
COP 4600: Intro To OS (Embedded OS) Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2014

Introduction To Operating Systems

Embedded Operating Systems

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4600/sum2014

COP 4600: Intro To OS (Embedded OS) Page 2 © Dr. Mark Llewellyn

Embedded Operating Systems

• One of the more important and widely used

categories of operating systems is embedded

operating systems.

• The embedded system environment places unique and

demanding requirements on the OS and calls for

design strategies a quite different than that found in

ordinary operating systems.

• We’ll examine an overview of the concept of

embedded OS and then look more closely at the

principles of embedded OS.

COP 4600: Intro To OS (Embedded OS) Page 3 © Dr. Mark Llewellyn

Embedded Systems

• The term embedded system refers to the use of electronics and

software within a product, as opposed to a general-purpose

computer, such as a laptop or desktop system.

• More formally, an embedded system is a combination of computer

hardware and software, and perhaps additional mechanical or other

parts, designed to perform a dedicated function.

• In many cases, embedded systems are part of a larger system or

product, as in the case of an anti-lock braking system in a car.

• Embedded systems far outnumber general-purpose computer

systems in today’s world. The table on the next page illustrates the

broad range of applications of embedded systems.

COP 4600: Intro To OS (Embedded OS) Page 4 © Dr. Mark Llewellyn

Embedded Systems

COP 4600: Intro To OS (Embedded OS) Page 5 © Dr. Mark Llewellyn

Embedded Systems

• The range of systems listed in the table on the previous

page illustrate the widely varying requirements and

constraints of embedded systems.

• Some of these include:

– Small to large systems, implying very different cost constraints, thus

different needs for optimizations and reuse.

– Relaxed to very strict requirements and combinations of quality

requirements, for example, with respect to safety, reliability, real-time,

flexibility, and legislation.

– Short to long life-times.

– Different environmental conditions in terms of, for example, radiation,

vibration, and humidity.

COP 4600: Intro To OS (Embedded OS) Page 6 © Dr. Mark Llewellyn

Embedded Systems

– Different application characteristics resulting in static versus dynamic loads,

slow to fast speed, computational versus interface intensive tasks, and/or

combinations thereof.

– Different models of computation ranging from discrete-event systems to

those involving continuous time dynamics (usually referred to as hybrid

systems).

• Often embedded systems are tightly coupled to their environment.

This can give rise to real-time constraints imposed by the need to

interact with the environment.

• Constraints, such as required speeds of motion, required precision

of measurement, and required time of duration, dictate the timing

of software operations. If multiple activities must be managed

simultaneously, this imposes more complex real-time constraints.

COP 4600: Intro To OS (Embedded OS) Page 7 © Dr. Mark Llewellyn

Embedded Systems

• The figure on the next page illustrates, in a general sense, the

organization of an embedded system.

• In addition to the processor and memory, there are a number of

elements that differ from the typical desktop or laptop computer:

– There may be a variety of interfaces that enable the system to measure,

manipulate, and otherwise interact with the external environment.

– The human interface may be as simple as a flashing light or as complicated

as real-time robotic vision.

– The diagnostic port may be used for diagnosing the system that is being

controlled – not just for diagnosing the computer.

– Special-purpose field programmable (FPGA), application specific (ASIC),

or even non-digital hardware may be used to increase performance or safety.

– Software often has a fixed function and is specific to the application.

COP 4600: Intro To OS (Embedded OS) Page 8 © Dr. Mark Llewellyn

Embedded Systems

Possible Organization of an Embedded System

COP 4600: Intro To OS (Embedded OS) Page 9 © Dr. Mark Llewellyn

Characteristics Of Embedded Systems

• A simple embedded system, with simple functionality, may be

controlled by a special purpose program or set of programs with no

other software.

• Typically, more complex embedded system include an OS.

Although it is possible in principle to use a general-purpose OS,

such as Linux, for an embedded system, constraints of memory

space, power consumption, and real-time requirements typically

dictate the use of a special-purpose OS designed for the embedded

system environment.

• The following few pages describe some of the unique

characteristics and design requirements for embedded OS.

COP 4600: Intro To OS (Embedded OS) Page 10 © Dr. Mark Llewellyn

Characteristics Of Embedded Systems

Real-time operation

• In many embedded system, the correctness of a computation

depends, in part, on the time at which it is delivered. Often, real-

time constraints are dictated by external I/O and control stability

requirements.

Reactive operation

• Embedded software may execute in response to external events. If

these events do not occur periodically or at predictable intervals,

the embedded software may need to take into account worst-case

conditions and set priorities for execution of routines.

COP 4600: Intro To OS (Embedded OS) Page 11 © Dr. Mark Llewellyn

Characteristics Of Embedded Systems

Configurability

• Because of the large variety of embedded systems, there is a large

variation in the requirements, both qualitative and quantitative, for

embedded OS functionality. Thus, an embedded OS intended for

use on a variety of embedded systems must lend itself to flexible

configurations so that only the functionality needed for a specific

application and hardware suite is provided.

• For example, the linking and loading functions can be used to

select only the necessary OS modules to load. Conditional

compilation can be used.

• However, verification of the end product can be a problem for

designs with a large number of derived tailored operating systems.

COP 4600: Intro To OS (Embedded OS) Page 12 © Dr. Mark Llewellyn

Characteristics Of Embedded Systems

I/O device flexibility

• There is virtually no device that needs to be supported by all

versions of the OS, and the range of I/O devices is large.

• Some effort has been expended in developing special tasks to deal

with relatively slow devices such as disks and network interfaces

instead of integrating their drives into the OS kernel.

COP 4600: Intro To OS (Embedded OS) Page 13 © Dr. Mark Llewellyn

Characteristics Of Embedded Systems

Streamlined protection mechanism

• Embedded systems are typically designed for a limited, well-

defined functionality. Untested programs are rarely added to the

software. After the software has been configured and tested, it can

be assumed to be reliable.

• Thus, apart from security measures, embedded systems have

limited protection mechanisms. For example, I/O instructions need

not be privileged instructions that trap to the OS; tasks can directly

perform their own I/O.

• Similarly, memory protection mechanisms can be minimized .

COP 4600: Intro To OS (Embedded OS) Page 14 © Dr. Mark Llewellyn

Characteristics Of Embedded Systems

Direct use of interrupts

• General purpose OS typically do not permit any user process to use

interrupts directly.

• In embedded systems, there are three legitimate reasons why it

would make sense to allow an interrupt to directly start or stop

tasks (by storing the task’s start address in the interrupt vector

address table), rather than going through OS interrupt service

routines: (1) embedded systems can be considered to be thoroughly

tested, with infrequent modifications to the OS or application code;

(2) protection is not necessary (see previous page); and (3) efficient

control over a variety of devices is required.

COP 4600: Intro To OS (Embedded OS) Page 15 © Dr. Mark Llewellyn

Approaches To Embedded Systems

• There are two general approaches to developing an embedded OS.

• The first approach is to take an existing OS and adapt it for the

embedded application.

• The other approach is to design and implement an OS intended

solely for embedded use.

COP 4600: Intro To OS (Embedded OS) Page 16 © Dr. Mark Llewellyn

Adapting An Existing OS

• An existing commercial OS can be used for an embedded system

by adding real-time capability, streamlining operations, and adding

necessary functionality.

• This approach most commonly today makes use of Linux, but

FreeBSD, Windows, and other OS have been used.

• Such OS are generally slower and less predictable than a special-

purpose embedded OS.

• Once advantage of this approach is that the embedded OS derived

from the general-purpose OS is based on a set of familiar

interfaces, which facilitates portability.

COP 4600: Intro To OS (Embedded OS) Page 17 © Dr. Mark Llewellyn

Adapting An Existing OS

• The main disadvantage of using a general-purpose OS is that it is

not optimized for real-time and embedded applications.

• Considerable modification may be required to achieve adequate

performance.

• In particular, a typical OS optimizes for the average case rather

than the worst case for scheduling, usually assigns resources on

demand, and ignores most, if not all, semantic information about

an application.

COP 4600: Intro To OS (Embedded OS) Page 18 © Dr. Mark Llewellyn

Purpose-Build Embedded OS

• A significant number of OS have been designed from the ground

up for embedded applications.

• Two prominent examples are eCos and TinyOS.

• While there can be many characteristics that would defined a

purpose-built embedded OS, most would agree that the list shown

on the next page would be common in embedded OS with real-

time requirements. However, keep in mind that for complex

embedded systems, the requirements may emphasize predictable

operation over fast operation, necessitating a different a different

set of design decisions, particularly in the area of task scheduling.

COP 4600: Intro To OS (Embedded OS) Page 19 © Dr. Mark Llewellyn

Characteristics of a Specialized Embedded OS

• Has a fast and lightweight process or thread switch.

• Scheduling policy is real time and dispatcher mode is part of

scheduler instead of separate component.

• Has a small size.

• Responds to external interrupts quickly; typical response time

would be less than 10 µs.

• Minimizes intervals during which interrupts are disabled.

• Provides fixed or variable sized partitions for memory management

as well as the ability to lock code and data in memory.

• Provides special sequential files that can accumulate data at a fast

rate.

COP 4600: Intro To OS (Embedded OS) Page 20 © Dr. Mark Llewellyn

Characteristics of a Specialized Embedded OS

To deal with timing constraints, the kernel of a specialized embedded

OS should:

• Provide bounded execution time for most primitives.

• Maintain a real-time clock.

• Provide for special alarms and timeouts.

• Support real-time queuing disciplines such as earliest deadline first

(EDF) and primitives for jamming a message into the front of a

queue.

• Provide primitives to delay processing by a fixed amount of time

and to suspend/resume execution.

COP 4600: Intro To OS (Embedded OS) Page 21 © Dr. Mark Llewellyn

eCos (Embedded Configurable Operating System)

• The eCos (Embedded Configurable Operating System) is an open

source, royalty-free, real-time OS intended for embedded

applications.

• The system is targets at high-performance small embedded

systems. For such systems, an embedded form of Linux or other

commercial OS would not provide the streamlined software

required.

• The eCos software has been implemented on a wide variety of

processor platforms including Intel IA32, PowerPC, SPARC,

ARM, CalmRISC, MIPS, and NEC V8xx. It is one of the most

widely used embedded OS.

• You can try eCos yourself by downloading it at

http://ecos.sourceware.org/

http://ecos.sourceware.org/

COP 4600: Intro To OS (Embedded OS) Page 22 © Dr. Mark Llewellyn

eCos - Configurability

• An embedded OS that is flexible enough to be used in a wide variety

of embedded applications on a wide variety of embedded platforms

must provide more functionality than will be needed for any particular

application and platform.

• For example, many real-time OS support task switching, concurrency

controls, and a variety of priority scheduling mechanisms. A

relatively simple embedded system would not need all of these

features.

• The challenge is to provide an efficient, user-friendly mechanism for

configuring selected components and for enabling and disabling

particular features within components.

• The eCos configuration tool, which will run on Linux or Windows, is

used to configure an eCos package to run on a target embedded

system.

COP 4600: Intro To OS (Embedded OS) Page 23 © Dr. Mark Llewellyn

eCos - Configurability

• The complete eCos package is structured hierarchically, making it

easy, using the configuration tool, to assemble a target configuration.

• At a top level, eCos consists of a number of components, and the

configuration user may select only those components needed for the

target application.

• For example, a system might have a particular serial I/O device. The

configuration user would select serial I/O for this configuration, then

select one or more specific I/O devices to be supported. The

configuration tool would include the minimum necessary software for

that support. The configuration user can also select specific

parameters such as the default data rate and the size of the I/O buffers

to be used.

COP 4600: Intro To OS (Embedded OS) Page 24 © Dr. Mark Llewellyn

eCos - Configurability

• This configuration process can be extended down to finer levels of

detail, even to the level of individual lines of code. For example, the

configuration tool provides the option of including or omitting a

priority inheritance protocol.

• The next page illustrates the top level of the eCos configuration tool

as seen by the tool user.

– Each of the items on the list in the left-hand window can be selected or

deselected.

– When an item is highlighted, the lower-right hand window provides a

description and the upper right-hand window provides a link to further

documentation plus additional information about the highlighted otem.

– Items on the list can be expanded to provide a finer-grained menu of options.

COP 4600: Intro To OS (Embedded OS) Page 25 © Dr. Mark Llewellyn

eCos – Configuration Tool

COP 4600: Intro To OS (Embedded OS) Page 26 © Dr. Mark Llewellyn

eCos Configuration Tool

COP 4600: Intro To OS (Embedded OS) Page 27 © Dr. Mark Llewellyn

eCos Configuration Tool

Creating a binary image to execute in the embedded system

COP 4600: Intro To OS (Embedded OS) Page 28 © Dr. Mark Llewellyn

eCos - Use

• The previous page illustrates a typical example of the overall process

of creating the binary image to execute in the embedded system.

• The process is executed on a source system, such as Windows or

Linux, and the executable image is destined to execute on a target

embedded system, such as a sensor in an industrial environment.

• At the highest software level is the application source code for the

particular embedded application. This code is independent of eCos

and makes use of application programming interfaces (APIs) to sit on

top of the eCos software.

• There might only be one version of this software, or there might be

variations for different versions of the target embedded platform.

• In this particular example, the GNU make utility is used to selectively

determine which pieces of a program need to be compiled.

COP 4600: Intro To OS (Embedded OS) Page 29 © Dr. Mark Llewellyn

eCos - Use

• The GNU cross compiler, executing on the source machine, generates

the executable code for the target embedded platform.

• The GNU linker links the application object code with the code

generated by the eCos configuration tool. This latter set of software

includes selected portions of the eCos kernel plus selected software

for the target embedded system.

• The result is then loaded into the target system.

COP 4600: Intro To OS (Embedded OS) Page 30 © Dr. Mark Llewellyn

eCos - Components

• One of the key design requirements for eCos is portability to different

architectures and platforms with minimal effort.

• To meet this requirement, eCos consists of a layered set of

components as shown below.

COP 4600: Intro To OS (Embedded OS) Page 31 © Dr. Mark Llewellyn

eCos - Components

Hardware Abstraction Layer (HAL)

• At the bottom of the layered design is the hardware abstraction layer

(HAL). The HAL is software that presents a consistent API to the

upper layers and maps upper-layer operations onto a specific

hardware platform.

• Thus, the HAL is different for each hardware platform.

• The next page illustrates how the HAL abstracts hardware-specific

implementations for the same API call on two different platforms.

– In this case, the call from an upper layer to enable interrupts is the same on both

platforms, but the C code implementation of the function is specific to each

platform.

COP 4600: Intro To OS (Embedded OS) Page 32 © Dr. Mark Llewellyn

eCos - Components

PowerPC ArchitectureARM Architecture

COP 4600: Intro To OS (Embedded OS) Page 33 © Dr. Mark Llewellyn

eCos - Components

Hardware Abstraction Layer (HAL)

• The HAL is implements as three separate modules:

• Architecture: Defines the processor family type. This module contains

the code necessary for processor startup, interrupt delivery, context

switching, and other functionality specific to the instruction set

architecture of that processor family.

• Variant: Supports the features of the specific processor in the family. An

example of a supported feature is an on-chip module such as a memory

management unit (MMU).

• Platform: Extends the HAL support to tightly coupled peripherals like

interrupt controllers and timer devices. This module defines the platform

or board that includes the selected processor architecture and variant. It

includes code for startup, chip selection configurations, interrupt

controllers, and timer devices.

COP 4600: Intro To OS (Embedded OS) Page 34 © Dr. Mark Llewellyn

eCos - Components

eCos Kernel

• The eCos kernel was designed to satisfy four main objectives:

– Low interrupt latency: The time it takes to respond to an interrupt and

begin executing an ISR (Interrupt Service Routine).

– Low task switching latency: The time it takes from when a thread

becomes available to when actual execution begins.

– Small memory footprint: Memory resources for both program and

data are kept to a minimum by allowing all components to configure

memory as needed.

– Deterministic behavior: Throughout all aspects of execution, the

kernel performance must be predictable and bounded to meet real-

time application requirements.

COP 4600: Intro To OS (Embedded OS) Page 35 © Dr. Mark Llewellyn

eCos - Components

eCos Kernel

• The eCos kernel provides the core functionality needed for

developing multi-threaded applications:

– The ability to create new threads in the system, either during startup or

when the system is already running.

– Control over the various threads in the system; for example,

manipulating thread priorities.

– A choice of schedulers, determining which thread should currently be

running.

– A range of synchronization primitives, allowing threads to interact and

share data safely.

– Integration with the system’s support for interrupts and exceptions.

COP 4600: Intro To OS (Embedded OS) Page 36 © Dr. Mark Llewellyn

eCos - Components

eCos Kernel

• Some of the functionality that is typically included in the kernel of an

OS is not included in the eCos kernel. For example, memory

allocation is handled by a separate package. Similarly, each device

driver is handled as a separate package.

• Various packages are combined and configured using the eCos

configuration tool to meet the requirements of the application.

• This makes for a very small kernel. Indeed, for a very simple single

threaded application, it could be run directly on HAL. Such a

configuration could incorporate needed C library functions and device

drivers, but avoid the space and time overhead of the kernel.

COP 4600: Intro To OS (Embedded OS) Page 37 © Dr. Mark Llewellyn

eCos - Components

I/O System

• Some of the functionality that is typically included in the kernel of an

OS is not included in the eCos kernel. For example, memory

allocation is handled by a separate package. Similarly, each device

driver is handled as a separate package.

• Various packages are combined and configured using the eCos

configuration tool to meet the requirements of the application.

• This makes for a very small kernel. Indeed, for a very simple single

threaded application, it could be run directly on HAL. Such a

configuration could incorporate needed C library functions and device

drivers, but avoid the space and time overhead of the kernel.

COP 4600: Intro To OS (Embedded OS) Page 38 © Dr. Mark Llewellyn

eCos - Components

• Not complete – finish this section

