COP 3503 – Computer Science II – CLASS NOTES - DAY #7
Problem Solving Techniques
We now shift our focus from run-time complexity to introducing several general techniques which can be applied to problem solving. Different problems require different approaches in defining their solutions. To this end the algorithm designer needs to have a good understanding of many different techniques that can be applied toward solving the problem at hand.

This set of notes introduces the problem solving techniques of recursion, divide and conquer, dynamic programming, and backtracking.

Recursion

· A method or function either directly or indirectly calls itself.

· Can be a powerful problem solving tool.

· Many algorithms and mathematical properties are naturally expressed in a recursive manner.

· Some programming languages are inherently recursive (Lisp, Scheme).

If properly done, a recursive function F calling itself, does not lead to an infinite cycle of the function calling itself. Instead, each recursive call is made on a different, generally simpler, instance of the problem.

[image: image1.wmf]î

í

ì

>

-

£

=

1

n

)

1

n

(

f

n

1

n

1

)

n

(

f

[image: image32.wmf]å

=

j

i

k

k

A

A recursive function is a function which is defined in terms of itself. For example, it is common to express the factorial function, f(n) = n! where n is an integer, as the recursive function:

[image: image33.wmf]å

=

j

i

k

k

A

This definition states that f(n) equals 1 whenever n is less than or equal to 1. For example, f(-3) = f(0) = f(1) = 1. However, when n is more than 1, f(n) is defined recursively, since the definition of f now contains an occurrence of f on the right side. Note that the use of f on the right side does not constitute a circular definition since the parameter of f on the right side is smaller than the one on the left side. For example, the from the definition we have: f(2) = 2f(1) and the definition also gives us f(1) = 1, substitution then provides the answer that f(2) = 2(1) = 2. Similarly, for f(3) the definition gives us: f(3) = 3f(2), from above we know that f(2) = 2f(1) and f(1) = 1, thus f(3) = 3f(2) = 3(2(f(1))) = 3(2(1))) = 6.

For a recursive definition of f(n) (assuming direct recursion) to be a complete specification of the function f, it must meet the following requirements:

· The definition must include a base component in which f(n) is defined directly (i.e., without recursion) for one or more values of n. For simplicity, we assume that the domain of f is the nonnegative integers and that the base covers the case 0 (n (k for some constant k. (Note: it is possible to have recursive definitions in which the base covers the case n (k instead, but these definitions occur infrequently.)

· In the recursive component all occurrences of f on the right side must have a parameter smaller than n so that repeated application of the recursive component transforms all occurrences of f on the right side to occurrences of f in the base component.

For the recursive function shown above, the base component is f(n) = 1 for n (1; the recursive component is f(n) = n f(n-1) and the parameter of f on the right hand side is (n-1) which is smaller than n. Repeated application of the recursive component transforms f(n-1) to f(n-2), f(n-3), …, and finally to f(1) which is included in the base component. For example, repeated application of the recursive component gives the following:

f(5) = 5f(4) = 20f(3) = 60f(2) = 120f(1) = 120

Notice how each application of the recursive component gets closer to the base. Finally, an application of the base component gives the answer that f(5) = 120.

Another well-known recursively defined function is that of the Fibonacci numbers.

Fibonacci numbers are named in honor of Leonardo Pisano (Leonardo of Pisa), the son of Bonaccio, (which in Latin is Filius Bonaccii) who discovered the series in 1202. The original problem that Fibonacci investigated (in the year 1202) was about how fast rabbits could breed in ideal circumstances. Suppose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits are able to mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits. Suppose that our rabbits never die and that the female always produces one new pair (one male, one female) every month from the second month on. The puzzle that Fibonacci posed was...How many pairs will there be in one year?

1. At the end of the first month, they mate, but there is still one only 1 pair.

2. At the end of the second month the female produces a new pair, so now there are 2 pairs of rabbits in the field.

3. At the end of the third month, the original female produces a second pair, making 3 pairs in all in the field.

4. At the end of the fourth month, the original female has produced yet another new pair, the female born two months ago produces her first pair also, making 5 pairs.

5. What is the answer to this problem? [see the last page for the answer – but try to figure it out by yourself first!]

Fibonacci numbers appear in many unexpected areas. For example, on many plants, the number of petals is a Fibonacci number:

buttercups have 5 petals; lilies and iris have 3 petals; some delphiniums have 8; corn marigolds have 13 petals; some asters have 21 whereas daisies can be found with 34, 55 or even 89 petals, all Fibonacci numbers. Look at your own hand: You have ... 2 hands each of which has 5 fingers, each of which has 3 parts separated by 2 knuckles.

The Fibonacci numbers are defined as:

[image: image2.wmf]ï

î

ï

í

ì

³

-

+

-

=

=

=

1

n

for

)

2

n

(

f

)

1

n

(

f

1

n

for

1

0

n

for

0

)

n

(

f

Applying the definition, we see that this recursive function definition is complete. The fourth Fibonacci number is defined as:

[image: image3.wmf]3

)

0

(

f

2

)

1

(

f

3

)

0

(

f

)

1

(

f

)

1

(

f

)

0

(

f

)

1

(

f

)

0

(

f

)

1

(

f

)

1

(

f

)

2

(

f

)

2

(

f

)

3

(

f

)

4

(

f

=

+

=

+

+

+

+

=

+

+

+

=

+

=

Proofs by Mathematical Induction
Induction proofs are most often used to establish theorems that hold for positive integers. That is, you can establish the validity of a conjecture such as:

(n (0, and n (integer numbers, it is true that
[image: image4.wmf]å

=

=

n

0

i

i

 EMBED Equation.3 [image: image5.wmf]2

)

1

n

(

n

+

by showing that the conjecture is true for one or more base values of n (generally, n = 0 is sufficient – though not always). Once this base case is proven true, you assume that the conjecture is true for all values of n from the base case through m, where m is an arbitrary integer greater than or equal to the largest value of n covered in the base case; this is the inductive hypothesis. Finally, using the assumption of the inductive hypothesis you prove that the conjecture is true for the next value of n (i.e., m + 1). This final step is the induction step. To summarize: An induction proof consists of three parts:

1. Induction base: Show by example that the conjecture is true for one or more values of n. Typically n = 0 is used.

2. Induction Hypothesis: Assume the conjecture is true for all values of n between the base case value and some arbitrary integer m.

3. Induction Step: Prove that the conjecture is true (or possibly not true) when n = m +1.

Example: Prove by induction the conjecture from above.

Conjecture: (n (0, and n (integer numbers, it is true that
[image: image6.wmf]å

=

=

n

1

i

i

 EMBED Equation.3 [image: image7.wmf]2

)

1

n

(

n

+

Basis: n=1, by definition
[image: image8.wmf]å

=

=

n

1

i

i

 EMBED Equation.3 [image: image9.wmf]å

=

=

1

1

i

i

1, by substitution
[image: image10.wmf]å

=

=

1

1

i

i

 EMBED Equation.3 [image: image11.wmf]2

)

1

1

(

1

+

 =
[image: image12.wmf]2

2

 = 1

So the base case is true!

Inductive Hypothesis: n=k, assume
[image: image13.wmf]å

=

=

n

1

i

i

 EMBED Equation.3 [image: image14.wmf]2

)

1

k

(

k

+

 is true.

Inductive Step: prove conjecture is true for n = k+1

Must prove that:
[image: image15.wmf]å

+

=

=

1

k

1

i

i

 EMBED Equation.3 [image: image16.wmf]2

]

1

)

1

k

)[(

1

k

(

+

+

+

 =
[image: image17.wmf]2

)

2

k

)(

1

k

(

+

+

Note that
[image: image18.wmf]å

+

=

=

1

k

1

i

i

[image: image19.wmf]å

=

k

1

i

i

+ (k +1) =
[image: image20.wmf]2

)

1

k

(

k

+

 + (k + 1)

Rewriting gives:
[image: image21.wmf]2

k

k

2

+

 + k + 1 =
[image: image22.wmf]2

k

2

 +
[image: image23.wmf]2

k

 +
[image: image24.wmf]2

k

2

 +
[image: image25.wmf]2

2

[image: image26.wmf]2

k

2

 +
[image: image27.wmf]2

k

 +
[image: image28.wmf]2

k

2

 +
[image: image29.wmf]2

2

 =
[image: image30.wmf]2

2

k

3

k

2

+

+

 =
[image: image31.wmf]2

)

2

k

)(

1

k

(

+

+

Thus the proof is completed and our conjecture is true for all integer numbers.

At first glance, a proof by induction appears to be a circular proof, in that you establish a result by assuming that it is correct. However, an induction proof is not a circular proof for the same reason that a recursive definition is not circular. A correct proof by induction has an induction base that is similar to the base case of a recursive definition. The induction step proves the correctness using the correctness for smaller values of n. Repeated application of the induction step reduces the proof to one that is solely in terms of the base.

Induction proofs have their foundation in recursion, which can be a powerful problem solving tool.

Answer to Fibonacci’s Rabbit Puzzle

1. At the end of the first month, they mate, but there is still one only 1 pair. Total is 1 pair. Call them M1/F1.

2. At the start of the second month there is 1 pair. At the end of the second month the female F1 produces her first new pair (call them M2/F2 like before), so now there are 2 pairs of rabbits in the field. Total is 2 pairs. M1/F1, M2/F2

3. At the start of the third month there are 2 pairs [M1/F1, M2/F2]. At the end of the third month, the original female (F1) produces her second pair, making 3 pairs in the field. Total is 3 pairs. M1/F1, M2/F2, M3/F3

4. At the start of the fourth month there are 3 pairs. Two pairs will reproduce, one pair is not yet mature. Three pairs at start of month plus two pairs produced this month totals 5 pairs.

5. At the start of the fifth month there are 5 pairs. Three pairs will reproduce, two pairs are not yet mature. At the end of the fifth month, the original female (F1) produces her fourth new pair, the female born three months ago (F2) produces her second pair, and the female born two months ago (F3) produces her first pair. [5 pairs at start + 3 pairs produced] Total is 8 pairs.

The table below illustrates the complete process more succinctly.

	A
	B
	C
	D
	E
	F

	month
	total pairs at start of month
	number of mature pairs at start of month
	number of immature pairs
	number of pairs produced by mature pairs
	total number of pairs at end of month

(sum of columns B and E)

	1
	1
	0
	1
	0
	1

	2
	1
	1
	0
	1
	2

	3
	2
	1
	1
	1
	3

	4
	3
	2
	1
	2
	5

	5
	5
	3
	2
	3
	8

	6
	8
	5
	3
	5
	13

	7
	13
	8
	5
	8
	21

	8
	21
	13
	8
	13
	34

	9
	34
	21
	13
	21
	55

	10
	55
	34
	21
	34
	89

	11
	89
	55
	34
	55
	144

	12
	144
	89
	55
	89
	233

More on Recursion

Let’s look at a couple recursive static methods in Java that calculate Fibonacci and Factorials, respectively:

Here is a recursive binary search:

Consider the following problem:

Given a positive integer value of cents, how many different ways can we make change equaling that number of cents, using only pennies, nickels, dimes, and quarters.

Here is a recursive solution:

There is A LOT going on in this short piece of code. The essential idea is the following:

If you have n cents, you could make change for it by doing the following:

1) use a quarter, then count how many ways to change n-25 cents

2) use a dime, then count how many ways to change n-10 cents

3) use a nickel, then count how many ways to change n-5 cents

4) use a penny, then count how many ways to change n-1 cents

But, there’s a problem here – what is it?

So we can take care of this problem with the following stipulations:

1) use a quarter, then count how many ways to change n-25 cents

2) use a dime, then count the ways to change n-10 cents, with dimes or less

3) use a nickel, then count the ways to change n-5 cents, with nickels or less

4) use a penny, then count the ways to change n-1 cents, with pennies or less

Why does this take care of our problem?

Essentially, in our function, we return the number of ways to make change for cents cents, where DEN is our largest denomination. THUS, the number of recursive calls we make DEPENDS on our value of DEN. If DEN=5, then we only need to make 2 calls, if it’s 10 we need to make 3, etc. The sum of these recursive calls is the answer to our question.

Notice, how we add the values returned by the appropriate number of recursive calls using the switch statement WITHOUT breaks. You can certainly implement this algorithm without a switch statement, but then the code would be slightly more cumbersome.

Also, we need to take a look at our “base” cases so to speak. A recursive function CAN NOT call itself always. (Why is this?) So, when the problem is easy enough to solve on it’s own right, you can just directly solve the problem. In essence, as was mentioned in CS1, you do one of two things:
1) Solve the problem because it’s simple.

2) Take a step towards the solution and then make a recursive call to solve the smaller subproblem needed to solve the original problem.

Typically, this choice in execution is represented by an if statement.

Here is a way to approach writing a recursive function:

1) Assume you have a function that ACCOMPLISHES what you want to do that already works.

2) Now, the only stipulation is that when you write your own function, you are NOT allowed to call the function in step 1 with the SAME EXACT parameters as you are passed. Other than that, you are free to use the function in #1 in any way you’d like to, if it helps you finish your own task.

Divide and Conquer
Divide and conquer is an important problem-solving technique that relies on recursion. [Note: Not all recursive algorithms are divide and conquer.] Divide and conquer is a top down approach to problem solving meaning that an initial problem is subdivided into smaller subproblems, each of which is similar in nature to the original problem – only it is smaller. Each of the smaller subproblems is solved independently. A divide and conquer algorithm is a recursive algorithm that consists of two parts:

(1) Divide: smaller problems are solved recursively (except for the base case).

(2) Conquer: the solution to the original problem is then formed from the solutions to the subproblems.

Traditionally, algorithms that contain two recursive calls are called divide and conquer algorithms while those that contain only a single recursive call are not. Also, in order to avoid excessive computational cost, the subproblems should be disjoint (non-overlapping).

The divide and conquer strategy has been applied to many different types of problems including: matrix multiplication, minimax problems, sorting, and searching. Since the original problem is divided into several subproblems, divide and conquer algorithms are well suited to implementation on parallel computers.

Example 1 – Divide and Conquer – MCSS Problem

The Maximum Contiguous Subsequence Sum Problem Revisited

Recall the problem:

Maximum Contiguous Subsequence Sum: given (a possibly negative) integers A1, A2, …, AN, find (and identify the sequence corresponding to) the maximum value of

For the degenerate case when all of the integers are negative, the maximum contiguous subsequence sum is zero.

Example: If input is: {-2, 11, -4, 13, -5, 2}. Then the output is: 20.

 If the input is {1, -3, 4, -2, -1, 6}. Then the output is 7.

A divide and conquer algorithm for the MCSS problem divides the input data set into two halves. Once this is done the MCSS can occur in one of three ways:

(1) the MCSS is entirely in the first half of the input set.

(2) the MCSS is entirely in the second half of the input set.

(3) the MCSS begins in the first half and ends in the second half of the input.

Graphically this is illustrated as follows:

A

B

case 1:

A

B

case 2:

A

B

case 3:

What we need to show is that each of these three cases can be solved more efficiently than by an exhaustive search.

Consider case 3: we know that the last element of the A array is in the MCSS and the first element of the B array is in the MCSS. Therefore to compute sums in A and B we read from right-to-left in A and left-to-right in B. Thus the biggest sum calculated from A + biggest sum calculated from B = MCSS. Since these calculations can be done consecutively (compute sum in A, the compute sum in B). This can be done in linear time. So for case 3 the divide and conquer approach yields an O(N) running time.

For cases 1 and 2 the divide an conquer approach yields two recursive calls (one on each half of the original array. So (1) compute MCSS on array A, (2) compute MCSS on array B, (3) compute via two consecutive loops the MCSS for case 3, and (4) choose the largest from steps 1-3.

N

N/2

N/4

N/8

As you can see the repeated dividing of the original problem and the subsequent subproblems is each O(N). Level 1 has one array of size N thus O(N). Level 2 has two arrays each of size N/2, so (2*N/2) = O(N). Level 3 has four arrays each of size N/4, so (4*N/4) = O(N). And finally, level 4 has eight arrays each of size N/8, so (8*N/8) = O(N). Level 4 represents the base case, when each array is of size 1. Note also that each of the individual data items on level 4 must be checked to determine if it is positive or not.

Since each level halves the size of the basic problem – the halving principle tells us that there are approximately log2 N levels (there are exactly 1 + (log2 N(, thus the total running time is O(N log2 N). [Note that there is also an O(N) term that covers case 3 which isn’t shown here in the final Big-Oh analysis.]

This is an intuitive explanation of the running time analysis, in general a recursive algorithm should not be analyzed in this fashion – a more formal mathematical treatment is required. This is shown after another example.

Example 2 – Divide and Conquer – Detecting a Counterfeit Coin

Suppose that you are given a bag containing 16 coins and told that one of the coins may be counterfeit. Further, you are told that counterfeit coins are lighter than genuine coins. To assist you in your task you have a machine that will compare the weights of two sets of coins and tell you which set is lighter or whether both sets have the same weight. There are two related questions that you could be asked to solve: (1) Is there a counterfeit coin present in the bag? (2) Identify the counterfeit coin.

Consider the following strategy for determining the presence of a counterfeit coin: Compare the weights of coins 1 and 2. If coin 1 is the lighter – it is the counterfeit and your task is complete! Similarly, if coin 2 is the lighter your task is complete and the counterfeit has been identified. If coins 1 and 2 have the same weight then you must continue by comparing coins 3 and 4 and so on. In the worst case, you will not complete your task until coins 15 and 16 have been compared – this means that you will have made 8 comparisons. Proceeding in this fashion allows you to answer both questions simultaneously as you will be able to identify the counterfeit coin as the result of a comparison (question 2) which also provides the answer to the first question. The table below illustrates the time required to answer the two questions for this problem instance in terms of the number of comparisons required to answer the question.

	Question
	Best case time
	Average time
	Worst case time

	1
	1
	4
	8

	2
	1 (success case)
	4
	8

Was the technique just described a divide and conquer strategy? Yes and no! Certainly the original problem involving the 16 coins was divided into a set of smaller subproblems each similar to the original problem. However, a better use of the divide and conquer strategy will result in an improved performance for our algorithm. Consider the following strategy: Divide the 16 coins into two sets of 8 coins (randomly selected for each set) called sets A and B. Making a single comparison of the weights of the two sets will allow us to answer question 1. In order to answer question 2 more comparisons will need to be performed as follows: The lighter set from the first comparison obviously contains the counterfeit coin. Take this set and divide it into two different sets called C and D. For our example, sets C and D will each contain four coins (approximately – there is no real need to make them exactly the same size). A similar procedure will be followed for C and D resulting in a second comparison. Again the lighter of C and D will contain the counterfeit coin and this set will be further divided into two sets called E and F. Now sets E and F contain 2 coins each [note that this is the base case for this problem as since a set size of 1 leaves us without any comparison criteria]. A third comparison will identify the lighter set between E and F. Dividing the lighter of E and F into sets G and H will produce sets with only a single coin in each. Comparison of G and H will answer question 2 after a fourth comparison has occurred. The following table illustrates the improvement in the number of comparisons this true divide and conquer strategy exhibits compared to our first strategy.

	Question
	Best case time
	Average time
	Worst case time

	1
	1
	1
	1

	2
	1 (failure case)

4 (success case)
	4
	4

Which strategy would you use now to solve this problem? How does this compare to a brute force strategy?

Another question should now become obvious to you, “Can the worst case number of comparisons for question 2 be improved?” The answer is yes! Can you determine how to reduce the worst case number of comparisons to something below 4? Think about this one for a minute and we’ll look at how to do this below.

In the previous improvement to our technique (its actually an algorithm, we just haven’t presented it formally) we took the original set of 16 coins and divided them in half, further dividing the set of eight which contained the counterfeit coin (the set of eight that was lighter in weight) in half to produce to sets of 4 coins each, and so on until we had only two coins remaining and we could directly determine which was the counterfeit coin. The technique we employed was derived from the halving principle. However, we are under no restriction as to how we divide the original problem. Suppose that instead we divide the original 16 coins into four stacks, with two of these stacks containing 6 coins each (12 total) and two of these stacks containing two coins each (4 total). [Note that if we divided the original 16 coins into four stacks with two stacks containing 7 coins and two stacks containing 1 coin each we are back to the original “brute force” technique, so we will not consider a division which places fewer than two coins in any stack.] With this division of the coins, consider the best case number of comparisons to find the counterfeit coin (question 2). We would start by comparing the two stacks containing 2 coins each and would find that one of the stacks was lighter. The lighter stack would be divided into two stacks containing 1 coin each and a second comparison would produce our answer. Thus, the best case number of comparisons has dropped from 4 to 2 simply by adjusting the technique we used to divide the original problem! Notice too, that while the number of comparisons for the success case has dropped, the number of comparisons required for the failure case has increased by 1! Now consider the number of comparisons required in the worst case. We would start by weighing the two stacks containing six coins each (notice that we actually have two ways to start this now, we could have started with the two stacks of 2 coins, we’ll deal with this later). If these two stacks weighed the same [this is our first comparison] we would know that the counterfeit coin must be in the two stacks of two coins each. We would then compare the two stacks of two coins each [this is a second comparison] and one of these stacks would weigh less (if a counterfeit coin exists). The stack which weighs less would be split in half to produce two stacks of 1 coin each and the counterfeit coin would be identified with one additional comparison, thus totaling 3 comparisons in all! Notice, however, that this case is not the worst case. This is because if the two stacks of six coins weigh differently, then we know that the counterfeit coin appears in one of these two stacks. Dividing the lighter weight stack into two stacks of three coins and comparing these two stacks will add a second comparison. We would then need to compare the lighter of the two stacks of three coins. But, now we have a problem in that the division of the coins will not be into two equal size stacks. Rather one stack will contain one coin and the other two coins. At this point we can no longer compare two sets of coins containing equal numbers of coins for any number other than 1. In other words, we need to determine from three coins which is the lightest weight coin. This will require at the minimum an additional comparison and at the maximum an additional two comparisons and thus, in the worst case we are back to four comparisons. However, is this truly the worst case? Again, the answer is no. In the true worst case, we would have started our comparisons with the two stacks of 2 coins each and discovered that they weighed the same. Then we would have begun the technique we described above on the two stacks of 6 coins each. This will result in one additional comparison bringing the total for the worst case to 5!

This example illustrates that how the problem is divided can affect the performance of a divide and conquer algorithm. In the next section we will see just how the division of the problem affects the asymptotic performance of a divide and conquer algorithm.

More Formal Mathematical Treatment
As was mentioned earlier – a more formal explanation of how the divide and conquer approach performs is

· Let T(N) be the time required to solve the MCSS problem of size N.

· If N=1 then it takes a constant amount of time to determine that the array is of size 1. Thus T(1) = 1.

· In all other cases the problem is divided into half via the two recursive calls plus the linear time of case 3. Since each of these subproblems is of size N/2 they each will require T(N/2). But there are two of these subproblems so the time is 2T(N/2).

· So T(N) = 2T(N/2) + O(N).

· Replacing the O(N) term with N and assuming that N is a power of 2 we have:

· T(1) = 1 and T(N) = 2T(N/2) + N

· Theorem 7.4 states that if N is a power of 2 the solution to the equation T(N) = 2T(N/2) + N with initial condition T(1)=1 is

T(N) = N log2 N + N

This is exactly what was shown in the previous diagram in the MCSS example.

Example: Consider the factorial function, n!.

	0! = 1

	n! = n * (n-1) * … * 3 * 2 *1

To determine 6! using this definition requires that we calculate:

6! = 6 * 5 * 4 * 3 * 2 * 1 = 720

Defining the factorial function recursively, we have:

		1 if n = 0	

fact (n) = 	1 if n = 1

		n * fact(n-1) if n >= 2

Now 6! = 6 * 5!

 = 6 * (5 * 4!)

 = 6 * (5 * (4 * 3!))

 = 6 * (5 * (4 * (3 * 2!)))

 = 6 * (5 * (4 * (3 * (2 * 1!))))

 = 6 * (5 * (4 * (3 * (2 * (1 * 0!)))))

 = 6 * 5 * 4 * 3 * 2 * 1 * 1

public static int Fibonacci(int n)

{

 if (n < 0)

	return –1; // This signifies an illegal input parameter.

 else if (n < 2)

	return n;

 else

	return Fibonacci(n-1) + Fibonacci(n-2);

 }

public static int Factorial(int n) {

 if (n < 0)

	return –1; // This signifies an illegal input parameter.

 else if (n < 2)

	return 1;

 else

	return n*Factorial(n-1);

}

public static int Search(int[] X, int low, int high, int value) {

	if (low > high)

	 return -1;

	else {

	 int mid = (low + high)/2;

	 if (value > X[mid])

	 return Search(X,mid+1,high,value);

	 else if (value < X[mid])

	 return Search(X,low,mid-1,value);

	 else

	 return mid;

	}

}

public static int Change(int cents, int den) {

	if (cents < 0)

	 return 0;

	else if (den == 1 || cents == 0)

	 return 1;

	else {

	 int sum = 0;

	 switch(den) {

	 case 25: sum+=Change(cents-25,25);

	 case 10: sum+=Change(cents-10,10);

	 case 5: sum+=Change(cents-5,5);

	 case 1: sum+=Change(cents-1,1);

	 }

	 return sum;

	}

}

� EMBED Equation.3 ���

 MCSS

 MCSS

 MCSS

Example – case 3

Array A�
Array B�
�
�
4�
-3�
5�
-2�
-1�
2�
6�
-2�
Values�
�
4�
0�
3�
-2�
-1�
1�
7�
5�
Running Sums�
�

MCSS = 11 since MaxSum(A) + MaxSum(B) = 4 + 7 = 11

4 -3 5 -2 -1 2 6 -2

4 -3 5 -2

-1 2 6 2

6 -2

-1 2

5 -2

4 -3

-2

6

2

-1

4

-3

5

-2

Day 7 - 15

_1030269986.unknown

_1030270299.unknown

_1030270428.unknown

_1030273920.unknown

_1030274242.unknown

_1030271475.unknown

_1030270316.unknown

_1030270397.unknown

_1030270414.unknown

_1030270420.unknown

_1030270406.unknown

_1030270384.unknown

_1030270389.unknown

_1030270377.unknown

_1030270306.unknown

_1030270279.unknown

_1030270287.unknown

_1030270262.unknown

_1030270198.unknown

_1030269848.unknown

_1030269903.unknown

_1030269949.unknown

_1030269888.unknown

_1030269758.unknown

_1030269820.unknown

_1010858091.unknown

_1010858631.unknown

_1030269723.unknown

_1010858459.unknown

_1010858038.unknown

_1009569676.unknown

