
COP 3530
Fall 1999
Diagnostic Test
Name:_____________________

1.
The algorithmic (programming) techniques of recursion and iteration can be related to the mathematical proof technique of induction in a manner that allows inductive proofs of correctness and run-time complexity. Show this relationship by proving that the first of the following two code segments correctly computes N2, for N(0, and that the second has run time complexity 2N–1, N(1. In this latter case, we base complexity on the number of recursive calls made.

function sq(N : integer);
begin

if N<=0 then sq := 0

else sq := 2*N – 1 + sq(N-1)
end; { sq }
HINT: Prove S(N): sq(N) = N2, N(0

procedure Move (n:integer; X, Y, Z:char);

begin

if n = 1 then writeln('Move ', X, ' to ', Y)

else begin

Move (n-1, X, Z, Y);

writeln('Move ', X, ' to ', Y);

Move (n-1, Z, Y, X)

end
end; { Move }

HINT: Prove S(N): T(N) = 2N–1, N(1, where T(1) = 1; T(N) = 2*T(N–1) + 1, N>1.

2.
A dictionary is an ADT that responds to the messages insert(newWord), lookup(oldWord) and delete(oldWord). There are many competing abstract implementations for a dictionary, three of which are a sorted linear list (not a linked list), a balanced binary search tree and a trie. Focusing on the lookup only, I have given informal algorithms and analyses of the costs of looking up a word. Discuss the pros and cons of each abstract implementation. Be sure to specify the complexity of the other operations (insert and delete) for each implementation.

lookup
sorted linear list
Start in the middle of the list. If the word is found, report success. If not, and the new word is less than the one in the middle, ignore the bottom half, focusing on the top half of list only. Otherwise, ignore the top half, focusing on the bottom only. If you run out of words in the list, report failure. The search takes O(logN) operations.
balanced binary search tree
Traverse the tree, starting at its root. Move left any time the word being looked up is less than that in the node you’re visiting; move right if it’s greater; stop the search if it’s equal or there are no more nodes. If found, report success. If out of nodes, report failure. The search takes O(logN) operations.
trie
Traverse the tree, starting at the left child of its root. Check one character at a time, starting at the first. If the character does not match that in the current node, move to its right sibling. If no right sibling exists, report failure. If the character matches that in the current node and all characters have been checked, report success. Otherwise, move down to the left child of this node, focusing on the next letter of the word being looked up. The search takes O(K) operations, where there are K characters in the word.

3.
The following algorithm will print out a fully parenthesized version of the contents of a binary expression tree, given that it is called with a pointer to the root node.

type
NodePtr = ^Node;

Node = record

nodeLabel : char;

height : integer;

leftChild, rightChild : NodePtr;

end;
procedure fullParens(tree : NodePtr);

begin

if tree <> NIL then with tree^ do begin

write(‘ (’);

fullParens(leftChild);

write(nodeLabel, ‘ ’);

fullParens(rightChild);

write(‘) ’);

end
end; (* fullParens *)

a.)
First, given the expression (~A – B) * C / (D + E), show the binary tree that represents this expression.

b.)
Now, show what would be printed if we called fullParens with this tree.

c.)
Write a function computeHT which, when given a pointer to the root node of a binary expression tree, sets the value of the height field of each node to reflect its height in the tree. Note: Leaf nodes have height 0.

function computeHT(tree : NodePtr) : integer;

begin

end; (* computeHT *)

4.
Fill in the following table by placing X’s in the appropriate columns (one per row):

Order of Execution
O(1)
O(log2N)
O(N)
O(Nlog2N)
O(N2)
O(N3)
O(2N)

Worst case for Bubble Sort

Worst case for a Quick Sort

Worst case for Merge Sort

Worst case for optimal bin packing

Worst case for Towers of Hanoi

Worst case for delete from heap

Best case for insert into heap

Average case for Heapify

Average case for max value in list

5.
Assuming that T(1) = 1 and k(0, use the following table to solve the recurrence equations in a.)-d.).
Inductive Equation
T(n)

T(n) = T(n – 1) + bnk
O(nk+1)

T(n) = cT(n – 1) + bnk, for c > 1
O(cn)

T(n) = cT(n/ d) + bnk, for c > dk
O(nlogd c)

T(n) = cT(n/ d) + bnk, for c < dk
O(nk)

T(n) = cT(n/ d) + bnk, for c = dk
O(nk log n)

a.)
T(n) = 2 T(n/2) + 56n10

b.)
T(n) = 2 T(n–1) + 56n10

c.)
T(n) = T(n/2) + 12

d.) T(n) = T(n–1) + 12

5
6.
Explain why when we represent a queue in a linked list data structure that we are better off linking a queue's elements from oldest to newest, rather than newest to oldest. You can either discuss this in terms of having an oldest and newest pointer or in terms of having a circularly linked list with just a newest pointer. Describe the problems with newest to oldest linking and indicate how oldest to newest addresses these problems. Use pictures to make your discussion clear and easy to follow.

7.
The following questions are all about max heaps.

a.)
A heap data structure containing a maximum of MAX integers has the following rather innocent looking type definition.
type
intHeap = array[1..MAX] of integer;
What are the added properties, beyond this simple array definition, that makes a list a heap?

b.)
Present a Pascal-like (C-like, Java-like) procedure that deletes the maximum value from a heap H containing N integers, retaining the heap property. You will need to write any routines that you call from your deleteMax. Don’t worry about forward references; assume you can reorder procedures later. Also, assume that someone else has already written a procedure swap(A,i,j) that swaps A[i] with A[j].

procedure deleteMax(var H : intHeap; var N : integer);

c.)
If N=8 and heap H has the following N elements

25 18 16 9 7 1 9 3

What does the associated Priority Ordered Tree look like?

What will the list look like after a deleteMax is executed?

What does the associated Priority Ordered Tree look like?

C. E. Hughes, UCF Computer Science
–
 –
COP 3530 Fall ‘99

