16.6 Producer/Consumer Relationship
without Synchronization

Buffer

— Shared memory region

Producer thread

— Generates data to add to buffer

— Callswait if consumer has not read previous message in
buffer

— Writes to empty buffer and calls noti fy for consumer

Consumer thread
— Reads data from buffer
— Calswalrnt if buffer empty

« Synchronize threads to avoid corrupted data

O 2003 Prentice Hall, Inc. All rights reserved. - -

N o 0ok WWDN

// Fig. 16.4: Buffer.java
// Buffer interface specifies methods called by Producer and Consumer.

public interface Buffer {
public void set(int value); // place value into Buffer
public int get(); // return value from Buffer

}

A Outline

\%

Buffer.java

O 2003 Prentice Hall, Inc.
All rights reserved.

© 00 NO Ol WN -

NNNNNNRPRPRRPRERRERRLRERRPRE
O N WNPFP O ©O®ONOUNWNDNLPRO

// Fig. 16.5: Producer.java
// Producer®s run method controls a thread that
// stores values from 1 to 4 in sharedLocation.

A
\%

Producer extends a

Outline

public class Producer extends Thread {

Thread

private Buffer sharedLocation; ference to shared object
Line5
// constructor Thisisashared object

public Producer(Buffer shared)
{

super("Producer);
sharedLocation = shared;

}

// store values from 1 to 4 in sharedLocation

|== B N\ J

Line 16

Lines 22-23

public void run()

{

for (int count = 1; count <= 4; count++) {

// sleep O to 3 seconds, then place value in Buffer

try {
Thread.sleep((int) (Math.random() * 3001));

Method run isoverridden

sharedLocation.set(count);

}

The thread goes to sleep,
then the buffer is set

O 2003 Prentice Hall, Inc.
All rights reserved.

26
27
28
29
30
31
32
33
34
35
36
S
38

// if sleeping thread interrupted, print stack trace
catch (InterruptediException exception) {
exception.printStackTrace();

}

} // end for

System.err._printIn(getName() + " done producing.” +
"\nTerminating " + getName() + ".");

} 7/ end method run

} // end class Producer

A

Outline

\%

Producer. java

O 2003 Prentice Hall, Inc.
All rights reserved.

© 00 NO Ol WN -

NN NNNNNNERPRPRRERPRERR
N0 U0 WNRPO OOWMNOO UM WNEPRO

// Fig. 16.6: Consumer.java
// Consumer®s run method controls a thread that loops four
// times and reads a value from sharedLocation each time.

A
\%

Consumer extends a

Outline

public class Consumer extends Thread {

Thread

private Buffer sharedLocation; ference to shared object
Line5
// constructor Thisisashared object

public Consumer(Buffer shared)

{

super (‘Consumer™);
sharedLocation = shared;

}

// read sharedLocation®s value four times and sum the values

|== B N\ J

Line 16

Lines 24-25

public void run()

{

int sum = 0;
for (Int count = 1; count <= 4; count++) {
// sleep 0 to 3 seconds, read value from Buffer and add to sum

try {
Thread.sleep((int) (Math.random() * 3001));

Method run isoverridden

sum += sharedLocation.get();

The thread goes to sleep,
then the buffer is read

O 2003 Prentice Hall, Inc.
All rights reserved.

28
29
30
ail
32
33
34
35
36
37
38
)

// if sleeping thread interrupted, print stack trace
catch (InterruptediException exception) {
exception.printStackTrace();
¥
be

System.err.printIn(getName() + " read values totaling: ™

"_\nTerminating " + getName() + ".'");
} 7/ end method run

} /7 end class Consumer

+ sum +

A

Outline

\%

Consumer. java

O 2003 Prentice Hall, Inc.
All rights reserved.

© 00 NO Ol WN -

NNNNNNRPRPRRPRERRERRLRERRPRE
O N WNPFP O ©O®ONOUNWNDNLPRO

// Fig. 16.7: UnsynchronizedBuffer .java
// UnsynchronizedBuffer represents a single shared integer.

A

Outline

\V

public class UnsynchronizedBuffer implements Buffer {
private int buffer = -1; red by producer and consumer thr

This class implements the
Buffer interface

ni1zedB

UrF rTCT - OV

a

// place value into buffer
public void set(int value)

The datais a single integer

{

System.err.printIn(Thread.currentThread() -getName
“writes " + value);

This method sets the
value in the buffer

buffer = value;

}

// return value from buffer
public Int get(
{

System.err._printIn(Thread.currentThrea
" reads " + buffer);

return buffer;

}

} 7/ end class UnsynchronizedBuffer

Lines 8 and 13

Lines 17 and 22

This method reads the
value in the buffer

O 2003 Prentice Hall, Inc.
All rights reserved.

© 00 NO Ol WN -

N PR R R R R PR R R R
©O © O N U WDN R O

// Fig. 16.8: SharedBufferTest. java
// SharedBufferTest creates producer and consumer threads.

public class SharedBufferTest {

public static void main(String [] args)

{

// create shared object used by threads

Buffer sharedLocation = new UnsynchronizedBuffer();

// create producer and consumer objects
Producer producer = new Producer(sharedLocation);

Consumer consumer = new Consumer(sharedLocation);

producer.start(); // start producer thread
consumer.start(); // start consumer

} 7/ end main

} 7/ end class SharedCell

A Outline
Vv
SharedBufferTes
t.java
| ineO

Create aBuffer object
Lines12-13

Create aProducer and

aConsumer

Start the Producer and
Consumer threads

O 2003 Prentice Hall, Inc.
All rights reserved.

Consumer
Producer
Consumer
Consumer
Consumer
Consumer

reads -1
writes 1
reads 1
reads 1
reads 1
read values totaling: 2.

Terminating Consumer.

Producer
Producer
Producer
Producer

writes 2
writes 3
writes 4
done producing.

Terminating Producer.

Producer
Producer
Consumer
Producer
Consumer
Producer
Producer

writes 1
writes 2

reads 2

writes 3

reads 3

writes 4

done producing.

Terminating Producer.

Consumer
Consumer

Consumer read values totaling: 13.

reads 4
reads 4

Terminating Consumer .

A

Qutline

\%

SharedBufferTes

t.java

O 2003 Prentice Hall, Inc.

All rights reserved.

A Outline
Producer writes 1 V
Consumer reads 1
Producer writes 2 SharedBufferTes
Consumer reads 2 t.java
Producer writes 3 -
Consumer reads 3
Producer writes 4

Producer done producing.
Terminating Producer.

Consumer reads 4

Consumer read values totaling: 10.
Terminating Consumer .

O 2003 Prentice Hall, Inc.
All rights reserved.

16.7 Producer/Consumer Relationship with
Synchronization

« Synchronize threads to ensure correct data

O 2003 Prentice Hall, Inc. All rights reserved. - -

© 00 NO Ol WN -

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

=

// Fig. 16.9: SynchronizedBuffer.java
// SynchronizedBuffer synchronizes access to a single shared ant

This class implements the
Buffer interface

ine

public class SynchronizedBuffer implements Buffer {

SvnchronizedBuf

private int buffer = -1; // shared by producer and consumer t

private int occupiedBufferCount = 0; 77 Tount of occupied buf]

Remember the number of
filled spaces

// place value into buffer
public synchronized void set(int value)

{

Method set is declared
synchronized

=TT io U

// for output purposes, get name of thread that called thismethad

String name = Thread.currentThread() .getName();

Get the name of the thread

ITTC J

// while there are no empty locations, place thread in waiting state

while (occupiedBufferCount == 1) {

Line 12

// output thread information and buffer iInforma

Wait while the buffer isfilled

try {
System.err._printIn(name + " O write.”);
displayState(“ r full. " + pname + " waits.");
wait(Q);

¥

// it waiting thread interrupted, print stack trace
catch (InterruptedException exception) {
exception.printStackTrace();

}

O 2003 Prentice Hall, Inc.
All rights reserved.

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

} 7/ end while

A
\%

Outline

buffer = value; 4L set new buffer value |

Write to the buffer hronizedBuf

// indicate producer cannot store another value
// until consumer retrieves current buffer value

fer.java

++occupiedBufferCount;

I ncrement the buffer count

displayState(name + ™ writes " + buffer);

Line 35

notify() ; A/—teH waitingthread toenter ready Sstate————

Alert awaiting thread

} 7/ end method set; releases lock on SynchronizedBuffer

LITTO UV

Line44

// return value from buffer
public synchronized int get()

{

Method get is declared
synchronized

mathnd

// for output purposes, get name of thread that called thi

String name = Thread.currentThread() .getName();

Get the name of the thread

O 2003 Prentice Hall, Inc.
All rights reserved.

49
50
51
52
53
54
859
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

// while no data to read, place thread in waiting state
while (occupiedBufferCount == 0) {

A
\%

Outline

// output thread information and buffer informa
try {

dBuf

Wait while the buffer is empty

System.err.println(name + **
displayState("B mpty. **
wait(Q);

tri read.");
+ name + " waits.”);

}

// it waiting thread interrupted, print stack trace
catch (InterruptedException exception) {
exception.printStackTrace();

}

} 7/ end while

// indicate that producer can store another value

J_W'_Ul.—

Lines 50 and 56

Line 68

Line72

Line 74

// because consumer just retrieved buffer value
—--occupiedBufferCount;

Decrement the buffer count

displayState(name + " reads " + buffer);

notify() ; 7/teH—watting—thread—tobecomeready—to—execut

Alert awaiting thread

return buffer;

Return the buffer

O 2003 Prentice Hall, Inc.
All rights reserved.

75
76
77
78
79
80
81
82
83
84
85
86
87

} 7/ end method get; releases lock on SynchronizedBuffer

// display current operation and buffer state

public void displayState(String operation)

{
StringBuffer outputLine = new StringBuffer(operation);
outputLine.setLength(40);
outputLine.append(buffer + ""\t\t" + occupiedBufferCount);
System.err.printin(outputLine);
System.err.printin();

}

88 } // end class SynchronizedBuffer

A

Outline

\%

SynchronizedBuf
fer.java

O 2003 Prentice Hall, Inc.
All rights reserved.

© 00 NO Ol WN -

NNNNNRERRRPRRRRRRR
N WNRPRO OWOWMNOUuMWNDNLERO

// Fig. 16.10: SharedBufferTest2.java A Outline
// SharedBufferTest2creates producer and consumer threads. v
public class SharedBufferTest2 { SharedBufferTes
public static void main(String [] args) t2-Java
{ Create aBuffer object
// create shared object used by threads; we use a SynchronizedBuffer Line 11
// reference rather than a Buffer reference so we can invoke
// SynchronizedBuffer method displayState from main Line 19
SynchronizedBuffer sharedLocation = new SynchronizedBuffer();
Lines 22-23

// Display column heads for output
StringBuffer columnHeads = new StringBuffer("“Operation™);
columnHeads .setLength(40);

columnHeads -append(“"Buffer\t\tOccupied Count™);
System.err.printIn(columnHeads);
System.err.printin();
sharedLocation.displayState(“Initial State™);

// create producer and consumer objects
Producer producer = new Producer(sharedLocation);

Output initial state

Create aProducer and

Consumer consumer = new Consumer(sharedLocation);

aConsumer

O 2003 Prentice Hall, Inc.
All rights reserved.

26 consumer.start();—_77‘§tart—c0ﬁsumeF—thnead_____________________

25 producer.start();
27

28 } 7/ end main

29

// start producer thread

30 } // end class SharedBufferTest2

Operation

Initial State

Consumer tries to read.

Buffer empty. Consumer waits.

Producer writes 1

Consumer reads 1

Consumer tries to read.

Buffer empty. Consumer wailts.

Producer writes 2

Consumer reads 2

Producer writes 3

Buffer

Occupied Count

A Nuitlinao

Start the Producer and

Consumer threads

SharedBuTrerles
t2.java

Lines 25-26

O 2003 Prentice Hall, Inc.
All rights reserved.

Consumer reads 3

Consumer tries to read.
Buffer empty. Consumer wailts.

Producer writes 4
Consumer reads 4

Producer done producing.
Terminating Producer.

Consumer read values totaling: 10.

Terminating Consumer.

Operation
Initial State

Consumer tries to read.
Buffer empty. Consumer waits.

Producer writes 1

Consumer reads 1

Producer writes 2

Buffer

Occupied Count

0

A Outline

\%

SharedBufferTes
t2.java

O 2003 Prentice Hall, Inc.
All rights reserved.

Producer tries to write. A Outline
Buffer full. Producer waits. 2 1 v

Consumer reads 2 2 0 SharedBufferTes
Producer writes 3 3 1 €2 'java

Consumer reads 3 3 0

Producer writes 4 4 1

Producer done producing.
Terminating Producer.
Consumer reads 4 4 0

Consumer read values totaling: 10.
Terminating Consumer.

Operation Buffer Occupied Count
Initial State -1 0
Producer writes 1 1 1
Consumer reads 1 1 0
Producer writes 2 2 1

O 2003 Prentice Hall, Inc.
All rights reserved.

Consumer reads 2 2 0 A Outline
Producer writes 3 3 1 v
SharedBufferTes
Consumer reads 3 3 0 -
t2.java
Producer writes 4 4 1

Producer done producing.
Terminating Producer.
Consumer reads 4 4 0

Consumer read values totaling: 10.
Terminating Consumer.

O 2003 Prentice Hall, Inc.
All rights reserved.

