, there will be a set of vertices which have been included in the MST and a set of vertices that are not yet included in the MST. The algorithm will find, at each stage, a new vertex to include in the MST by choosing the edge (u, v) such that the cost of (u, v) is the smallest among all edges where u is in the MST and v is not. Notice, as Prim’s technique is illustrated, that the technique used by Prim to find the MST and that used by Dijkstra to find the shortest path are very similar in their operation.

To illustrate Prim’s algorithm, we’ll use the graph of Figure (a) from the previous page. As with Dijkstra’s algorithm, Prim’s algorithm uses a table to drive the generation of the MST. The initial table for this graph is shown below:

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	1
	F
	0
	0

	2
	F
	(
	0

	3
	F
	(
	0

	4
	F
	(
	0

	5
	F
	(
	0

	6
	F
	(
	0

	7
	F
	(
	0

Initial table for Prim’s algorithm for graph of Figure (a) above

In the table, the minimum weight column indicates the weight associated with the minimum cost edge connected the vertex in this row to a vertex which has been visisted. We will assume that the algorithm begins constructing the MST starting with vertex 1. This will “select” vertex 1 and then the values for vertices 2, 3, and 4 will be updated (those vertices adjacent to vertex 1). This will produce the following table.

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	1
	T
	0
	0

	2
	F
	2
	1

	3
	F
	4
	1

	4
	F
	1
	1

	5
	F
	(
	0

	6
	F
	(
	0

	7
	F
	(
	0

Table after selection of vertex 1 as the initial vertex

Based upon the greedy approach, the minimum cost edge will be chosen as the edge (1, 4). Thus the table is updated to indicate that vertex 4 has been selected and edges adjacent to vertex 4 will be examined (but not vertex 1 because it has been marked as “visited”). Notice in this next table that the minimum weight associated with vertex 2 remains unchanged since its current weight is 2 and the weight from vertex 4 to vertex 2 is 3 which is larger. All the other entries are updated however, since lower costs are found from vertex 4. This is reflected in the next table:

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	1
	T
	0
	0

	2
	F
	2
	1

	3
	F
	2
	4

	4
	T
	1
	1

	5
	F
	7
	4

	6
	F
	8
	4

	7
	F
	4
	4

Table after vertex 4 has been selected
The next vertex chosen will be 2 (notice that this is arbitrarily chosen breaking the tie with vertex 3 which is also not visited but has the same cost as vertex 2). Selection of vertex 2 does not cause any changes in the table since the only one it could affect is vertex 5 (since vertex 3 is adjacent only to 1, 4, and 5 and 1 and 4 have been visited and the distance to 5 from 2 is 10 which is greater than the current distance to 5 which is 7). So next, vertex 3 is selected and this will cause the minimum weight to vertex 6 to be update to 5 since this is the weight associated with the edge (3, 6) which is less than the current distance associated with vertex 6. This is shown in the next table.

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	1
	T
	0
	0

	2
	T
	2
	1

	3
	T
	2
	4

	4
	T
	1
	1

	5
	F
	7
	4

	6
	F
	5
	3

	7
	F
	4
	4

Table after vertex 2 and then vertex 3 are”visited”

Next, vertex 7 will be selected as the current vertex causing an update to both vertices 5 and 6, illustrated in the next table.

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	1
	T
	0
	0

	2
	T
	2
	1

	3
	T
	2
	4

	4
	T
	1
	1

	5
	F
	6
	7

	6
	F
	1
	7

	7
	T
	4
	4

Table after vertex 7 is selected

Next, vertex 6 is selected which causes no updates to the table. Then finally, vertex 5 is selected which also causes no updates to the table. The final table which results from this algorithm is shown below:

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	1
	T
	0
	0

	2
	T
	2
	1

	3
	T
	2
	4

	4
	T
	1
	1

	5
	T
	6
	7

	6
	T
	1
	7

	7
	T
	4
	4

The edges from G which comprise the MST for G are read directly from the final version of the table: (2, 1) cost 2, (3, 4) cost 2, (4, 1) cost 1, (5, 7) cost 6, (6, 7) cost 1, and (7, 4) cost 4. The total cost associated with the MST is 16.

For every edge (u,v) in E for an undirected graph G, the edge (v, u) is also in E the running time for Prim’s algorithm is O((V(2) without using binary heaps, which is optimal for dense graphs, and O((E(log (V() using binary heaps, which is suitable for sparse graphs.

Another very well-known algorithm which generates the MST for a weighted-undirected graph G, is Kruskal’s algorithm. This is a similar greedy strategy but continually selects edges in the order of smallest weight first and accepts such an edge as part of the MST only if its inclusion does not cause a cycle. In practice, Kruskal’s algorithm is slightly more efficient that Prim’s algorithm.

Topological Sorting
As we mentioned earlier, there are many, many problems to which graph theory can be applied. We have only scratched the surface of the application of the graph data structure. We’ll conclude our look at graphs with an application of acyclic graphs which is commonly applied to synchronization problems called a topological sort.

A topological order is an ordering of the vertices of a directed acyclic graph such that if there is a path from vertex a to vertex b then a appears before b in the topological ordering of the vertices. This situation can be used to model university course prerequisites, in which case an edge (a, b) indicates that course a must be completed before enrollment in course b is allowed. A topological order of the vertices representing the courses would be any sequence of the vertices that does not violate the prerequisite conditions. A topological sort produces a topological ordering of a directed acyclic graph. An arbitrary DAG may have many topological orderings and typically we are interested in producing only one of those which might be possible. Certain situations, particularly related to process or transaction synchronization, may require producing a specific topological ordering rather than a general topological ordering.

To illustrate the concept of topological ordering consider modeling a set of processes (transactions) which are concurrently executing operations against a database. The various processes are simultaneously executing either read or write operations on specific objects (data) within the database. The sequence of operations actually performed on the database must proceed in such a way that no transaction is reading obsolete data or writing data which has been previously updated but done so by a process which read the data after the updating process read that data. Basically, what this really means is that any concurrent schedule of x transactions can be allowed to change the state of the database only if that concurrent schedule is equivalent to some serial schedule of the same x transactions. A serial schedule is one in which each transaction in the schedule is run in isolation from start to finish without any transactions concurrently executing. To clarify why this situation can cause problems consider the following scenario of only two concurrent processes and their actions on the database:

Time = t,
Transaction T1: reads object A (let A = 4)

Time = t+1
Transaction T2: reads object A (A = 4)

Time = t+2
Transaction T1: writes object A (assume update to A = 10)

Time = t+3
Transaction T2: writes object A (assume update to A = 20)

Time = t+4
 Database state is incorrect

At time t+4 the state of the database is inconsistent since the update of A that was made by T2 was performed on a value of A that was read by T1 before T2 read A and T1 subsequently updated the value of A. Therefore T2 is operating with an obsolete value of A. Database synchronization will require that something be done to prevent this from occurring. There are many ways to do this, but this isn’t a database course, so we’ll just look at how to realize there is a problem and not what to do about the problem. You’ll see how to handle this in COP 4710.

In the example above, the two concurrent transactions executed the concurrent schedule {T1, T2, T1, T2}. Since there are only two transactions in the schedule there are only two possible serial schedules which might be equivalent to the concurrent schedule, one is {T1, T2} and the other is {T2, T1}. In the example above the concurrent schedule is not equivalent to either of these serial schedules and thus the concurrent schedule is said to be non-serializable and therefore invalid and the system cannot allow the transactions to proceed in this fashion and must rectify this situation. Suppose that we model a situation such as that described above with a graph where the vertices of the graph represent the transactions which are concurrently executing. The edges of this graph represent the sequencing of how the transactions have interacted in the concurrent schedule. Notice that we are working strictly with a DAG here. If there happens to be a cycle in the graph this would represent a conflict in the schedule. We’ll illustrate this later. Do not worry about how this graph was constructed, in general it will be constructed from information available from the OS. Again, as before, the meaning of an edge (a, b) in this graph is that transaction a precedes transaction b.

A graph representing a concurrent schedule of 9 transactions
Since the graph above is a DAG (can you confirm that it is in fact a DAG?) a topological sort of the graph will produce a topological ordering of the transactions in the concurrent schedule which will be equivalent to a serial schedule of the transactions. In other words, the nine transactions have interacted with the database in an interleaved (concurrent) fashion and what we are now going to find out is the serial equivalent to the concurrent schedule.

Given a DAG, there must be at least one vertex which has no edges incident upon it (i.e., its in degree is 0). [Note, if there does not exist such a node, the graph must contain a cycle!] A topological sort begins at this node. If there is more than one such node, one is arbitrarily chosen. The topological sort then removes this node from the graph and all the edges which emanate from that node. This will produce a graph which has one less node than the original graph (the edge set is also reduced but this is not a concern}. One property of acyclic graphs that is important for a topological sort to function properly is that the removal of any node and the edges which emanate from that node cannot induce a cycle in the resulting graph. Therefore, we know that the resulting graph is also a DAG and it must now contain at least one node with in degree 0 and this node will be selected next. Consider the graph from above and how this process works as shown in the sequence of diagrams below:

Original graph with in degree = 0 nodes T4 and T6 in contrasting color
The topological sort begins by removing (arbitrarily selected) one of the two in degree = 0 nodes and all emanating edges from the graph. In this case, we will select node T4 for removal. Thus, our topological sort has begun and our topological ordering begins with T4. Let’s call this ordering TS.

TS = [T4]

The graph which results from this removal is shown below:

Resulting graph after removing T4. In degree = 0 nodes are T1, T8, and T6
For the next step, let’s arbitrarily select T6 for removal. This causes T6 to be added to TS and the graph to change to the one shown below.

TS = [T4, T6]

Next, we select node T1 for removal, causing the changes: TS = [T4, T6, T1] and the graph:

Next, T8 is selected (the only option at this point). So TS = [T4, T6, T1, T8] and the graph becomes:

Next T5 must be selected causing TS to become: [T4, T6, T1, T8, T5] and the graph to become:

Next, T9 is arbitrarily selected so that TS = [T4, T6, T1, T8, T5, T9] and the graph to become:

T2 is the next to be selected and removed causing TS to become: [T4, T6, T1, T8, T5, T9, T2] and the graph to become:

Next, T3 is removed, which will leave T7 as the single node to be removed last. So our final TS = [T4, T6, T1, T8, T5, T9, T2, T3, T7]

Thus, the topological sort of the graph has produced the topological ordering of:

T4, T6, T1, T8, T5, T9, T2, T3, T7

This is a serial schedule equivalent to the concurrent schedule in which the transactions actually executed. So the database will be left in the state which is equivalent to executing T4 from start to finish followed by executing T6 from start to finish and so on. Notice that since we were able to arbitrarily chose from different nodes during the sorting process that the topological ordering we have produced is not unique. You should try to generate some of the other topological orderings that this graph contains.

Solution to Euler Circuit problem for Figure (b)

1

2

3

 4

7

6

 12

 8

 5

11

 9

 10

Start is on node a with the edges labeled in the order in which they are drawn. Finishing on node a to complete the Euler circuit.

10

4

12

7

11

5

10

4

12

11

5

Graph Problems Continued

7

1

9

3

6

8

2

11

5

10

4

12

7

1

9

3

6

8

2

11

5

10

4

12

7

1

9

3

6

8

2

11

5

10

4

12

7

1

9

3

6

8

2

g

f

e

d

c

b

a

1

9

3

6

8

2

1

2

3

41

5

7

6

1

2

3

41

5

7

6

T1

T3

T4

T6

T5

T2

T7

T8

T9

T1

T3

T6

T5

T2

T7

T8

T9

T4

T1

T3

T6

T5

T2

T7

T8

T9

T1

T3

T5

T2

T7

T8

T9

T3

T5

T2

T7

T8

T9

T3

T5

T2

T7

T8

T9

T3

T5

T2

T7

T9

T3

T2

T7

T9

T3

T2

T7

T3

T7

Day 24 - 16

