[image: image1.wmf]m

m

key

key

address

´

ú

û

ú

ê

ë

ê

-

=

Introduction
For most of this term we have studied a variety of data structures whose primary purpose was the representation of data contained in main memory that supported an algorithm during its execution. With the exception of B-trees, in which part of the data was resident in main memory and part was resident in secondary memory, all of these data structures were designed for data representation in main memory. Hashing is a variant of a more general file organization technique called a direct file. A direct file is a variant of an even more general type of file organization known as an indexed file. Indexed files typically consist of two main structures, an index structure and a main structure. Similar to the concept employed in B*-trees and B+-trees with their index set and sequential set. There are many different variations of indexed files, however, they can be broadly categorized into two categories which are based primarily on the density of entries in the index structure compared to the number of entries in the main file. These two primary categories are sparse index files and dense index files. A hash file or direct file falls generally under the category of a dense index file, although it is a very special variant of the dense index file. Hash files themselves are typically categorized in two different manners. The first depends on whether the file structure is resident in main memory or on secondary memory. The former is called internal hashing while the latter is called external hashing. You may have been introduced to internal hashing in CS1, you will see them again in Systems Software (COP 3402) where the commonly referred to “hash table” or “hash file” is a common data structure used within a compiler or assembler as a method for implementing a symbol table. External hashing is a common database approach for hashing secondary memory (primarily disk-based files). The primary difference between internal hashing and external hashing is that in external hashing the hashing function is tailored to take advantage of the block-based access methods on the disk drive. This allows a single hash function value to “load” into main memory an enormous amount of data in one single disk “fetch” operation, whereas with internal hashing typically either a single value (record) or very small number of values are returned for a single hash value.

In this set of notes we’ll give a review of common hashing techniques and take a look at internal hashing and the problems associated with internal hashing. We’ll examine external hashing and finally we’ll look at hashing techniques that allow for dynamic file expansion, something which is not feasible (in terms of time) with internal hashing.

Hash Functions
Hash functions are a specific case of a more general technique known as key-to-address transformations (KTA transformations). There are many different KTA transformation techniques possible. Figure 1, illustrates the hierarchy of KTA transformations.

[image: image3.wmf](

)

2

1

1

1

2

÷

÷

ø

ö

ç

ç

è

æ

-

+

l

Figure 1 – Key-to-address transformation hierarchy.

Distribution dependent transformations depend on at least approximate knowledge of the key values that will be expected. The benefits that can be gained by distribution dependent techniques depend on open-addressing, bucket size. file density, and the appropriateness of the transformation itself. For small bucket size and a good distribution algorithm, the improvement over randomizing transformations can be significant. On the other hand, the liabilities of distribution dependent transformations are major, since a change in the key distribution can cause these methods to generate many more collisions than a randomization would generate for the same data. A benefit of some distribution dependent KTA transforms is that they can allow for maintaining sequentiality. Such sequence maintaining transforms allow the addresses produced to increase with increasing value of the key. Serial access is made possible in this case. Otherwise, a direct file does not generally support serial access. In Figure 1, there are two distribution dependent transformation shown; digit analysis and sequence maintaining transformations.

Deterministic transformations take the set of all key values and determine a unique corresponding address. Algorithms which produce such transformations become very difficult to construct if the number of key values is large (more than a few dozen). Adding a new key value requires a new algorithm, since the algorithm is dependent on the distribution of the source keys. Therefore only static files can be feasibly processed using deterministic procedures. Replacing the algorithm with a table of addresses corresponding to key values makes the problem more tractable (solvable) but in so doing, you have essentially created an indexed file structure which is a completely different beast. Deterministic algorithms are quite common for extremely static data in which the KTA transformation can be optimized to ensure O(1) access time. We won’t discuss deterministic transformations any further.

Probabilistic transformations translate the key values into addresses which are within the file-address space using an algorithmic process. Probabilistic take advantage of the random properties of the digits of a key value. Operations such as arithmetic multiplication and addition, which tend to produce normally distributed random values, are undesirable when hashing. A uniform distribution of the addresses is desired since this will evenly spread the key values (records) across the file space. Uniform distribution of the data within the file-address space is optimal but difficult to achieve in general. We’ll see why this is later.

At any point, the KTA transformation may produce, for two or more different key values, the same corresponding file address. This causes a collision which must be handled by some technique such as rehashing, chaining, buckets, etc. (we’ll see these later as well). Probabilistic transformations may either preserve the order of the records (sequence maintaining transformations) or they may be designed to maximize the degree of uniqueness of the resulting address. The more common probabilistic transformation take this latter approach which is called a random KTA transformation or more commonly a hashing technique.

Digit analysis is a known distribution, probabilistic hashing technique that attempts to capitalize on the existing distribution of key digits. An estimate or a tabulation is made for each of the successive digit positions of the keys using a sample of the records to be stored. For example, if the key is social security number then the sample of records that would be examined will probably show a uniform distribution over the low-order three digits. A tabulation simply lists the frequency of distribution of zeros, ones, twos, and so on. The digit positions that show a reasonably uniform, even distribution are candidates for use as digits in the file address. A sufficient number of such digit positions must be found to make up the full address; otherwise combinations of other digit positions (perhaps taken modulo 10 or as appropriate) can be tested.

A sequence maintaining transformation function can be obtained by taking a simplified inverse of the distribution of keys found. The addresses are generated to maintain sequentiality with respect to the source key. In a piece-wise linear transformation the observed distribution is approximated either automatically or manually, by simple line segments. This approximation is then used to distribute the addresses in a complementary manner.

The remainder of division (modulo operation) of the key by a divisor equal to the number of record spaces allocated in the file, can be used to obtain the desired address. Division is in some sense similar to taking the low-order digits, but when the divisor is not a multiple of the base of the number system of the key (or the hardware), information from the high-order portions of the key will be included; and this additional will have a positive effect on the number of addresses generated and thus on the uniformity of the generated addresses. Large prime numbers are generally used as divisors, since their quotients exhibit a well-distributed behavior, even when parts of the keys do not. In general, divisors that do not contain small primes (<= 19) are adequate. Empirical data has shown that division tends to preserve better than other methods preexisting uniform distributions, especially uniformity due to sequences of low-order digits in assigned identification numbers. The remainder does not preserve sequentiality. The problem with division is in the capability of the available division operation itself. Frequently the key field to be transformed is larger than the largest dividend the divide operation can accepts, and some hardware does not have division instructions which provide a remainder (although this is rare). When this occurs, the remainder (address) can be calculated according to the expression:

[image: image4.wmf](

)

2

1

1

1

2

÷

÷

ø

ö

ç

ç

è

æ

-

+

l

The floor operation is necessary to prevent a smart optimizer from generating address = 0 for every key, which would lead to an extreme number of collisions (n-1 if n records are to be stored).

The exclusive-or technique typically divides the key digit string is segmented into parts which match the required address size. Using this operation results in random patterns for random binary inputs. The various segments are then exclusively-or’ed together to produce the address. Segment sizes need to be chosen carefully so that they have no common divisor relative to word sizes. This is among the faster KTA transformations available and is widely used.

Folding and adding of the key digit string produces a shorter string as the address and is a commonly used hashing technique. Alternate segments of the key digit string are bit-reversed.

Internal Hashing
The primary design criterion for an internal hash file is to achieve as nearly as possible O(1) access time to any element in the file based upon access through the hash field (the component of the file element on which the elements are hashed). Although the hash field may be any component of an element in the file, it is typically the key value (component) on which the hashing occurs. In order to achieve this O(1) access criterion we need to first determine how a hash function operates. Although the hash field does not need to be a key of the file, in most cases it is and it is then typically referred to as the hash key.

For internal files (those which have no component in secondary memory), hashing is typically implemented as a hash table through the use of an array of records. The typical configuration is shown in Figure 2.

Figure 2 – Typical Internal Hashing Configuration.

Collision Resolution in Internal Hashing
A collision occurs in a hash table any time that the hash function maps two or more key values into the same address within the address space. There are two basic techniques that can be used to handle collisions, the initial technique is a lazy approach (also referred to as an optimistic approach) and the second technique is a greedy approach (also referred to as a pessimistic approach).

1. Ignore the collision. If the probability of collision is very low or the hash function is already too slow to add the overhead of collision resolution.

2. Create and utilize a collision resolution protocol. This adds complexity to hashed operations and causes extra implementation work.

Collision Resolution Protocols
Collision resolution protocols can range from fairly simple to very complex techniques. Among the simplest protocols are:

1. linear probing

2. quadratic probing

3. chaining

More advanced techniques such as multiple hash functions and bucketing can be applied when the table size is relatively large.

Linear Probing
Technique:
When a collision occurs sequentially search through the table from the point of the collision (using wrap-around searching – modulo arithmetic) until an empty location is found. Specifically, if the hash function returns a value H and location (cell) H is not empty then cell H+1 is attempted, followed by H+2, H+3, …, H+i (using wraparound).

Example: Suppose our hash function maps the letter A to location 0, B to 1, …, Z to 26. And we are hashing based upon the first letter of a person’s name. With the input sequence: Insert (Al), Insert (Bob), Insert (Betty), Insert (Carl), we can see how linear probing handles collisions.
	location
	value

	0
	Al

	1
	Bob

	2
	Betty

	3
	Carl

	4
	

	…
	

	25
	

Details: Retrievals are handled by hashing the key and comparing the data at the location provided by the hash function. If the two values are not equal the location is incremented and the comparison is made again against the value in this new location. This is repeated until either the key value is found or an empty location is encountered. Deletion must be lazy. This entails marking the item as deleted but leaving it in place in the table (using a delete bit) without actually physically removing it from the table. This ensures that the look-up operation always works. Items which have been lazily deleted are only removed when they won’t break a chain valid items or when a new item can be inserted at this location which overwrites the deleted item.

Analysis:

Assuming that the probes are independent, the average number of locations (cells in the table) that will be examined in a single probe is: 1/(1-(). This comes simply from the fact that the probability that a location is empty is 1-(.

The above assumption is bad! In fact, linear probing causes a phenomenon called primary clustering. These clusters are blocks of occupied cells (locations). These blocks cause excessive attempts to resolve collisions. Taking this into account, the average number of cells that will need to be examined for an insertion into the hash table is:

For half-full tables, i.e., when ((0.5, this is an acceptable value of 2.5, but when (= 0.9, the search will require that 50 cells (on the average) be examined!

We need a solution that eliminates primary clustering. The following picture illustrates (sort of!) the long-term effect primary clustering has on the file density.

Quadratic Probing
Quadratic probing eliminates the problem of primary clustering caused by linear probing. The technique is similar to linear probing but the location increment is not 1. Specifically, if the hash function produces a hash value (a location or cell index) of H and the search at location H is unsuccessful, then the next location that is searched is H+12, followed by H+22, H+32, H+42, …, H+i2 (using wraparound as before).

Example: Suppose our hashing function is a simple mod operation on the size of the hash table. If the hash table is size 10 and the input sequence is: Insert(89), Insert (18), Insert (49), Insert (58), Insert (9). Then the hash table is filled as shown below:

	location
	value
	description

	0
	49
	H=0, collision, (H+1)mod 10 = 0

	1
	
	

	2
	58
	H=8, collision, (H+1)mod 10 collision, (H+4)mod 10 = 2

	3
	9
	H=9, collision, (H+1)mod 10 collision, (H+4)mod 10 = 3

	4
	
	

	5
	
	

	6
	
	

	7
	
	

	8
	18
	ok

	9
	89
	ok

The question now becomes, “Is quadratic probing any better than linear probing?”. If the size of the hash table is a prime number and ((0.5 then all probes will be to different locations and an item can always be inserted and further, no location will be probed twice during an access.

However, at (= 0.5, linear probing is fairly good and the removal of primary clustering by use of quadratic probing will only save 0.5 probes for an average insertion and 0.1 probes for an average successful search. Quadratic probing provides an additional benefit in that it will be unlikely to encounter an excessively long probe as might be the case with linear probing. However, quadratic probing requires a multiplication (the i2 term) so an efficient algorithm for this multiplication will be necessary.

Given the previous value of Hi-1 it is possible to determine the next value, Hi without requiring the computation of i2. Assuming, that we still require a wraparound technique this new value of Hi is computed as follows:

Hi = Hi-1 + 2i (1 (mod tablesize)

This can be implemented as follows:

1. use an addition to increment i
2. use a left bit shift (1) to compute 2i

3. a subtraction to compute 2i(1

4. a second addition to increment the old value of 2i(1

5. finally a modulo operation if wraparound is needed
Example: Using the example from earlier, consider the steps to insert(58). Initially H0 = 58 mod 10 = 8 and collision results. Then i = 1 and H0 = 8. H1 = [H0 + 2(1) – 1]mod 10 = [8+1]mod 10 = 9. This too results in a collision so another value of H must be calculated as follows: H2 = [H1 + 2(2) – 1]mod 10 = [9+3]mod 10 = 2 which is empty, so insertion occurs at position 2 in the hash table.

Using the shift operation this example proceeds as (with numbers shown in binary form):

Initially H0 = 58 mod 10 = 8 and collision results. Then i = 0001 and H0 = 1000. H1 = [1000 + 0010 – 0001]mod 10 = [8+1]mod 10 = 9. This too results in a collision so another value of H must be calculated as follows: H2 = [1001 + 0100 – 0001]mod 10 = [9+3]mod 10 = 2 which is empty, so insertion occurs at position 2 in the hash table.

Quadratic probing eliminates primary clustering but introduces the problem of secondary clustering. Elements which hash to the same location will probe the same set of alternative locations. This however, is not a real concern. Simulations have shown that, in general, less than 0.5 additional probes are required per search, and this only occurs for high load factors. If secondary clustering does present a problem for a given application, there are techniques which will eliminate it altogether. One of the more popular techniques is called double hashing in which a second hash function is used to drive the collision resolution.

Chaining
· Maintain an array of linked lists at each hash addressable location.

· The hash function returns an index of a specific list.

· Insertions, deletions, and searches occur in that list.

· If the lists are kept short, then the potential performance bottleneck is eliminated.

· λ is calculated by dividing the total number of nodes N, by the number of lists which are maintained M.

· λ= N/M

· λ is no longer bounded by 1.0 but has an average value of 1.0.

· The expected number of probes for insertion and an unsuccessful search is: λ.

· The expected number of probes for a successful search is: 1 + λ/2.

Example M = 6, N = 15, (= N/M = 15/6 = 2.5

	Hash Address
	List

	0
	(

	1
	(

	2
	(

	3
	(

	4
	(

	5
	(

· Each list referenced by the “hash table” is a singly-linked list (see previous notes for implementation details).

· The singly-linked lists shown above do not have a tail node. Would the use of a tail node be beneficial in this data structure? The answer is yes, it could help in two different ways! Notice that there is no implied order to the elements of a specific list. This is done since insertion into a hash table should be an O(1) operation. If the list is maintained in alphabetical order – then insertion will not be an O(1) operation and we would violate one of the specifications of the hash table data structure. This also happens in the implementation shown above since we have no way, other than traversing the list, of finding the end of the list. Therefore a “better” implementation is the one shown on the next page.

	Hash Address
	List

	0
	(

	1
	(

	2
	(

	3
	(

	4
	(

	5
	(

· Notice in this implementation of the hash table that even the hash addresses with no entries maintain an empty list (chain).

· The first way that the tail node improves the implementation is as follows: in typical implementations, the tail node will actually contain a data field which is usually set to the largest possible key value that will could be hashed. This eliminates null value comparisons in the code (replacing them with perhaps comparisons to MaxInt or something similar). Since each list has a logical end, there should be no problems associated with running off the end of a list.

· Also notice how wasteful of space it is to have a separate tail node for every list. In reality, all of these nodes will be condensed to a single node to which all lists will link. This is shown in the next diagram.
	Hash Address
	List

	0
	(

	1
	(

	2
	(

	3
	(

	4
	(

	5
	(

· Notice that this “better” implementation still does not provide O(1) insert time, unless we can identify (have a reference to) the node immediately preceding the tail node in any given list. For example, if we want to insert Alice into the first list, having a tail node only tells us where the end of the list is, not where the node next to the end of the list is! What do we do to get our required O(1) insert?

The answer has been available all along, and none of the “improvements” that we have made to our structure have done anything toward this end. Recall some of the issues we discussed when dealing with the implementation of linked lists in CS2. We stated that in a list without header and tail nodes that insertion at either end of the list was a “special case” that was different from inserting in the middle of the list. So we put header and tail nodes in to prevent the special cases from occurring. However, in our hash table structure, there has been a header node all along. It is embedded in the hash table itself as the reference to the chain for each hashable location. Therefore, to achieve O(1) insertion time, we simply perform ALL insertions at the head of the list rather than at the tail of the list. (A potential benefit of this is that the chain will contain the elements in the order of their arrival – i.e. they appear in entry order within each chain.) This again illustrates that you need to be aware of the various implementation issues for all of the data structures that are involved in any application. The final diagram illustrates the insertion of a newly hashed value into our hash table.

	Hash Address
	List

	0
	(

	1
	(

	2
	(

	3
	(

	4
	(

	5
	(

Hash tables can be used to implement insert and find operations in O(1) time, on the average. There are many implementation factors that can influence the performance of the hash table such as the load factor, the hash function itself, file size, input rates and distributions, as well as many other factors. It is important to pay attention to these details if you are to perform these operations in O(1) time.
External Hashing
Hashing techniques for secondary storage, primarily disk files, is called external hashing. Basically, external hashing is the same as internal hashing, however, the hash address is optimized to take advantage of the block-oriented nature of external memory and is thus optimized toward the hash bucket size. In an external hashing environment a bucket is either a single block or a cluster of contiguous blocks. Which is used depends on several factors which include the size of the physical records and how this relates to the blocking factor, whether the records are spanned or un-spanned, whether the records are compressed or not as well as several other factors. The hashing function maps a key into a relative bucket address rather than to assign an absolute block address to the bucket. A table (typically a hash table!) maintained in the file header is used to convert the bucket number into the corresponding disk block address. This is illustrated in Figure 3.

Figure 3 – Typical External Hashing Configuration.

The collision problem that we discussed in the context of internal hash files is less severe when buckets are utilized, because as many records as will fit into a bucket can hash to the same bucket address without causing problems. For this same reason, buckets are sometimes used with internal hash structures when the internal file is relatively large. However, collision must still be handled because there is the possibility that a bucket will fill up and then overflow on the next insertion to that bucket. Typically, a variation of chaining is employed when a bucket overflows, in which a pointer is maintained in each bucket to a linked list of overflow records belonging to that bucket. The pointers in the linked list will be record pointers meaning that they include both a block address and a relative record position within the block.

Key vs. Non-Key Searching in a Hashed File

Although it is more of a problem with external hashing than internal hashing, a non-key based search in a hashed file is a very costly operation in terms of time. There is another file organization technique in which the records of the file appear in no particular order (analogous to an unsorted array) called a heap file. Since there is no order to this type of file on any field within the records of the file, sequential searching operations are the only suitable search technique. Hashed files, on the other hand, were designed to provide O(1) access time to the file. This access time was based upon the hash field (again, typically the key field). If access to the hashed file is to be through any field other than the hash field (this includes secondary key fields) access deteriorates to that of a sequential search!
Static vs. Dynamic Hashing
The hashing schemes that we have examined for internal hashing are basically the same as those used for external hashing with the only slight change being the adaptation for bucket addresses relating to physical block addresses in the case of external hashing. The hashing techniques that we have seen so far are called static hashing techniques. In static hashing a fixed number of file locations (size of the address space for internal hashing and the number of allocated buckets for external hashing) are allocated to the file structure based upon the initial requirements. This is a serious drawback for dynamic files. A dynamic file is one whose size (total number of bytes required by all records in the file) changes, perhaps drastically, over time. Suppose that we allocate a total of M buckets for the address space of a hashed file and let m be the maximum number of records that can fit into a single bucket; then at most (m (M) records will fit into the allocated address space. If the number of records ultimately turns out to be substantially fewer than (m (M) records, we will be left with a lot of unused space. On the other hand, if the number of records increases to substantially more than (m (M) records, numerous collisions will result and retrieval operations will be significantly slowed due to the long lists of overflow records that will require traversing. In either case, the number of blocks allocated to the file M may need to be changed. This will require the development of a new hash function (it must handle the larger allocation) to redistribute the existing records into the new space allocation. This type of reorganization is extremely time consuming for large files.

There are two primary schemes that have been developed to allow dynamic resizing of hashed files. Both schemes are designed for external hashing applications and are not, in general, applicable to internal hashing. The first type maintains an access structure, similar to an indexed file, in addition to the main file. The most common techniques which fit into this category are called dynamic hashing and extendible hashing. The second type does not maintain the access structure but allows for dynamic resizing. The best example of this latter type is called linear hashing.

These hashing schemes take advantage of the fact that the result of the hashing function is usually a nonnegative integer and therefore can be represented as a binary number. The access structure is built on the binary representation of the result of applying the hashing function to the hash field value of a record, which is a string of bits. This is called the hash value of the record. Records are distributed among buckets based on the values of the leading bits in their hash values.

Dynamic Hashing
In dynamic hashing the number of buckets is not fixed as in regular hashing but expands and contracts as needed. The file can start with a single bucket; once that bucket is full, an insertion will cause the bucket to overflow. The overflow will cause the bucket to split into two buckets. The records are distributed among the two buckets based on the value of the first bit of their hash values. All records whose hash value starts with a 0 bit are stored in one bucket, and all those whose hash value starts with a 1 bit are stored in the other bucket. The indexing structure is a binary tree in which convention has set the left child pointers for internal nodes correspond to a 0 bit and the right child pointers for the internal nodes correspond to a 1 bit. Leaf nodes hold pointers to buckets. Figure 4 illustrates the basic structure of a dynamically hashed file.

Figure 4 – Structure of a dynamically hashed file.

Figure 5 illustrates more of the details of the dynamically hashed file structure. In Figure 5 the tree portion of the hashed file (the index structure) has leaf nodes on two levels indicating that some buckets have already split due to insertion overflow. Assume that key values are six bits in length.

Figure 5 – An example of a dynamically hashed file with a bucket size of four.

Consider in Figure 5, how the left subtree of the root came to be in the configuration that it is shown. Initially, for example, only a single record would have been in the left subtree and the key value for this record would have contained a MSB of 0. Since the bucket size in the file is four, three additional records would have been inserted into the left subtree of the root before the first split occurred. Upon splitting this left child node, the key values (all four of them) would have been redistributed into the two nodes based upon the two MSBs. Insertions would continue until the “00” bucket became full again at which point the “00” bucket is split into a “000” and “001” buckets with the subsequent key value redistribution. At the point the file is shown in Figure 5, the “01” bucket has not yet split (there is still room in this bucket for three more key values to be inserted) and hence this leaf node is one level higher in the tree than are the leaf nodes for the “000” and “001” buckets.

To illustrate what happens to the dynamically hashed file when an insertion causes an overflow, consider inserting the new key value “100110” into the file structure shown in Figure 5. This will require splitting the leftmost bucket in the right subtree of the root (the bucket for “100”) since this is the bucket in which key value “100110” hashes based upon its three MSBs. Splitting this bucket will add a new level to the index structure, by replacing the current leaf node associated with the “100” bucket with a new internal node and pointers to two leaf nodes, one for key values “1000” and one for key values “1001”. Notice that adding a level to the index structure requires that we differentiate keys on one more bit along this path. The remainder of the index structure is unchanged. Figure 6 illustrates this splitting and redistribution of the key values in the current “100” bucket into the “1000” and “1001” buckets.

Figure 6 – Bucket splitting on overflow in a dynamically hashed file. Key value “100110” inserted is inserted into the file structure shown in Figure 5.

As illustrated by the insertion example shown using Figures 5 and 6, the dynamically hashed file can easily expand when required by allocating another bucket and redistributing the key values into two buckets one level deeper in the index structure.

The dynamically hashed file structure can also contract when a deletion empties a bucket causing an underflow condition to occur. Using Figure 5 as the starting point, assume that both key values “001001” and “001011” are deleted from the file. Since these are the only two key values in their bucket, the bucket will empty and the two leaf nodes will contract into their parent node which will become a leaf node and a single bucket (the contract bucket’s sibling) will be the only remaining bucket in this subtree. Notice too, that no redistribution of key values will be required on a contraction. Figure 7 illustrates the changes that will occur to the file shown in Figure 5 when these two key values are deleted.

Figure 7 – Bucket contraction caused by an underflow on deletion. Key values “001001” and “001011” are deleted from the dynamically hashed file shown in Figure 5 which produces this file structure.

If the hash function distributes the key values uniformly, the index structure will be balanced. In some systems, rather than wait for an underflow condition to develop on deletion, contraction of two siblings can occur at any point in time when the total number of key values in the two sibling buckets is less than or equal to the size of a single bucket. This make optimal use of bucket space but may unnecessary splitting on insertion. Whether to use advance contraction or not depends in part on the access patterns to the file. If insertions tend to dominate deletions, then advance contraction is not typically a good idea, on the other hand, if deletions tend to dominate insertions, then bucket space utilization can be optimized through advance contraction.

Introduction
In the previous set of notes, the basic techniques for internal hashing and external hashing were explained. For both types, the objective is to achieve key-based access to the data file in O(1) time. For external hashing, this implies a single access to secondary memory. The primary difference between internal hashing and external hashing is that internal hashing techniques assume that the entire searchable address space of the file is contained in main memory during execution, while the external techniques deal with files too large to include entirely in main memory. Therefore, in external hashing some effort is made to match the hashing technique to the underlying hardware. With external hashing the use of “buckets” is a common technique whereby a single hash address is a bucket capable of holding several records. Typically a bucket corresponds to the size of a block, which is the unit of I/O exchange and thus one block has the potential to transfer many records from secondary memory to main memory.

The previous set of notes wound up with an introduction to dynamic hashing. Dynamic hashing is the solution to the problem that static hash structures have when the number of records to be stored in the file either increases very close to or beyond expectations or perhaps decreases to levels much less than anticipated. With a static structure either insufficient space is available leading to unreasonably high collision rates or too much allocated space is unutilized leading to high overhead in terms of space. With static hashed structures the solution to either of these problems is an incredibly time consuming reorganization of the hashed structure. As the file grows in size the reorganization becomes simply too costly to effect and other solutions must be employed. Thus, we entered the realm of external dynamically hashed structures which can expand and contract as required based upon the access patterns to the hashed structure. So far we have examined only the form of dynamic hashing known as dynamic hashing. In this se of notes we’ll continue with a look at two different dynamic hashing techniques called extendible hashing and linear hashing.
Extendible Hashing
Extendable hashing, like dynamic hashing, maintains a directory structure through which access to the main address space is directed. It is the type of this structure that differs; in dynamic hashing the directory structure is essentially a B-tree; in extendible hashing this structure is a single level array of bucket addresses. Figure 1 shows a typical extendible hashing structure.

Figure 1 – Structure of an extendible hashing scheme.

The directory for extendible hashing contains 2d bucket addresses where d is called the global depth of the directory. The first d bits (MSB or high-order bits) of a hash value determine the directory entry, and the address in that directory entry corresponds to the bucket in which the corresponding records are stored. Notice in Figure 1 that there does not need to be a distinct bucket for each of the 2d directory locations. Several directory locations with the same first d-bits for their hash value may contain the same bucket address if all the records that hash to these addresses fit into a single bucket. At each bucket, a local depth is maintained. The local depth specifies the number of bits on which the bucket contents are based. The example in Figure 1 illustrates a scenario when the global depth is 3. Looking at the third bucket down from the top, the first bucket with a local depth of 2 is encountered. Notice in this bucket that only the two most significant bits are used to identify unique contents. Also notice that this bucket is currently full. Another insertion to this bucket will cause it to overflow and thus split into two buckets. This will require the pointers from the directory structure to be adjusted to the new bucket and the redistribution of the existing records into the two buckets both of which will now have a local depth of 3. This is illustrated in Figure 2 which illustrates the changes that occur to the structure of Figure 1 when the new key value 0111110 is inserted into the structure.

The value of d can be increased or decreased by 1, thus doubling or halving the number of entries in the directory. Doubling is required whenever any bucket with local depth = global depth overflows. Similarly, halving occurs whenever all of the buckets do not require the full number bits equal to the global depth. In this case buckets are combined and record redistributed according to d-1 bits which means that pairs of buckets will merge together with all local depths decreasing by one along with the global depth.

As was the case with B-trees, pre-splitting is done in some systems whenever an insertion into a bucket causes that bucket to exceed some pre-defined threshold. Similarly, global contraction does not always occur the instant that all buckets no longer require a full d-bits for identification. Typically, the system would monitor performance and particularly, if insertions tend to dominate deletions over the long haul, global contraction would be delayed. If insertions tend to dominate deletions, the scenario of needing global contraction would most likely signal some local phenomena which defies the normal trends so the system would not react to it unless the local phenomena persisted.

Figure 3 illustrates the scenario that would cause global doubling on the next insertion.

Figure 2 – Extendible hashing scheme of Figure 1 after insertion causing overflow.

Figure 3 – Extendible hashing scheme that will experience global doubling on the next insertion. Note: bucket size reduced to fit on the page.

Figure 4 – Extendible hashing scheme of Figure 3 after global doubling has occurred due to insertion. Assume inserted key value was: 00001111.

Notice in Figure 4 that although the file space in terms of the global depth has doubled but the actual file space has increased only by one bucket, in the bucket in which the original overflow occurred that cause the split which led to the global doubling. Notice too, that even though the potential is there for the actual file space to double (if all the remaining buckets split as well), that the file could undergo another global doubling in as little as two more insertions. Can you tell why? Because in both of the first two buckets, there is room for only one more record before the bucket is full. A second insertion into either of these buckets would cause an overflow in a bucket in which the local depth = global depth which is the criteria for global doubling.

Deletion, like insertion can cause either a local or a global contraction. Contraction at the local level arises as the result of an underflow when either (1) the last record is deleted from a bucket or (2) the number of records in two buckets uniquely identified on d bits can be unique identified on d-1 bits in a single bucket. Contraction at the global level occurs when the global depth is d bits and the records in every bucket can be uniquely identified on d-1 bits.

Linear Hashing
The basic idea behind linear hashing is to provide dynamic expansion and contraction of the hash file address space without requiring the overhead of a directory structure. This is accomplished with the overhead of a single integer and a slightly modified search algorithm. Suppose that the address space starts with M buckets numbered 0, 1, 2, …, M-1 and uses a simple modulo hash function h(K) = K mod M, this hash function is called the initial hash function h0. Collisions are still resolved using chaining. However, when a collision occurs which leads to an overflow in any bucket, the first bucket in the file, bucket 0, is split into two buckets, the original bucket 0 and a new bucket M at the end of the file space. The records originally in bucket 0 are redistributed between bucket 0 and bucket M based upon a new hashing function h1(K) = K mod (2M). A requirement of the new hash function h1 is that any record that hashed to bucket 0 on hash function h0 must hash to either bucket 0 or bucket M on hash function h1.

As further collisions leading to overflow records occur, additional buckets are split in the linear order 1, 2, 3, … . If enough overflow occurs, eventually all the file buckets will be split, so the records in overflow are redistributed into regular buckets using the h1 hash function via a delayed split of their buckets. In this manner we don’t need a directory structure – only a value n to determine how many buckets have been split. For retrieving a record with hash key K, first apply the function h0 to K; if h0(K) < n, use function h1 on K because this indicates that the first bucket has already been split and the records from the first bucket were redistributed between bucket 0 and bucket M by the h1 hash function. Initially, n = 0, indicating that the hash function h0 applies to all buckets; n grows linearly as buckets are split.

When n = M, all the original buckets have been split and the hash function h1 applies to all the records in the file. At this point n is reset to 0, and any new collisions causing bucket overflow lead to the use of a new hashing function h2 where h2(K) = K mod (4M). In general, a sequence of hashing functions hj(K) = K mod (2j M) is used where j = 0, 1, 2, ,,,; a new hashing function hj+1is needed whenever all the buckets 0, 1, …, (2j M)-1 have been split and n is reset to 0.

The search algorithm required for the linear hashing technique is given below:

The following example will clarify the operation of linear hashing.

Example
In order to make things simple, let’s assume that our hash file contains 5 buckets (M = 5), with each bucket having sufficient room for only two records. Let’s further assume that our sequence of hash functions all are modulo functions and the key values are simply integers. Let’s further assume that as we first examine the file, that each bucket is full as shown in the next figure, so that the next insertion will cause the first overflow.

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3

h0(12) = 2, h0(72) = 2

h0(41) = 1, h0(31) = 1

h0(10) = 0, h0(20) = 0

n = 0

At this point let’s assume that a new record with key value 63 is to be inserted into the hash file. Since this key value maps to bucket 3 and this bucket is full, a collision occurs with the new key value record being placed into an overflow chain. In addition, the first bucket is split into two buckets, bucket 0 and bucket M with record redistribution occurring and n is incremented to 1. This is shown below:

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h0(12) = 2, h0(72) = 2

h0(41) = 1, h0(31) = 1

h1(10) = 5, h1(20) = 0

n = 1, 1 bucket has split

A subsequent insertion of the key value 52 will cause an overflow from bucket 2 and a splitting of bucket 1 as shown below:

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h0(12) = 2, h0(72) = 2, h0(52) = 2

h1(41) = 1, h1(31) = 5

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 2, 2 buckets have split

Notice at this point that although two buckets have split, neither have been buckets to which an insertion occurred causing an overflow. The overflowing records which caused buckets 0 and 1 to split are still in their respective overflow chains. Notice too, that the insertion of key value 40 did not cause an overflow and thus no splitting of another bucket. The next insertion that occurs which causes an overflow (notice that this insertion would not be to buckets 0, 1, 5 or 6) will cause the redistribution of records from bucket 2 including those in its overflow chain. This is shown in the next diagram where the assumption is that new key value 54 has been inserted.

h0(74) = 4, h0(64) = 4, h0(54) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h1(12) = 7, h1(72) = 2, h1(52) = 7

h1(41) = 1, h1(31) = 5

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 3, 3 buckets have split

Now let’s assume that time has passed and more insertions have occurred to the file so that all of the original M buckets (0-4) have split. At this point every record in the file has been hashed according to hash function h1 and there are a total of 2M buckets in the file (0-2M-1 or 0-9). This situation is shown in the next figure.

h1(74) = 9, h1(64) = 4, h1(54) = 4

h1(84) = 9

h1(53) = 3, h1(33) = 3, h1(63) = 8

h1(12) = 7, h1(72) = 2, h1(52) = 7

h1(41) = 1, h1(31) = 5

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 5, 5 buckets have split

At this point, the file is twice as large (in terms of buckets) as it was initially and the value of n = M = 5. The hash function h1 applies to every record in the file and thus n is reset to 0 and the next insertion to cause an overflow will result in the next hash function h2 being used to hash the records from bucket 0 into two buckets, 0 and 2M. This is shown in the next figure with the assumption that the key value 23 has been inserted hashing to bucket 3 and thus causing an overflow.

h1(74) = 9, h1(64) = 4, h1(54) = 4

h1(84) = 9

h1(53) = 3, h1(33) = 3, h1(63) = 8

h1(12) = 7, h1(72) = 2, h1(52) = 7

h1(41) = 1, h1(31) = 5

h2(10) = 5, h2(20) = 0, h2(40) = 10

n = 1, 1 bucket has split

End Example
Buckets that have been split can also be merged back together if the loading of the file falls below a certain threshold. In general, the file load L can be defined as:

[image: image2.wmf]N

bfr

r

L

´

=

where r is the current number of file records, bfr is the maximum number of records that can fit into a single bucket, and N is the current number of file buckets.

Blocks are combined linearly and n is decremented appropriately. In fact, the file load is typically used to trigger both splitting and contraction. Using this technique the file load can be kept within a desired range. Splits are triggered when the load exceeds a certain threshold, say 0.9, and contraction is triggered when the file load falls below a certain threshold, say 0.7.

Summary of Dynamic Hashing Techniques
Of the three different types of dynamic hashing techniques that we have seen in this set of notes, linear hashing requires the least amount of overhead to support the dynamic change in address space required of dynamic hashing. While this lack of overhead is commendable, it is unfortunately, not the only criteria by which a dynamic hashing technique can be chosen. Consider for example, with linear hashing, the requirement placed on the hashing function sequence. After the first overflow causing collision, the second hash function in the sequence is required to hash key values that function h0 placed into one bucket into two buckets 0 and M. The nature of the requirements for this hash function almost guarantee that a modulo function must be utilized. The modulo function does not, in general, guarantee very uniform distribution of key values across the address space which tends to develop clustering. Certain modulo functions require the address space (the number of buckets) to be a relatively large prime number to ensure a relatively uniform distribution of key values.

Since both the dynamic hashing and extendible hashing technique require some directory structure, you might think that these techniques are less favorable than linear hashing. Actually, the contrary is true. Both dynamic hashing and extendible hashing are preferred over linear hashing. Some of the reasons for this are historical others relate to the ease of generating the hash function since it is built in to the key values. In reality, the extendible hashing technique is typically implemented on several levels so that an upper level directory is resident in main memory. This mimics the dynamic hashing case where the root node of the B-tree is resident in main memory (in reality, several layers of the B-tree are probably resident in main memory and the disk based portion of the B-tree is also suitably blocked so that one block transfer will load a large portion of the subtree of interest in any search.

Internal hashing is suited to relatively small file structures (entire file fits in main memory at one time), which remain fairly static in size throughout their lifetime. External hashing is suited to relatively large file structures (entire file cannot possibly fit into main memory at one time), which can either remain relatively static in size or may experience significant expansion and contraction in size. For the former situation, any of the techniques which are normally applied to internally hashed files will suffice with the slight adaptations required to optimize for the hardware devices. In the latter case, typically either the dynamic or extendible hashing techniques will be employed to handle the dynamic nature of the size of the address space requirements.
Advanced File Structures – Hashing

bucket 3

33

bucket 2

72

41

bucket 1

31

10

bucket 0

20

if n = 0

 then m (hj(K) //m is the hash value of record with key K

 else

 {	m (hj(K);

	if m < n then m (hj+1(K)

 }

search the bucket whose hash value is m (and its overflow, if any);

d=3

1110001

1111010

1110001

global depth = 4

1111

1101011

d=3

1100011

1100110

1110

1101

d=3

1010100

1010111

1011001

1100

1011

1010

d=3

1000100

1001100

1000111

1001

1000

0111110

d=3

0110001

0110110

d=3

0100011

0101101

0101110

0010100

d=3

0010111

0011000

d=4

0001100

0001000

0111

0110

0101

0100

0011

0010

0001

0000

bucket

key

d=4

0000110

0001111

local depth

buckets

d=3

1110001

1111010

1110001

1101011

1100011

d=3

1100110

global depth = 3

d=3

1010100

1010111

1011001

d=3

1000100

1001100

1000111

0111110

d=3

0110001

0110110

111

110

101

100

011

010

001

000

bucket

key

d=3

0100011

0101101

0101110

0010100

d=3

0010111

0011000

d=3

0001100

0000110

0001000

local depth

buckets

d=3

1110101

1110001

1111010

1110001

d=3

1100011

1100110

global depth = 3

d=2

1010100

1000111

1011001

0111110

0110001

d=3

0110110

d=3

0101101

0101110

111

110

101

100

011

010

001

000

bucket

key

d=3

0010111

0011000

d=3

0001100

0000110

0001000

local depth

buckets

d=3

1110101

1110001

1111010

1110001

d=3

1100011

1100110

global depth = 3

d=2

1010100

1000111

1011001

d=2

0110001

0101101

0101110

0110110

111

110

101

100

011

010

001

000

bucket

key

d=3

0010111

0011000

d=3

110101

110000

101110

101001

100001

100100

100111

100011

010000

0001000

buckets

local depth

Advanced File Structures – Dynamic Hashing

000101

000110

000011

the buckets

1

0

0

0000110

0

0

1

0

100110

100100

100111

100001

100011

110101

110000

101110

101001

1

0001100

1

1

010000

001011

001001

000101

000110

000011

the buckets

1

0

0

0

0

0

1

1

1

1

110101

110000

010000

100111

100011

101001

100001

100100

101110

001011

001001

000101

000110

1

1

1

1

1

0

0

0

0

0

the buckets

000011

data file buckets

disk

bucket # block addr

0

1

2

m-2

m-1

James

Cindi

Kris

Cris

Cyn

Calli

Carl

Jimi

Jane

Jack

Kristi

TAIL

Al

Ann

Art

Ali

Bo

Cindi

Kris

Cris

Cyn

Calli

Carl

Jimi

Jane

Jack

Kristi

TAIL

Al

Ann

Art

Ali

Bo

Cindi

TAIL

Kris

Cris

Cyn

Calli

Carl

Jimi

Jane

Jack

Kristi

Ann

Art

Ali

Bo

TAIL

TAIL

TAIL

TAIL

TAIL

Al

Cindi

Kris

Cris

Cyn

Calli

Carl

Jimi

Jane

Jack

Kristi

Al

Ann

Art

Ali

Bo

The shaded areas indicate areas of the file that are occupied with records. The unshaded areas are unoccupied areas containing no information. Primary clustering tends to divide the file space into discrete clusters which further increases the probability of collision and tends only to expand each cluster rather than spread the information across the file space.

� EMBED Equation.3 ���

Definition

Load factor: The load factor of a probing hash table is the fraction of the table that is full. The load factor is represented by the symbol (, and generally, ranges from 0 (empty table) to 1 (full table).

should be in location 1 but a collision occurred moving it to location 2

should be in location 2 but a collision occurred moving it to location 3

address

(out)

key value

(in)

KTA

Transform

Function

main file (M records)

Folding and

Adding

XOR

Remainder

of

Division

Digit

Analysis

Piecewise

Linear

Transform

Exponential

Transform

Hashing

Techniques

Sequence

Maintaining

Transformation

Probabilistic

Transformations

Deterministic

Transformations

Unknown

Key

Distribution

Known

Key

Distribution

Key-to-address Transformations

53

64

bucket 4

74

address space

bucket 0

20

31

41

72

bucket 2

12

63

33

bucket 3

53

64

bucket 4

10

bucket 5

address space

40

bucket 0

20

bucket 1

41

52

72

bucket 2

12

63

33

bucket 3

53

64

bucket 4

74

10

bucket 5

31

bucket 6

address space

40

bucket 0

20

bucket 1

41

bucket 2

72

63

33

bucket 3

53

54

64

bucket 4

74

10

bucket 5

31

bucket 6

52

12

bucket 7

address space

address space

20

41

72

53

64

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

54

33

40

bucket 5

10

bucket 6

31

bucket 7

12

52

bucket 8

bucket 9

63

74

84

22

address space

20

41

72

53

64

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

54

33

bucket 5

10

bucket 6

31

bucket 7

12

52

bucket 8

bucket 9

63

74

84

22

23

bucket 10

40

Hashing - 20

_1086520377.unknown

_1086959133.unknown

_1086517978.unknown

