
COP 4610L: Operating Systems Lab
Distributed Applications

in the Enterprise

Lecture Set 1

Dr. R. Lent

Objective of the Course

To expose you to the world of heterogeneous enterprise computing architecture
with emphasis on networked, distributed applications using objects.

Getting Organized

l Prerequisites: COP3330 (OOP), COP3503 (CS2), EEL 4882 (OS),
CGS 2545 (Databases).

l Textbook: Deitel, Deitel, and Santry, Advanced Java 2 Platform

l Course web page: http://www.cs.ucf.edu/courses/cop4610 (check it
frequently!)

l Final grade = 50% projects + 50% tests

Getting Organized (cont’d)

l Projects are programming (Java) assignments that must show your
own independent work.

l Project submissions will be received via WebCT

l Open lab hours will be available

l No food or drinks will be allowed in the lab

l Assignment 0: Install JDK 1.4.x (we will need several additional
packages later)

Note: The number of chapters may seem taunting, but many of them get
their size due to the embedded examples!

Time Estimate

l You should expect to spend an average of 8-12 hours per week

Task hr./week

class 2

homework 5

reading (exams) 1

total 8

l Your mileage will vary, but if you are spending less than 4 or more than 12
hours per week, there is a problem

Topics to be Covered

l Overview of XML, DTD, DOM, XSLT, XHTML (App. A,B,C,D)
l Networking concepts, socket programming, Web server (notes)
l Concurrency (notes)
l Advanced GUI Swing components, Web browser (Ch.2,3)
l Security (Ch. 7)
l Java Beans (Ch. 6)
l Java Database Connectivity (Ch. 8)
l Servlets and Java Server Pages (Ch. 9,10)
l Remote Method Invocation and CORBA (Ch. 13)
l Enterprise Java Beans (Ch. 14,15)
l Jini and JavaSpaces (Ch. 22, 23)
l SOAP
l *P2P, JXTA,
l *JMS (Ch. 16)

Introduction

Motivation

l Growing demand for Information technology and e-commerce

applications

l Constrain: Enterprise applications have to be designed, built,

and produced for less money, faster, and with fewer

resources than ever before

l Distributed Systems provide a good solution

Distributed Component-based Applications

l A configuration of services provided by different

application components on physically independent

computers

l Appear to the users of the system as a single application

on a single physical machine

Why Distributed Systems?

l Some tasks are inherently distributive. By their nature they require

cooperative work from multiple agents

l Reliability. No single point of failure in the system.

l Scalability. By properly designing the system, it should be able to handle

more load by adding new services and hardware.

l Performance and economics. Existing distributed, cheap computer power

with increased network bandwidth can be used to avoid spending money

in new hardware.

Distributed vs. Parallel Computing

Distributed:

l Multiple heterogeneous devices at multiple sites

(each independent, with local resource controls)

l Multi-purpose interconnection network

l Shared purpose

l Varied bandwidth; Often high latency; Flexible

communication

l Requires more attention to reliability, security

and routing

Parallel:

l Multiple, usually similar, devices at a

single site (some, perhaps all,

resources are centrally controlled)

l Dedicated interconnection network

l Shared purpose

l High bandwidth; Low latency; Inflexible

communication

What Should a Distributive Application Provide?

Answer: Transparency (give the illusion of a single unified application on a

single machine):

l Data location: The user does not need to know where the data is

l Failure: The user does not need to worry about consistency of data even if

there is a failure in the network of data sources

l Replication: The user does not need to know how data replication is done

l Distribution: The user does not need to know how computing power and

data are distributed across the system.

Transactions

l Groups of statements that represents a unit of work, which must be

executed as a unit

l Transactions provide consistent operations on resources (read,

write, update)

l Should have the following ACID properties:

¡ Atomicity: “all-or-nothing” property

¡ Consistency: Map a consistent state of resources to another

¡ Isolation (serialization): Reveal no results before commit

¡ Durability: completed transactions cannot be erased due to system

failure.

l Transaction management: at local and global levels

Common DS Paradigms

l Channels – send / receive

Messages to single or collection of recipients

l Distributed Objects – invoke services on remote objects

Requires objects to be transferred over network

l Serialization (marshalling) / un-serialization

l Tuple space (shared memory) – write, read, take

A space for reliable communication and coordination

Overview of HTML, XML, DTD,
XHTML, XSLT, and DOM

HTML

l HTML = HyperText Markup Language

l Current version: 4.01

l Language for publishing hypertext on the World Wide Web.

l Non-proprietary format (in plain text) based upon SGML.

l HTML uses tags such as <h1> and </h1> to structure text into headings, paragraphs,

lists, hypertext links etc.

Example: Forms with POST or GET

<FORM ACTION="http://127.0.0.1/submission" METHOD="POST">
Your Name : <INPUT TYPE="text" NAME="nameVal" SIZE="20"

MAXLENGTH="80">
<p><I>Email Address :</I><INPUT TYPE="text" NAME="emailVal" SIZE="20"

MAXLENGTH="80">
<P><U>Are you hungry?</U><P>
<INPUT TYPE="radio" NAME="hungryValY">Yes
<INPUT TYPE="radio" NAME="hungryValN" VALUE="_">No
<P>Describe yourself
<SELECT NAME="yourselfField">
<OPTION>A seeker after truth
<OPTION>Head in the sand
<OPTION>Falling asleep quickly
</SELECT>
<p>How do you like my website?
<p><TEXTAREA NAME="yourComments" ROWS="5" COLS="40" value="place your

comments here"></TEXTAREA>
<P><INPUT TYPE="submit"> <INPUT TYPE="Reset">
</FORM>

XML

l XML stands for EXtensible Markup Language

l XML is a markup language much like HTML

l XML was designed to describe data

l XML tags are not predefined in XML. You must define your own tags

l XML uses a Document Type Definition (DTD) or an XML Schema to

describe the data

l XML with a DTD or XML Schema is designed to be self-descriptive

XML does not DO really anything

Example:

<note>

<to>Student</to>

<from>Professor</from>

<heading>Reminder</heading>

<body>Don't forget to install JDK!</body>

</note>

The example consists of header, body, sender, and
receiver, but still the document does not indicate any
action. It just describe information.

XML

l XML is not a replacement for HTML

l XML was designed to describe data and to focus on what data is. HTML
was designed to display data and to focus on how data looks

l Use: as a cross-platform, software and hardware independent tool for
moving information

XML Markup

l Declaration:

<?xml version = “1.0”?>

l Comments

<!-- comment -->

l Data is marked up using tags

<myTag> character data </myTag>

<myTag />

l Notes:

¡ myTag is the element name

¡ Element names are case sensitive

¡ An end tag must follow every start tag

XML Markup (cont’d)

l Attributes

<myTag id=“COP4610”> data </myTag>

¡ Elements can have any number of attributes

l Characters

¡ Any, except ‘&’ and ‘<‘

¡ Entity references:
l Ampersand = &

l Left-angle bracket = <

l Right-angle bracket = >

l Apostrophe = '

l Quotation mark = "

XML (cont’d)

l CDATA define sections not processed by a XML parser

l Admits any character except]]>

<![CDATA[

// Test

if (value == 0 && sum != 0) {

value = 10;

return 0;

}

]]>

Name Spaces

l To avoid naming collisions (two different elements with the same name)

<text:directory xmlns:text = “ucf:cs:cop4610”>

<text:book> … </text:book>

l A commons practice is to use URLs

l A default name space can be specified with:

<directory xmlns = “cs.ucf”>

<book> … </book>

DTD

l Define XML document’s structure: permitted elements, attributes, etc.

l It is optional (not every XML document is required to have a corresponding

DTD)

l A DTD is defined using Extended Backus-Naur Form (EBNF) grammar

XML and DTD

Declaration:

l Internal:
<!DOCTYPE myMessage [<!ELEMENT myMessage (#PCDATA)>]>

l External
<!DOCTYPE myMessage SYSTEM “myDTD.dtd”>

or:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

Notes:

l myMessage is the root element

l PCDATA = Parsable character data

Example

XHTML

l XHTML is a family of document types and modules that reproduce, subset,

and extend HTML 4

l XHTML family document types a small subset of XML, and ultimately are

designed to work in conjunction with XML-based user agents.

l Create discipline (referred to as rigor) within the syntax to avoid

inconsistencies in browser interpretation and encourage professional coding

practices.

Modules

Applet — applet, param
Block phrasal — address, blockquote , pre, h1-h6
Block presentational — center, hr
Block structural — div, p
Inline phrasal — abbr, acronym, cite, code, dfn, em, kbd, q, samp, strong, var
Inline presentational — b, basefont, big, font, i, s, small, strike, sub, sup, tt, u
Inline structural — bdo, br, del, ins, span
Linking — a, base, link
Lists — dir, dl, dt, dd, ol, ul, li, menu
Simple forms — form, input, select, option, textarea
Extended forms — button, fieldset, label, legend, optgroup, option, select, textarea
Simple tables — table, td, th, tr
Extended tables — caption, col, colgroup, tbody, tfoot, thead
Images — img
Image maps — area, map
Objects — object, param
Frames — frameset, frame, iframe, noframes
Events — onclick, ondblclick, onmousedown, onmouseup, onmouseover, onmousemove, onmouseout, onkeypress,

onkeydown, onkeyup
Metadata — meta, title
Scripts — noscript, script
Styles — style element and attribute
Structure — html, head, body

XHTML (vs. HTML)

l Tags and attributes must be in lowercase

l All XHTML elements must be closed

l Attribute values must be quoted and minimization is forbidden

l The id attribute replaces the name attribute

l Documents must conform to XML rules

l XHTML documents have some mandatory elements

XHTML example

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>COP 4610L</title>

</head>

<body>

<p>Moved to UCF.</p>

</body>

</html>

Document Object Model (DOM)

l XML Parsers are of two basic types:

¡ Hierarchical tree based (DOM)

¡ Event based (SAX)

l XML DOM is a W3C recommendation

l A DOM-based parser exposes a programmatic library (DOM API) that

allows access to data in an XML document

l Sun Microsystems: JAXP (Java API for XML Processing)

DOM example: XML document

DOM example: Parser 1/4

DOM example: Parser 2/4

DOM example: Parser 3/4

DOM example: Parser 4/4

DOM example: output

XSLT

l XSL = Extensible Stylesheet Language

l XSLT = XSL Transformations

l Provides rules for formatting XML documents

XML Document

XSLT Stylesheet

XSLT
Engine

HTML
Document

XSLT Example

<person type=“student”>

<name>

Peter Pan

</name>

</person>

XSLT
Engine

<xsl:stylesheet version=“1.0”>

<xsl:template match=“person”>

<html><body><p>

<xsl:value-of
select=“name”/></p>

</body></html>

</xsl:template>

</xsl:stylesheet>

<html><body><p>Peter
Pan</p></body></html>

java.io

Input/Output

l Java views files and devices as a stream of bytes

¡ Example: System.in, System.out, and System.err

¡ Streams can be redirected

l A file ends with end-of-file marker or a specific byte number

l Abstract classes:

¡ Byte-based streams
l InputStream

l OutputStream

¡ Character-based streams (Unicode two-byte character streams)
l Reader

l Writer

I/O Streams: File Streams

l File processing with classes in package java.io
¡ FileInputStream for byte-based input from a file
¡ FileOutputStream for byte-based output to a file
¡ FileReader for character-based input from a file
¡ FileWriter for character-based output to a file

import java.io.*;
public class Copy { public static void main(String[] args) throws

IOException {
File inputFile = new File("farrago.txt");
File outputFile = new File("outagain.txt");
FileReader in = new FileReader(inputFile);
FileWriter out = new FileWriter(outputFile);
int c;
while ((c = in.read()) != -1) out.write(c);
in.close(); out.close(); }

}

I/O Streams: Print Streams

l Define convenient printing methods that are the easiest streams to write to

l You will often see other writable streams wrapped in one of these

l Classes: PrintWriter and PrintStream

I/O Streams: Data Conversion

l Read or write primitive data types in a machine-independent format.

l Classes: DataInputStream, DataOutputStream

l Methods: writeDouble(), writeChar(), writeBytes(), etc.

I/O Streams: Converting between bytes and Chars

l A reader and writer pair that forms the bridge between byte streams and

character streams

l An InputStreamReader reads bytes from an InputStream and converts

them to characters

l An OutputStreamWriter converts characters to bytes and then writes

them to an OutputStream

I/O Streams: Buffering

l Improves performance of I/O

l Copies each output to a region of memory called a buffer

l Entire buffer output at once

Use: one long disk access takes less time than many smaller ones

l Classes: BufferedOutputStream, BufferedInputStream,

BufferedReader, BufferedWriter

l Methods: readLine(), writeLine()

Java, Networking and the Internet

java.net

l “High-level” APIs

¡ Implement commonly used protocols (e.g. HTML, FTP)

l “Low-Level” APIs

¡ Socket-based communications
l Applications view networking as streams of data

l Connection-based protocol

l Uses TCP (Transmission Control Protocol)

¡ Packet-based communications
l Individual packets transmitted

l Connectionless service

l Uses UDP (User Datagram Protocol)

The Internet in the USA

Internet Reference Model

Application
(HTTP, FTP, DNS, etc.)

Transport
(TCP, UDP)

Network
(IP)

Link and Physical Layer

Application’s View of the Net

??

IP addr 1
Port # 1

IP addr 2
Port # 2

IP num
Sport# Source

socket

Dest
Socket 1

Dest
Socket 2

• DNS maps IP address to names

• Special IP address: 127.0.0.1 =
localhost

Type of Services

l connection-oriented service
¡ TCP - Transmission Control Protocol

¡ reliable, in-order byte-stream data transfer

l connectionless service
¡ UDP - User Datagram Protocol

¡ Unreliable

Socket API

l introduced in BSD4.1 UNIX, 1981

l explicitly created, used, released by apps

l client/server paradigm

Socket programming with UDP

UDP: no “connection” between client and server

l no handshaking

l sender explicitly attaches IP address and port of destination to each packet

l server must extract IP address, port of sender from received packet

UDP: transmitted data may be received out of order, or lost

Application viewpoint: UDP provides unreliable transfer of groups of bytes (“datagrams”)
between client and server

Example: client/server socket interaction via UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName(“localhost");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

9876);
clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram with
data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

Socket programming with TCP

l Server process must first be running (must have created a socket)

l Client contacts server by creating client-local TCP socket specifying IP
address and port number of server process. Client TCP establishes
connection to server TCP

l When contacted by client, server TCP creates new socket for server process
to communicate with client

¡ allows server to talk with multiple clients

¡ source port numbers used to distinguish clients

application viewpoint: TCP provides reliable, in-order transfer of bytes (“pipe”)
between client and server

Establishing a Simple Server Using Stream Sockets

Five steps to create a simple server in Java:

1. ServerSocket object

Registers an available port and a maximum number of clients

2. Each client connection handled with Socket object

Server blocks until client connects

3. Sending and receiving data

OutputStream to send and InputStream to receive data

Methods getInputStream and getOutputstream (use on Socket
object)

4. Process phase

Server and Client communicate via streams

5. Close streams and connections

Establishing a Simple Client Using Stream Sockets

Four steps to create a simple client in Java

1. Create a Socket object for the client

2. Obtain Socket’s InputStream and Outputstream

3. Process information communicated

4. Close streams and Socket

Example: client/server socket interaction via TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:

welcomeSocket =
ServerSocket()

create socket,
connect to hostid, port=x

clientSocket =
Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket(“localhost", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server

Create
output stream

attached to socket

Example: Java client (TCP), cont’d

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

Example: Java server (TCP), cont’d

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

Web and HTTP

l Web page consists of objects

l Object can be HTML file, JPEG image, Java applet, audio file,…

l Web page consists of base HTML-file which includes several

referenced objects

l Each object is addressable by a URL

l Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

HTTP: hypertext transfer protocol

l Web’s application layer protocol

l client/server model

¡ client: browser that requests,
receives, “displays” Web
objects

¡ server: Web server sends
objects in response to
requests

l HTTP 1.0: RFC 1945

l HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

HTTP overview (continued)

Uses TCP:

l client initiates TCP connection (creates
socket) to server, port 80

l server accepts TCP connection from
client

l HTTP messages (application-layer
protocol messages) exchanged between
browser (HTTP client) and Web server
(HTTP server)

l TCP connection closed

HTTP is “stateless”

l server maintains no information
about past client requests

Protocols that maintain “state” are
complex!

l past history (state) must be
maintained

l if server/client crashes, their views
of “state” may be inconsistent, must
be reconciled

aside

HTTP request message

l two types of HTTP messages: request, response

l HTTP request message:

¡ ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

HTTP request message: general format

Uploading form input

Post method:

l Web page often includes form

input

l Input is uploaded to server in

entity body URL method:

l Uses GET method

l Input is uploaded in URL field of

request line:

www.somesite.com/animalsearch?monkeys&banana

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP response status codes

200 OK
¡ request succeeded, requested object later in this message

301 Moved Permanently
¡ requested object moved, new location specified later in this message

(Location:)

400 Bad Request
¡ request message not understood by server

404 Not Found
¡ requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.

A few sample codes:

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at www.cs.ucf.edu
Anything typed in sent
to port 80 at www.cs.ucf.edu

telnet www.cs.ucf.edu 80

2. Type in a GET HTTP request:

GET /index.html HTTP/1.0 By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

Building a simple Web server

l handles one HTTP request

l accepts the request

l parses header

l obtains requested file from server’s file system

l creates HTTP response message:

¡ header lines + file

l sends response to client

l after creating server, you can request file using a browser (e.g. Internet

explorer)

WebServer.java (1/3)

import java.io.*;
import java.net.*;
import java.util.*;

class WebServer{

public static void main(String argv[]) throws Exception {

String requestMessageLine;
String fileName;

ServerSocket listenSocket = new ServerSocket(6789);
Socket connectionSocket = listenSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new

InputStreamReader(connectionSocket.getInputStream()));
DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

WebServer.java (2/3)

requestMessageLine = inFromClient.readLine();

StringTokenizer tokenizedLine =
new StringTokenizer(requestMessageLine);

if (tokenizedLine.nextToken().equals("GET")){

fileName = tokenizedLine.nextToken();

if (fileName.startsWith("/") == true)
fileName = fileName.substring(1);

File file = new File(fileName);
int numOfBytes = (int) file.length();

FileInputStream inFile = new FileInputStream (fileName);

byte[] fileInBytes = new byte[numOfBytes];
inFile.read(fileInBytes);

WebServer.java (3/3)

outToClient.writeBytes("HTTP/1.0 200 Document Follows\r\n");

if (fileName.endsWith(".jpg"))
outToClient.writeBytes("Content-Type:

image/jpeg\r\n");
if (fileName.endsWith(".gif"))

outToClient.writeBytes("Content-Type:
image/gif\r\n");

outToClient.writeBytes("Content-Length: " +
numOfBytes + "\r\n");

outToClient.writeBytes("\r\n");

outToClient.write(fileInBytes, 0, numOfBytes);

connectionSocket.close();
}

else System.out.println("Bad Request Message");
}

}

User-server interaction: authorization

Authorization : control access to server

content

l authorization credentials: typically

name, password

l stateless: client must present

authorization in each request

¡ authorization: header line in each

request

¡ if no authorization: header, server

refuses access, sends

WWW authenticate:

header line in response

client server

usual http request msg

401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization: <cred>

usual http response msg

usual http request msg
+ Authorization: <cred>

usual http response msg time

Cookies: keeping “state”

Many major Web sites use cookies

Four components:

1) cookie header line in the HTTP response message

2) cookie header line in HTTP request message

3) cookie file kept on user’s host and managed by user’s browser

4) back-end database at Web site

Cookies: keeping “state” (cont’d)

client server

usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
specific
action

server
creates ID

1678 for user

entry in backend

database

access

ac
ce

ss

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

Cookies (cont’d)

What cookies can bring:

l authorization

l shopping carts

l recommendations

l user session state (Web e-
mail)

Cookies and privacy:

l cookies permit sites to learn a lot

about you

l you may supply name and e-mail to

sites

l search engines use redirection &

cookies to learn yet more

l advertising companies obtain info

across sites

aside

Conditional GET: client-side caching

l Goal: don’t send object if client

has up-to-date cached version

l client: specify date of cached

copy in HTTP request

If-modified-since:
<date>

l server: response contains no

object if cached copy is up-to-

date:

HTTP/1.0 304 Not
Modified

client server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

High-Level Networking API

HTTP-based applications

A few useful classes:

¡ URL

l Represents the remote object on the WWW

¡ URLConnection

l Allows finer access to page parameters

¡ HttpURLConnection
l Extends URLConnection

l Supports more HTTP-specific features

Example: reading content from URL
import java.net.*;
import java.io.*;

public class SendReq2 {
public static void main(String argv[]) throws Exception {

if(argv.length != 1) {
System.out.println("Usage: java ReadURL2 <url>");

System.exit(0); }

URL url = new URL(argv[0]);
BufferedReader in = new BufferedReader(new InputStreamReader(
url.openStream()));
String line; StringBuffer sb = new StringBuffer();

while ((line = in.readLine()) != null) {
sb.append(line);

}
in.close();
System.out.println(sb.toString());

} }

Example 2

import java.net.*; import java.io.*;
public class urlTest {
public static void main(String[] args) {

try {
URL url = new URL("http://www.google.com/index.html");
System.out.println("Host: " + url.getHost());
System.out.println("File: " + url.getPath());

URLConnection connection = url.openConnection();
System.out.println("Date: " + connection.getDate());
System.out.println("Content type:“

+connection.getContentType());

BufferedReader in = new BufferedReader(new InputStreamReader(
connection.getInputStream()));

String line;
while((line=in.readLine())!= null){

System.out.println(line);}
in.close();

}
catch(MalformedURLException e){}
catch(IOException e){}

}}

