COP 3503 – Computer Science II – CLASS NOTES - DAY #25

Cycle Detection Algorithms
Many algorithms rely on detecting cycles in graphs. Many cycle detection algorithms are “brute force” algorithms and are quite inefficient. However, there are several algorithms which are quite efficient. One such algorithm is based upon a depth-first traversal of the graph. For undirected graphs, a single line needs to be added to the algorithm we presented earlier for depth-first traversal. This algorithm as well as the “modified” version are shown below:

Original Algorithm:

DFS(v)

num(v) = i++;

for all vertices u adjacent to v

if num(u) is 0

 attach edge (uv) to edges;

 DFS(u);

depthFirstSearch()

for all vertices v

num(v) = 0;

edges = null;

i = 1;

while there is a vertex v such that num(v) is 0

DFS(v);

output edges;

Modified Algorithm:

cycleDetection (v)

num(v) = i++;

for all vertices u adjacent to v

if num(u) is 0

attach edge (uv) to edges;

cycleDetection(u);

else cycle detected;

For digraphs, the situation is a bit more complicated, since there may be edges between different spanning subtrees, called side edges. An edge (a back edge) indicates a cycle if it joins two vertices already included in the same spanning subtree. To consider only this case, a number higher than any number generated in subsequent searches is assigned to a vertex being currently visited after all its descendants have also been visited. In this way, if a vertex is about to be joined by an edge with a vertex having a lower number, then a cycle has been detected. The algorithm for cycle detection using this technique in a digraph is shown below:

digraphCycleDetection (v)

num(v) = i++;

for all vertices u adjacent to v

if num(u) is 0

attach edge(uv) to edges;

digraphCycleDetection(u);

else if num(u) is not (

cycle is detected;

num(v) = (;

Kruskal’s Algorithm to Generate a Minimum Spanning Tree
We have already seen Prim’s algorithm for generating a minimum spanning tree. Prim’s technique, although we presented it in tabular form, basically creates a single tree and expands the tree from the root as edges are considered. Kruskal’s algorithm takes a different approach in which a set of trees (a forest) is condensed to a single tree.

In Kruskal’s method, all edges are ordered by weight, and then each edge in this ordered sequence is checked to see whether it can be considered as part of the tree which is under construction. The edge is added to the tree only if no cycle arises after its inclusion. Kruskal’s algorithm is quite simple and is shown below:

KruskalAlgorithm (weighted connected undirected graph)

tree = null;

edges = sequence of all edges of graph sorted by weight;

for (i = 1; i ((E(and (tree(< (V(-1; i++)

if ei from edges does not form a cycle with edges in tree

add ei to tree;

The complexity of this algorithm is determined by the complexity of the sorting algorithm which is applied, which for an efficient sorting algorithm is O((E(log2 (E(). It also depends on the complexity of the algorithm used for the cycle detection.

To illustrate the technique of Kruskal’s algorithm, consider the following example:

6

 5 9 13

16

 15

12 7

8 3

The ordering of the weighted edges is:

(g,f) = 3, (a,c) = 5, (a,b) = 6, (d,f) = 7, (e,g) = 8, (c,b) = 9, (c,f) = 12, (b,e)= 13, (d,e) = 15, and (c,d) = 16

Iteration 1: A tree is formed from the minimum weight edge (g,f)

Iteration 2:
A second tree is formed from the minimum weight edge (a,c). Notice that this tree is not connected to the first tree since they have no vertex in common.

Iteration 3: The next minimum edge (a,b) is added to the forest, this time to an existing tree since there is a common vertex in a.

Iteration 4: The next edge added to the tree (forest) is, (d,f).

Iteration 5: The next edge added is, (e,g).

Iteration 6: This step will attempt to add the edge (c,b) but this would induce a cycle so the edge is not added to the tree.

Iteration 7: This step will add the edge (c,f).

Iteration 8: This step will attempt to add the edge (b,e) but this would induce a cycle so the edge is not added to the tree.

Iteration 9: This step will attempt to add the edge (d,e) but this would induce a cycle so the edge is not added to the tree.

Iteration 10: This step will attempt to add the edge (c,d) but this would induce a cycle so the edge is not added to the tree.

Thus the final minimum spanning tree is shown after iteration #7 has completed.

For practice, you should run Prim’s algorithm on the initial graph for this example. Does Prim’s algorithm produce the same minimum spanning tree? {Answer is on the last page of this set of notes.}

All-to-All Shortest Path Problem
Dijkstra’s and Ford’s algorithms solve the shortest path problem from one specified vertex to all other vertices in the graph. This type of problem is often called the One-to-All Shortest Path problem. The problem of finding all shortest paths from any vertex to any other vertex (the All-to-All Shortest Path problem) seems to be a more complicated problem. However, an algorithm developed by Stephen Warshall and implemented by Robert Floyd and P.Z. Ingerman solves this problem in a surprisingly simple way provided that the adjacency matrix indicates the weight of each edge in the graph. The technique works whether the graph is undirected or directed and the graph may include negative weights. The algorithm is shown below:

The outermost loop handles the vertices which may be on a path between the vertex with index j and the vertex with index k. For example, in the first iteration, when i = 1, all paths vi…vl…vk are considered, and if there is currently no path from vj to vk and vk is reachable from vj, the path is established, with its weight equal to p =weight(path(vj,…,vl)) + weight(path(vl,…vk)), or the current weight of this path, weight(path(vj,…vk)) is changed to p if p is less than weight(path(vj,…,vk)). To illustrate the WFI algorithm consider the following example:

	
	A(1)
	B(2)
	C(3)
	D(4)
	E(5)

	A(1)
	0
	2
	(
	(4
	(

	B(2)
	(
	0
	(2
	1
	3

	C(3)
	(
	(
	0
	(
	1

	D(4)
	(
	(
	(
	0
	4

	E(5)
	(
	(
	(
	(
	0

 2

 (2

 (4 1 3

 1

 4

Since the graph in the example is a directed graph, notice that the matrix is a diagonal matrix. In this case only the cells in the upper right side of the main diagonal contain data which describes the graph. The cells in the lower left side of the diagonal all contain infinity. The cells along the main diagonal are initialized to 0. After examining how the WFI algorithm operates, we’ll come back to explore the adjacency matrix a bit more as there turns out to be a very useful purpose to representing the graph in this fashion.

Iteration 1 (variable i refers to vertex A)
The test which is performed in the algorithm is: weight[j][k] > weight[j][i] + weight[i][k]. Vertex A has no incident edges (for all j and k values there are no values for weight[j][1] or weight[1][k]) so no changes will occur to the matrix during the first iteration of the algorithm. Since A has no incident edges, it cannot be along the path between any two vertices j and k.

	
	A(1)
	B(2)
	C(3)
	D(4)
	E(5)

	A(1)
	0
	2
	(
	(4
	(

	B(2)
	(
	0
	(2
	1
	3

	C(3)
	(
	(
	0
	(
	1

	D(4)
	(
	(
	(
	0
	4

	E(5)
	(
	(
	(
	(
	0

Iteration 2 (variable i refers to vertex B)

During this iteration, i is 2 so the test becomes: weight[j][k] > weight[j][2] + weight[2][k]. Vertex B has incident 1 edge; the following tests will be performed: weight[j][k] > weight[j][2] + weight[2][k]. Since B has only one incident edge (from A) it can only be along a path which begins at A (since A has no incident edges). Shorter paths found in this iteration are shown in red.

weight[1][1] > weight[1][2] + weight[2][1] - no, no changes

weight[1][2] > weight[1][2] + weight[2][2] – no, no changes

weight[1][3] > weight[1][2] + weight[2][3] – yes, (> 0, set weight[1][3] to 0

weight[1][4] > weight[1][2] + weight[2][4] – no, no changes

weight[1][5] > weight[1][2] + weight[2][5] – yes, (> 5, set weight[1][5] to 5

	
	A
	B
	C
	D
	E

	A
	0
	2
	0
	(4
	5

	B
	(
	0
	(2
	1
	3

	C
	(
	(
	0
	(
	1

	D
	(
	(
	(
	0
	4

	E
	(
	(
	(
	(
	0

Iteration 3 (variable i refers to vertex C)

During this iteration, i is 3 so the test becomes: weight[j][k] > weight[j][3] + weight[3][k]. Vertex C has 1 incident edge; the following tests will be performed: weight[j][k] > weight[j][3] + weight[3][k]. Shorter paths found in this iteration are shown in blue.

weight[1][1] > weight[1][3] + weight[3][1] – no, no changes

weight[1][2] > weight[1][3] + weight[3][2] – no, no changes

weight[1][3] > weight[1][3] + weight[3][3] – no, no changes

weight[1][4] > weight[1][3] + weight[3][4] – no, no changes

weight[1][5] > weight[1][3] + weight[3][5] – yes, 5 > 1, set weight[1,5] to 1

weight[2][1] > weight[2][3] + weight[3][1] – no, no changes

weight[2][2] > weight[2][3] + weight[3][2] – no, no changes

weight[2][3] > weight[2][3] + weight[3][3] – no, no changes

weight[2][4] > weight[2][3] + weight[3][4] – no, no changes

weight[2][5] > weight[2][3] + weight[3][5] – yes, 3 > (1, set weight[3][5] to (1

	
	A
	B
	C
	D
	E

	A
	0
	2
	0
	(4
	1

	B
	(
	0
	(2
	1
	(1

	C
	(
	(
	0
	(
	1

	D
	(
	(
	(
	0
	4

	E
	(
	(
	(
	(
	0

Iteration 4 (variable i refers to vertex D)

During this iteration, i is 4 so the test becomes: weight[j][k] > weight[j][4] + weight[4][k]. Vertex D has 2 incident edges; the following tests will be performed: weight[j][k] > weight[j][4] + weight[4][k]. Shorter paths found in this iteration are shown in purple.

weight[1][1] > weight[1][4] + weight[4][1] - , no, no changes

weight[1][2] > weight[1][4] + weight[4][2] – no, nochanges

weight[1][3] > weight[1][4] + weight[4][3] – no, no changes

weight[1][4] > weight[1][4] + weight[4][4] – no, no changes

weight[1][5] > weight[1][4] + weight[4][5] – yes, 1>0, set weight[1][5] to 0

weight[2][1] > weight[2][4] + weight[4][1] - , no, no changes

weight[2][2] > weight[2][4] + weight[4][2] – no, nochanges

weight[2][3] > weight[2][4] + weight[4][3] – no, no changes

weight[2][4] > weight[2][4] + weight[4][4] – no, no changes

weight[2][5] > weight[2][4] + weight[4][5] – no, no changes

weight[3][1] > weight[3][4] + weight[4][1] - , no, no changes

weight[3][2] > weight[3][4] + weight[4][2] – no, nochanges

weight[3][3] > weight[3][4] + weight[4][3] – no, no changes

weight[3][4] > weight[3][4] + weight[4][4] – no, no changes

weight[3][5] > weight[3][4] + weight[4][5] – no, no changes

weight[4][1] > weight[4][4] + weight[4][1] - , no, no changes

weight[4][2] > weight[4][4] + weight[4][2] – no, nochanges

weight[4][3] > weight[4][4] + weight[4][3] – no, no changes

weight[4][4] > weight[4][4] + weight[4][4] – no, no changes

weight[4][5] > weight[4][4] + weight[4][5] – no, no changes

weight[5][1] > weight[5][4] + weight[4][1] - , no, no changes

weight[5][2] > weight[5][4] + weight[4][2] – no, nochanges

weight[5][3] > weight[5][4] + weight[4][3] – no, no changes

weight[5][4] > weight[5][4] + weight[4][4] – no, no changes

weight[5][5] > weight[5][4] + weight[4][5] – no, no changes

	
	A
	B
	C
	D
	E

	A
	0
	2
	0
	(4
	0

	B
	(
	0
	(2
	1
	(1

	C
	(
	(
	0
	(
	1

	D
	(
	(
	(
	0
	4

	E
	(
	(
	(
	(
	0

Iteration 5 (variable i refers to vertex E)

As with the first iteration of the algorithm, the last iteration will cause no changes to the adjacency matrix because vertex E has no edges which emanate from it. Therefore, it cannot be along the path between any other two vertices in the graph. So our work is done and the adjacency matrix contains the values of the shortest paths between any two arbitrary vertices in the graph.

The WFIalgorithm for solving the all-to-all shortest path problems also allows for the detection of cycles in the graph. To achieve this additional functionality for the algorithm, the weights along the main diagonal must be initialized to (rather than 0. Through the course of execution of the algorithm on a particular graph, if any of the values along the main diagonal are changed, the graph will contain a cycle. Futher, if one of the initial values of (between two vertices in the adjacency matrix is not changed to a finite value during the execution of the algorithm this is an indication that a vertex is unreachable from another.

Answer for Prim’s algorithm using the example for Kruskal’s algorithm

6

 5 9 13

 16

 12 15

 7

 3

 8

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	A
	F
	0
	0

	B
	F
	(
	0

	C
	F
	(
	0

	D
	F
	(
	0

	E
	F
	(
	0

	F
	F
	(
	0

	G
	F
	(
	0

Initial table

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	A
	T
	0
	

	B
	F
	6
	A

	C
	F
	5
	A

	D
	F
	(
	0

	E
	F
	(
	0

	F
	F
	(
	0

	G
	F
	(
	0

After first iteration – active vertex was A

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	A
	T
	0
	0

	B
	F
	6
	A

	C
	T
	5
	A

	D
	F
	16
	C

	E
	F
	(
	0

	F
	F
	12
	C

	G
	F
	(
	0

After second iteration – active vertex was C

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	A
	T
	0
	0

	B
	T
	6
	A

	C
	T
	5
	A

	D
	F
	16
	C

	E
	F
	13
	B

	F
	F
	12
	C

	G
	F
	(
	0

After third iteration – active vertex was B

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	A
	T
	0
	0

	B
	T
	6
	A

	C
	T
	5
	A

	D
	F
	7
	F

	E
	F
	13
	B

	F
	T
	12
	C

	G
	F
	3
	F

After fourth iteration – active vertex was F

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	A
	T
	0
	0

	B
	T
	6
	A

	C
	T
	5
	A

	D
	F
	7
	F

	E
	F
	8
	G

	F
	T
	12
	C

	G
	T
	3
	F

After fifth iteration – active vertex was G

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	A
	T
	0
	0

	B
	T
	6
	A

	C
	T
	5
	A

	D
	T
	7
	F

	E
	F
	8
	G

	F
	T
	12
	C

	G
	T
	3
	F

After sixth iteration – active vertex was D

	vertex
	visited
	minimum weight
	vertex causing change to min weight

	A
	T
	0
	0

	B
	T
	6
	A

	C
	T
	5
	A

	D
	T
	7
	F

	E
	F
	8
	G

	F
	T
	12
	C

	G
	T
	3
	F

After seventh and final iteration – active vertex was E

The minimum spanning tree constructed by Prim’s algorithm is shown below:

The minimum spanning tree constructed by Kruskal’s algorithm:

Yes, both algorithms generate the same minimum spanning tree. Reason… this tree has only one minimum spanning tree!

More Graph Problems

C

E

D

B

A

C

E

D

B

A

C

E

D

B

A

C

E

D

B

A

C

E

D

B

A

WFIalgorithm (matrix weights)

		for i = 1 to (V(

			for j = 1 to (V(

				for k = 1 to (V(

					if weight[j][k] > weight[j][i] + weight[i][k]

						weight[j][k] = weight[j][i] + weight[i][k];

E

D

G

F

B

C

A

D

E

G

F

C

B

A

G

F

E

D

C

B

A

E

D

G

F

B

C

A

E

D

B

C

A

G

F

D

B

C

A

G

F

B

C

A

G

F

C

A

G

F

G

F

G

F

E

D

C

B

A

Day 25 - 1

