COP 3503 – Computer Science II – CLASS NOTES - DAY #5
Introduction to Data Structures
Most algorithms require a proper representation of the data in order to achieve efficiency. This representation and the operations that are allowed are called a data structure.

Data structures are an important part of OOP as they allow for component reuse (recall that this is a major goal of the OO paradigm). Once the data structure has been designed and implemented, it can be used over and over again in various applications.

Separation of the interface to and the implementation of a data structure is also central to the OO paradigm. The user of the data structure does not need to see the implementation of the data structure, only the operations that are available to operate on the structure. (Recall our discussions about encapsulation and information hiding in OOP.)

Abstraction is another important part of the OO paradigm. This means that more thought must be given to design of the data structure because programs will need to make use of the structure without having knowledge of its implementation. All this makes the interface to the structure much “cleaner” and enhances the ability to reuse the structure.

Stacks
· A stack is a data structure that operates on a LIFO policy – Last In, First Out.

· Access to the structure is restricted to the last element that was put into the stack, called the top element.

· Only three operations are supported by this data structure. They are push (insert operation), pop (delete operation), and top (combined pop followed by push – state of the stack remains unchanged by this operation – see below).

· Push – adds a new element to the top of the stack.

· Pop – removes the top element from the stack.

· Top – returns a copy of the top element without removing it from the stack.

· Note that the allowed operations do not permit access to any element in the stack other than the top element. If you wish to examine the third element in the stack, then the top two elements must be removed (popped) first in order to bring the third element to the top at which point it can be examined.

· Useful for reversing the order of lists of items and expression evaluation.

Algorithms:

(We will assume for now that our stack will be implemented using static memory. Later we will examine implementations using dynamic memory.)

Assume that the stack is represented by an array with a top of stack marker with the convention that tos == -1 implies the stack is empty.

int MAX = 10, stack[MAX], tos = -1;

push(x)

{ if (tos == MAX-1) // stack is full

ERROR – stack full

 else // stack is not full

 stack[++tos] = x; //increment tos prior to use and push x on the stack

}

pop(x)

{ if (tos == -1) // stack is empty

ERROR – stack empty

 else // stack contains elements

x = stack[tos((];

}

top(x)

{ if (tos == -1) //stack is empty

the stack is empty

 else //stack contains at least one element

x = stack[tos];

}

Stack Examples (light blue cells indicate available space in stack)

Basic Operations

	
	contents

	3
	

	2
	

	1
	

	0
	

stack initially empty

tos = -1

	

	contents

	3
	

	2
	3

	1
	7

	0
	4

push(4) – tos = 0

push(7) – tos = 1

push(3) – tos = 2

	

	contents

	3
	

	2
	

	1
	

	0
	4

pop() – return 3 – tos = 1

pop() – return 7 – tos = 0

In leftmost figure above, the stack is initially empty. The middle figure represents the state of the stack after three push operations have occurred. Finally, the rightmost figure represents the state of the stack after two pop operations have occurred. The values of the top_of_stack variable are shown after each operation is completed.

	
	contents

	8
	b

	7
	a

	6
	c

	5
	k

	4
	w

	3
	a

	2
	r

	1
	d

	0
	s

 initial stack

The stack on the left side of the page was put into the state shown through a sequence of nine push operations of elements in the order: sdrawkcab. Thus the first push placed the letter s into stack position 0, the second push placed the letter d into stack position 1 and so on. After the ninth push operation the stack was in the state shown. If we now perform nine pop operations in a row (without an intervening push operation) we will retrieve the elements from the stack in the reverse of the order in which they were placed onto the stack. Thus, we have developed a simple way to reverse strings

Queues
· A queue is a data structure that operates on a FIFO policy – First In, First Out.

· Access to the structure is restricted to the first element that was put into the queue, usually called the head element.

· Only three operations are supported by this data structure. They are enqueue, dequeue, and head (sometimes called top).

· Enqueue – adds a new element to the tail (or end) of the queue.

· Dequeue – removes the element at the head (or front) of the queue.

· Head – returns a copy of the head of the queue without removing it from the queue.

· Useful for many simulation programs – like simulation of process traffic in a multi-programmed system.

Algorithms:

Assume that the queue is represented by an array with two markers called head and tail with the convention that (tail < head) implies the queue is empty.

int MAX = 10, queue[MAX], HEAD = 0, tail = -1;

enqueue(x)

{ if (tail == MAX) // queue is full

ERROR – queue is full

 else // queue is not full

 queue[++tail] = x;

}

dequeue(x)

{ if (tail < HEAD) // queue is empty

ERROR – queue is empty

 else // queue is not empty

 { x = queue[HEAD];

 for (int i = HEAD; i == tail-1; i++)

queue[i] = queue[i+1]; // shuffle elements up queue

 tail = tail-1; //note: head never moves

 }

}

head(x)

{ if (tail < HEAD) //queue is empty

no elements in queue

 else //queue contains at least one element

x = queue[HEAD];

}

How about this implementation of a queue? Clearly enqueue and head run in constant time, but what about dequeue? It runs in an amount of time proportional to the size of the list...the obvious question is can we do better? Even though everyone moves in a real line, we do not necessarily have to MODEL it that way. Rather, consider the following:

Instead of keeping HEAD fixed, lets allow sliding it back and forth. We’d only have to worry about “crossing over” from the highest array index back to the lowest one. This can easily be taken care of by the mod operator. Here is a new version of dequeue:

int dequeue() {

 if (head == tail) // queue is empty

ERROR – queue is empty

 else { // queue is not empty

x = queue[head];

head = (head + 1)%10;

 return x;

 }

}

So now, the question becomes, can we simply substitute this version of dequeue for the old one?

Unfortunately no. The reason is that in our implementation of the other functions we ASSUMED that head would always be at the beginning of the array, and that there would be no wrap around of head or tail. We need to reimplement enqueue like this:

enqueue(x) {

 if ((tail+1)%10 == head) // queue is full

ERROR – queue is full

 else {// queue is not full

 queue[tail] = x;

 tail = (tail + 1)%10;

 }

}

Now we have an implementation where each function runs in O(1) time.

Linked Lists

· A linked list is (typically) a dynamic data structure that stores elements in non-contiguous locations in memory, unlike an array in which the sequential elements are stored in contiguous memory locations.

· A linked list consists of a set of nodes where each node contains a reference to the next node in the list.

· Three basic operations are supported by this data structure. They are insert, delete, and retrieve.

· Insert – in general, adds a node to the list.

· Delete – in general, removes a node from the list.

· Retrieve – in general, returns a data component from a selected node.

Note: If you can only insert at the head of the list – you have a stack. If you only allow insert after the last element in the list but can access only the first element in the list – you have a queue.

Insertion generally involves the reallocation of memory and reference pointer manipulation to update the list. Deletion generally involves changing the reference pointers to skip over the deleted node and possibly to deallocate the memory. Regardless of the number elements in the list these operations can be performed in constant time.

In many instances, the solution to a problem will require the ability to insert new nodes or delete existing nodes from arbitrary positions in the list. The stack and queue structures may be too restrictive for certain applications. For this reason, the insertion and deletion operations for the linked list structure will allow the operation to be performed at an arbitrary point in the list.

Java Note: The ability to access items in the list requires the ability to reference a node within the list. If the list itself is available for this access – then we have violated our principle of information hiding because we have now made the details of the list structure available. To ensure that the access to the list is safe – the list is defined in two parts: a list class and an iterator class. The basic list class provides the linked list interface which provides the methods which describe only the state of the list structure. The iterator class is used for all access into the list structure. We’ll see the details of this later when we deal with implementing the data structures.

Insertion
1. Insertion at the beginning of the list

2. Insertion at the end of the list

3. Insertion in the middle of the list

A linked list

1. Insertion at the beginning of the list

2. Insertion at the end of the list

3. Insertion in the middle of the list

Deletion

1. Delete the head of the list

2. Delete the tail of the list

3. Delete in the middle of the list

Variations on Linked Lists
The linked list structures that we have just examined are all of the same type, called a singly-linked list. Each node in the list contains a single reference (pointer) to the node which logically follows it in the list. There are many different variations of linked lists that have been developed. A few of these are:

· circular singly-linked lists – the last node in the list contains refers to the first node in the list.

· doubly-linked lists – each node in the list contains a reference to both the node which immediately precedes it and to the node which follows it in the list.

· circular doubly-linked lists – same as a circular singly-linked list except that the nodes in the list are doubly-linked.

· skip lists – nodes in the list contain differing numbers of references to nodes further along in the list. Rather than sequentially traversing the list, a skip reference is made to a node deeper in the list which can greatly speed-up long list traversals.

· self-organizing lists – these lists allow nodes in the list to change position based upon different types of access has occurred to the list. For example, a count method maintains the nodes in the list in descending order of the number of times the node has been accessed. The move-to-the-front method moves the most recently accessed node to the head of the list. There are several other variations that have been proposed.

General Trees
A tree consists of a set of nodes and a set of edges that connect pairs of nodes. A tree is an instance of a more general data structure known as a graph. We will be concerned with rooted trees. A rooted tree has the following characteristics:

· One node is distinguished as the root node.

· Every node c (except the root node) is connected by an edge from exactly one other node p. The node p is c’s parent. The node c is one of p’s children. A leaf node has no children.

· There is a unique path from the root to each node in the tree. The number of edges that must be traversed to go from node a to node b is called the path length from a to b.

· Siblings are all the child nodes on the same ply or all nodes with the same path length from the root.

The tree data structure is a fundamental one in computer science. Many operating systems arrange their file systems using tree structures, thus you have directories with sub-directories and so on. Tree structures are also often used by compilers during their parsing and code generation phases for handling arithmetic expressions and other constructs in the language being compiled. An example of a general tree is shown below followed by an example illustrating its use as an expression tree.

Trees are commonly implemented like a linked list, albeit with more pointers involved. Since traversing the tree requires movement both up and down the tree, pointers in both directions from a given node are typical. A node has the following general format.

For the root node: the pointer to the parent is null

For a leaf node: the set of pointers to the children are all null

For an internal node: the pointers all have values

Binary Search Trees (BST)

· Used for dynamic searching.
· A tree where each node can have at most two children.
· Some sort of ordering is imposed on the nodes of the tree.
· Typically supports three operations:
1. insertion
2. deletion
3. find – (name or rank) – worst case: O(N), average case: O(log2 N)

Hash Tables
· Provides dynamic searching capabilities based upon name alone.

· Avoids two problems of the BST. (1) Not O(N) in the worst case, and (2) does not require the repetitive memory maintenance of the BST which requires reorganization of the tree after every insertion and deletion.

· A hashing function is associated with the table that converts an input value (a key value) into an integer value that represents an address within the table (a location in the hash table).

· Data collision results any time that the hash function yields an address for a new input value that is already occupied by an existing data value. Without resolving the collision – the new input value is simply lost!

· Searching the hash table is an O(1) operation.

· Hash tables are used in search engines and extensively by compilers and assemblers.

· Hash tables are very useful any time a fast lookup is needed.

Priority Queues

· This data structure supports access only to the item which has the highest priority (this is the minimum priority value).

· Three operations are supported:

1. insertion – a normal queue insertion.

2. deleteMin – deletes the item in the queue with minimum priority value.

3. FindMin – searches for the item in the queue with minimum priority value.

· Worst case performance is faster the BST (O(log 2 N) in worst case)

· Less pointer overhead than with BST.

· FindMin operation is O(1).

· deleteMin operation is O(log 2 N).

· Insert is O(1) on average and O(log 2 N) in worst case.

· Basic priority queue with these three operations is called a binary heap.

	Data Structure
	Access is to
	Comments

	Stack
	only to most recently inserted item, pop = O(1)
	very, very fast

	Queue
	only to least recently inserted item, dequeue = O(1)
	very, very fast

	Linked List
	any item
	O(N)

	Search Tree
	any item by name or ranking, O(log 2 N)
	average case; worst case is O(N)

	Hash Table
	any named item = O(1)
	collision rate affects performance

	Priority Queue
	findMin = O(1)

deleteMin = O(log 2 N)
	insert is O(1) on average and O(log 2 N) in worst case

Table summarizing the basic data structures

new

new

new

A

B

C

D

E

F

GF

H

I

J

K

A general tree

root

leaf nodes

+

*

b

c

a

An expression tree

Expression: a + b * c

 pointer to parent

 data value

{pointers to children}

6

107

2

8

5

107

2

6

note ordering: left child is always smaller than parent and right child is always larger than parent

binary search tree

8

possible reorganization of the BST if node containing 5 is deleted

?

?

?

?

ply

Day 5 - 12

