COP 3503 – Computer Science II – CLASS NOTES - DAY #8
Upper Bounds for Divide and Conquer Algorithm Running Times
The analysis of the divide and conquer algorithm to solve the MCSS problem illustrated that a problem divided into two parts, each solved recursively, with an O(N) overhead (the linear part of case 3) results in an O(N log2 N) running time. Our analysis was based upon the fact that the value of N we selected was a multiple of 2. If the value of N hadn’t been a multiple of two, our analysis technique wouldn't have worked. In this section we’ll see how to determine the running time of a general divide and conquer algorithm where N isn’t necessarily a multiple of two.

Our analysis needs three parameters:

· A – the number of subproblems.

· B – the relative size of the subproblems (if B=2 then the subproblems are half-sized, B=3 implies 1/3 sized subproblems, and so on).

· k – a term representing the overhead which is ((Nk).
In general, our timing equation is T(N) = AT(N/B) + O(Nk), where A (1, B > 1. The solution to this equation is:

[image: image16.wmf]÷

ø

ö

ç

è

æ

k

n

O(NlogBA) if A>Bk – solution 1

T(N) =
O(Nk log2 N) if A=Bk – solution 2

O(Nk) if A<Bk – solution 3

If the original MCSS problem were divided into three recursive subproblems, each of which were half-sized with linear overhead (the case 3 situation again), then we have A = 3, B = 2, and k = 1. For this situation, solution 1 will apply since A > Bk, 3 > 21. Thus, T(N) = O(NlogBA) = O(Nlog23) = O(N1.59). In this case, the overhead (the calculations required for case 3) does not contribute to the total cost of the algorithm since O(N1.59) > O(N1). This means that any overhead smaller than O(N1.59) would give the same running time for the algorithm!

If the original MCSS problem were divided into three recursive subproblems, each of which were half-sized but required quadratic overhead (A = 3, B = 2, and k = 2), then solution 3 would apply since A < Bk, 3 > 22. Thus, T(N) = O(Nk) = O(N2). In this case, the overhead (the calculations required for case 3) dominates the total cost of the algorithm, since O(N2) > O(N1.59). This means that once the overhead exceeds the O(N1.59) threshold – the overhead becomes the dominating factor in the running time of the algorithm!

Dynamic Programming

Dynamic programming is a non-recursive way (typically) of solving the subproblems of a divide and conquer algorithm via storage of subproblem results in a table. The subproblem at the higher level (the larger subproblem) uses the table to look-up the results of the smaller subproblems. The solution to the problem is viewed as the result of a sequence of decisions. The decision sequence is examined to determine if an optimal decision sequence contains optimal decision subsequences. Dynamic programming cannot be applied as a solution technique if the principle of optimality does not hold.

Divide and conquer may be considered a top-down approach in that the complete instance is initially divided into smaller subinstances which are further subdivided and so on until a simple, nondivisible instance may be directly solved. Dynamic programming is a bottom-up approach in which the smallest and hence the simplest subinstances are solved first. Combining these solutions provides the solution to subinstances of increasing size, until finally we arrive at the solution of the original instance.

Dynamic Programming Examples

Example 1 – Calculating the binomial coefficient

Consider the problem of calculating the binomial coeffiecient – given by:

[image: image1.wmf]ï

ï

î

ï

ï

í

ì

<

<

÷

ø

ö

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

-

-

=

=

=

÷

ø

ö

ç

è

æ

otherwise

0

n

k

0

if

k

1

n

1

k

1

n

n

k

or

0

k

if

1

k

n

Suppose 0 (k (n. If we calculate
[image: image2.wmf]÷

ø

ö

ç

è

æ

k

n

 directly by the algorithm shown below – then many of the values C(i,j), i < n, j < k, are calculated over and over!

For example, this algorithm will calculate C(5,3) as the sum of C(4,2) and C(4,3). Both of these intermediate results require the calculation of C(3,2). Similarly, the value of C(2,1) is used several times. Since the final result is obtained by adding up a number of 1s, the execution time of this algorithm is sure to be in ((
[image: image3.wmf]÷

ø

ö

ç

è

æ

k

n

). (Recall that we saw a similar problem with a brute force recursive algorithm to calculate Fibonacci numbers.) If, however, the intermediate results such as C(3,2) were stored in a table and “looked-up” whenever they were needed rather than recalculated – a much more efficient algorithm could be obtained. This is the dynamic programming method. A complete solution tree to this example is shown on the last page of this section of notes.

Example 2 - Shortest Path Problem

Consider the following problem from graph theory called the shortest path problem. In the digraph shown below we want to find the shortest path from node 1 to node 5. The length of a path is defined to be the sum of the costs of the edges on the path. Decisions about which direction to move will be made on the intermediate nodes. The choices for the first node are 2, 3, and 4. That is, from node 1 you could move to any one of these nodes. Suppose that you decide to move to node 3. The question now becomes: how to move from node 3 to node 5. If we go from node 3 to node 5 in a sub-optimal way, then the path from node 1 to node 5 cannot be optimal. [Note that this would still be true if we restricted the first move to only node 3!] For example, if we use the suboptimal path 3, 2, 5 with length 9, then the constructed path 1-to-5 has suboptimal length 11. Replacing the suboptimal path 3, 2, 5 with an optimal one: 3, 4, 5 results in an optimal 1-to-5 path of 1, 3, 4, 5 with length 9.

In general, whenever you at a node n, regardless of how you got there (it will have been optimally), the remainder of your path decisions must be optimal if the overall solution is to be optimal.

4

 3 4 5

 2

1

 3

2

Digraph for Shortest Path Example

Another Dynamic Programming Example

Greedy Algorithms
As the example above illustrated, the technique was to always select the largest coin available. For U.S. currency, this approach will always yield an optimal solution, i.e., the smallest number of coins. This technique is called a greedy algorithm. In a greedy algorithm, at any decision point, the decision is made considering only the local state without regard to future states. In other words, the decision is made without considering that if a less than maximum local solution is made perhaps an better overall solution would result.

Greedy algorithms are intuitive and easy to code, however, they do not always generate a correct answer either. For example, suppose that US currency included a 21¢ coin. The greedy algorithm outlined above would still generate the same solution requiring six coins when in fact the optimal solution requires only three coins (3 of the 21¢ coins).

The question now becomes – how do we solve this problem for an arbitrary coin set? Must assume that there is always a 1¢ coin available – so that there is always a solution. A simple recursive strategy to make K¢ change is as follows:

1. If we can make change with one coin – this is the optimal solution.

2. Otherwise, for each possible value i, compute the minimum number of coins required to make both i¢ and K-i¢ independently. Then choose minimum number of coins calculated over all of the i values.

The solution above requires 62 recursive calls, one for each value of i (there are 31 of them) and one for each value of K-i (there are 31 of them as well).

We need a technique that will reduce the number of recursive calls that need to be made. The solution is to specify the value of one of the coins rather than leave all values initially unspecified. This is done as follows:

Specify one of the coins (c). Then recursively compute the change needed for the difference (K-c).

Select

Recursively compute
1¢

62¢ in change

5¢

58¢ in change

10¢

53¢ in change

21¢

42¢ in change

25¢

38¢ in change

This improved solution reduces the number of recursive calls from 62 to 5! Notice however, that the recursive solution to each of the 5 subproblems cannot be a naïve one or you will once again be faced with a large number of recursive calls – for example, if you use the original approach to calculate 62¢ in change you will once again experience about 60 recursive calls just to solve the subproblem! [In the first case one of the recursive calls would be to select a 10¢ coin and recursively solve for the 52¢ difference – in the third case above we need to recursively solve for 53¢ in change and one of the solutions to this would be to select a 1¢ coin and recursively solve for 52¢ in change – but we will have already done this work!]

Now the question has become – how do we do this without doing redundant work? The answer is dynamic programming where the answers to subproblems are stored in an array. Since the larger answer depends only upon the smaller answers, an optimal way can be computed to give change for 1¢, 2¢, 3¢, …, and so on. In dynamic programming the smaller answers are calculated first and used to calculate the larger answers.

The minimum number of coins for change problem can be calculated with two nested loops.

1. 1 to N (N = number of distinct coins)

2. 1 to K (K = amount of change needed)

This algorithm will have a running time of O(NK).

Specific solution for 63¢ change using the greedy approach is:

63 – 25 = 38 followed by 38 – 25 = 13 followed by 13 – 10 = 3 followed by 3 – 1 = 2 followed by 2 – 1 = 1 followed by 1 – 1 = 0. Total coins required is 8. Look at the tables below and see the optimal solution for 63¢. Note that this is not optimal for this currency!

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	1¢
	1
	2
	3
	4
	0
	1
	2
	3
	4
	0
	1
	2
	3
	4
	0

	5¢
	0
	0
	0
	0
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0
	1

	10¢
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1

	21¢
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	25¢
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	total coins
	1
	2
	3
	4
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	2

	
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

	1¢
	1
	2
	3
	4
	0
	0
	1
	2
	3
	0
	1
	2
	3
	4
	0

	5¢
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	10¢
	1
	1
	1
	1
	2
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	21¢
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0

	25¢
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1

	total coins
	3
	4
	5
	6
	2
	1
	2
	3
	4
	1
	2
	3
	4
	5
	2

	
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45

	1¢
	0
	1
	2
	3
	0
	1
	2
	3
	4
	0
	1
	0
	1
	2
	3

	5¢
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0

	10¢
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0
	0
	0
	0

	21¢
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	2
	2
	2
	2

	25¢
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	0
	0
	0
	0

	total coins
	2
	3
	4
	5
	2
	3
	4
	5
	6
	3
	4
	2
	3
	4
	5

	
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60

	1¢
	0
	1
	2
	3
	0
	1
	2
	3
	4
	0
	0
	1
	2
	3
	0

	5¢
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0

	10¢
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1

	21¢
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	1
	1
	1
	 1
	0

	25¢
	1
	1
	1
	1
	2
	2
	2
	2
	2
	2
	 1
	1
	1
	 1
	2

	total coins
	2
	3
	4
	5
	2
	3
	4
	5
	6
	3
	3
	4
	5
	6
	3

	
	61
	62
	63

	1¢
	1
	0
	0

	5¢
	0
	0
	0

	10¢
	1
	2
	0

	21¢
	0
	2
	3

	25¢
	2
	0
	0

	total coins
	4
	4
	3

The tables above show the complete “stored” solutions for the optimal amount of change from 1¢ through 63¢ change assuming the five coins from our example currency. Note that the final bottom row gives the total number of coins required and the column numbers identify how many of each coin are required for that value of change.

Recursive “Tree” Solution to Binomial Coefficient Problem

[image: image4.wmf]÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

3

4

2

4

3

5

calculated value

[image: image5.wmf]÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

2

3

1

3

2

4

[image: image6.wmf]÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

3

3

2

3

3

4

returned value

 final answer

[image: image7.wmf]÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

1

2

0

2

1

3

[image: image8.wmf]÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

2

2

1

2

2

3

[image: image9.wmf]÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

1

1

0

1

1

2

Dynamic Programming Solution to the Binomial Coefficient Problem

	
	0
	1
	2
	3
	4
	5

	1
	1
	1
	
	
	
	

	2
	1
	
[image: image10.wmf]÷

ø

ö

ç

è

æ

1

2

	1
	
	
	

	3
	1
	
[image: image11.wmf]÷

ø

ö

ç

è

æ

1

3

	
[image: image12.wmf]÷

ø

ö

ç

è

æ

2

3

	1
	
	

	4
	1
	
	
[image: image13.wmf]÷

ø

ö

ç

è

æ

2

4

	
[image: image14.wmf]÷

ø

ö

ç

è

æ

3

4

	1
	

	5
	1
	
	
	
[image: image15.wmf]÷

ø

ö

ç

è

æ

3

5

	
	1

6

3

3

2

2

3

1

1

1

1

1

1

1

Function to Calculate � EMBED Equation.3 ���

function C(n, k)

	if k = 0 or k = n then return 1

	else return C(n-1, k-1) + C(n-1, k)

end

Principle of Optimality

No matter what the first decision, the remaining decisions must be optimal with respect to the state that results from this first decision. [This implies that the optimal decision sequence is comprised of optimal decision subsequences.

5

4

3

2

1

Example: K = 63¢, C = {1¢, 5¢, 10¢, 21¢, 25¢}

Compute sums for i¢, and K-i¢ change independently [use form (i, K-i)]:

(1,62) = {(1¢), (21¢, 21¢, 10¢, 10¢)} takes 5 coins

(2,61) = {(1¢, 1¢), (25¢, 25¢, 10¢, 1¢)} takes 6 coins

(3,60) = {(1¢, 1¢, 1¢), (25¢, 25¢, 10¢)} takes 6 coins

…

(20,43) = {(10¢, 10¢), (25¢, 10¢, 5¢, 1¢, 1¢, 1¢)} takes 8 coins

(21,42) = {(21¢), (21¢, 21¢)} takes 3 coins Minimum Sum

(22,41) = {(21¢, 1¢), (25¢, 10¢, 5¢, 1¢)} takes 6 coins

…

(30,33) = {(25¢, 5¢), (25¢, 5¢, 1¢, 1¢, 1¢)} takes 7 coins

(31,32) = {(21¢, 10¢), (25¢, 5¢, 1¢, 1¢)} takes 6 coins

Change Making Problem

The Problem:

For a currency with coins C1, C2, …, Cn (cent pieces) what is the minimum number of coins needed to make K cents of change?

Example – US currency has 1¢, 5¢, 10¢, and 25¢ pieces (forget the 50¢ coin). The question is, what is the minimum number of coins required to make say 63¢ in change. Technique is: always select the biggest coin available reducing that coins amount from the total change to be made until the difference is zero. This is a greedy approach (see below).

	1 quarter = 63 – 25 = 38¢ left (still room for another quarter)

	1 quarter = 38 – 25 = 13¢ left (quarter too big – dime works)

	1 dime = 13 – 10 = 3¢ left (nickel too big – need three pennies)

	3 pennies = 3 – 3 = 0¢ left – done

	Total number of coins = 6 (2 quarters + 1 dime + 3 pennies)

	

Example – MCSS Divide and Conquer Algorithm

In our divide and conquer algorithm to solve the MCSS problem we have the following values for the parameters in our timing equation:

	A = 2 {since the problem was divided into two subproblems}

	B = 2 {since the two subproblems were half-sized}

	k = 1 {since we had linear overhead so O(N1)}

Solution 2 applies as the value of T(N) here since A = Bk = 2 = 21. Therefore the divide an conquer solution to the MCSS problem has a running time of:

	T(N) = O(N1 log2 N) = O(N log2 N)

4

10

10

Day 8 - 1

_1042972381.unknown

_1042972570.unknown

_1042983576.unknown

_1042983628.unknown

_1042983480.unknown

_1042983563.unknown

_1042983479.unknown

_1042983269.unknown

_1042972494.unknown

_1042972520.unknown

_1042972417.unknown

_1042912250.unknown

_1042972316.unknown

_1042912935.unknown

_1042912026.unknown

