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16.6  Producer/Consumer Relationship 
without Synchronization

• Buffer
– Shared memory region

• Producer thread
– Generates data to add to buffer
– Calls wait if consumer has not read previous message in 

buffer
– Writes to empty buffer and calls notify for consumer

• Consumer thread
– Reads data from buffer
– Calls wait if buffer empty

• Synchronize threads to avoid corrupted data



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Buffer.java

1      // Fig. 16.4: Buffer.java
2      // Buffer interface specifies methods called by Producer and Consumer.
3      
4      public interface Buffer {
5      public void set( int value );  // place value into Buffer
6      public int get();              // return value from Buffer
7      }
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Outline

Producer.java

Line 5

Line 6

Line 16

Lines 22-23

1      // Fig. 16.5: Producer.java
2      // Producer's run method controls a thread that
3      // stores values from 1 to 4 in sharedLocation.
4      
5      public class Producer extends Thread {
6      private Buffer sharedLocation; // reference to shared object
7      
8      // constructor
9      public Producer( Buffer shared )
10    {
11    super( "Producer" );
12 sharedLocation = shared;
13    }
14    
15    // store values from 1 to 4 in sharedLocation
16    public void run()
17    {
18    for ( int count = 1; count <= 4; count++ ) {  
19    
20    // sleep 0 to 3 seconds, then place value in Buffer
21    try {
22    Thread.sleep( ( int ) ( Math.random() * 3001 ) );
23 sharedLocation.set( count );  
24    }
25    

Producer extends 
Thread

This is a shared object

Method run is overridden

The thread goes to sleep, 
then the buffer is set
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Outline

Producer.java

26    // if sleeping thread interrupted, print stack trace
27    catch ( InterruptedException exception ) {
28    exception.printStackTrace();
29    }
30    
31    } // end for
32    
33    System.err.println( getName() + " done producing." + 
34    "\nTerminating " + getName() + ".");
35    
36    } // end method run
37    
38    } // end class Producer
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Outline

Consumer.java

Line 5

Line 6

Line 16

Lines 24-25

1      // Fig. 16.6: Consumer.java
2      // Consumer's run method controls a thread that loops four
3      // times and reads a value from sharedLocation each time.
4      
5      public class Consumer extends Thread { 
6      private Buffer sharedLocation; // reference to shared object
7      
8      // constructor
9      public Consumer( Buffer shared )
10    {
11    super( "Consumer" );
12 sharedLocation = shared;
13    }
14    
15    // read sharedLocation's value four times and sum the values
16    public void run()
17    {
18 int sum = 0;
19    
20    for ( int count = 1; count <= 4; count++ ) {
21    
22    // sleep 0 to 3 seconds, read value from Buffer and add to sum
23    try {
24    Thread.sleep( ( int ) ( Math.random() * 3001 ) );    
25    sum += sharedLocation.get();
26    }
27    

Consumer extends 
Thread

This is a shared object

Method run is overridden

The thread goes to sleep, 
then the buffer is read
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Outline

Consumer.java

28    // if sleeping thread interrupted, print stack trace
29    catch ( InterruptedException exception ) {
30    exception.printStackTrace();
31    }
32    }
33    
34    System.err.println( getName() + " read values totaling: " + sum + 
35    ".\nTerminating " + getName() + ".");
36    
37    } // end method run
38    
39    } // end class Consumer
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Outline

UnsynchronizedB
uffer.java

Line 4

Line 5

Lines 8 and 13

Lines 17 and 22

1      // Fig. 16.7: UnsynchronizedBuffer.java
2      // UnsynchronizedBuffer represents a single shared integer.
3      
4      public class UnsynchronizedBuffer implements Buffer {
5      private int buffer = -1; // shared by producer and consumer threads
6      
7      // place value into buffer
8      public void set( int value )
9      {
10    System.err.println( Thread.currentThread().getName() +
11    " writes " + value );
12    
13    buffer = value;
14    }
15    
16    // return value from buffer
17    public int get()
18    {
19    System.err.println( Thread.currentThread().getName() +
20    " reads " + buffer );
21    
22    return buffer; 
23    }
24    
25    } // end class UnsynchronizedBuffer

This class implements the 
Buffer interface

The data is a single integer

This method sets the 
value in the buffer

This method reads the 
value in the buffer
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Outline

SharedBufferTes
t.java

Line 9

Lines 12-13

Lines 15-16

1      // Fig. 16.8: SharedBufferTest.java
2      // SharedBufferTest creates producer and consumer threads.
3      
4      public class SharedBufferTest {
5      
6      public static void main( String [] args )
7      {
8      // create shared object used by threads
9      Buffer sharedLocation = new UnsynchronizedBuffer();
10    
11    // create producer and consumer objects
12    Producer producer = new Producer( sharedLocation );
13    Consumer consumer = new Consumer( sharedLocation );
14    
15    producer.start();  // start producer thread
16    consumer.start();  // start consumer thread
17    
18    } // end main
19    
20    } // end class SharedCell

Create a Buffer object

Create a Producer and 
a Consumer

Start the Producer and 
Consumer threads
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Outline

SharedBufferTes
t.java

Consumer reads -1
Producer writes 1
Consumer reads 1
Consumer reads 1
Consumer reads 1
Consumer read values totaling: 2.
Terminating Consumer.
Producer writes 2
Producer writes 3
Producer writes 4
Producer done producing.
Terminating Producer.

Producer writes 1
Producer writes 2
Consumer reads 2
Producer writes 3
Consumer reads 3
Producer writes 4
Producer done producing.
Terminating Producer.
Consumer reads 4
Consumer reads 4
Consumer read values totaling: 13.
Terminating Consumer.
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Outline

SharedBufferTes
t.java

Producer writes 1
Consumer reads 1
Producer writes 2
Consumer reads 2
Producer writes 3
Consumer reads 3
Producer writes 4
Producer done producing.
Terminating Producer.
Consumer reads 4
Consumer read values totaling: 10.
Terminating Consumer.
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16.7  Producer/Consumer Relationship with 
Synchronization

• Synchronize threads to ensure correct data
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Outline

SynchronizedBuf
fer.java

Line 4

Line 6

Line 9

Line 12

Lines 15 and 21

1      // Fig. 16.9: SynchronizedBuffer.java
2      // SynchronizedBuffer synchronizes access to a single shared integer.
3      
4      public class SynchronizedBuffer implements Buffer {
5      private int buffer = -1; // shared by producer and consumer threads
6      private int occupiedBufferCount = 0; // count of occupied buffers
7      
8      // place value into buffer
9      public synchronized void set( int value )
10    {
11    // for output purposes, get name of thread that called this method
12    String name = Thread.currentThread().getName();
13    
14    // while there are no empty locations, place thread in waiting state
15    while ( occupiedBufferCount == 1 ) {
16    
17    // output thread information and buffer information, then wait
18    try {
19    System.err.println( name + " tries to write." );
20 displayState( "Buffer full. " + name + " waits." );
21    wait();
22    }
23    
24    // if waiting thread interrupted, print stack trace
25    catch ( InterruptedException exception ) {
26    exception.printStackTrace();
27    }

This class implements the 
Buffer interface

Remember the number of 
filled spaces

Get the name of the thread

Wait while the buffer is filled

Method set is declared 
synchronized
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Outline

SynchronizedBuf
fer.java

Line 31

Line 35

Line 39

Line 44

Line 47

28    
29    } // end while
30    
31    buffer = value; // set new buffer value
32    
33    // indicate producer cannot store another value
34    // until consumer retrieves current buffer value
35    ++occupiedBufferCount;
36    
37 displayState( name + " writes " + buffer );
38    
39    notify(); // tell waiting thread to enter ready state
40    
41    } // end method set; releases lock on SynchronizedBuffer 
42    
43    // return value from buffer
44    public synchronized int get()
45    {
46    // for output purposes, get name of thread that called this method
47    String name = Thread.currentThread().getName();
48    

Write to the buffer

Increment the buffer count

Alert a waiting thread

Get the name of the thread

Method get is declared 
synchronized
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Outline

SynchronizedBuf
fer.java

Lines 50 and 56

Line 68

Line 72

Line 74

49    // while no data to read, place thread in waiting state
50    while ( occupiedBufferCount == 0 ) {
51    
52    // output thread information and buffer information, then wait
53    try {
54    System.err.println( name + " tries to read." );
55 displayState( "Buffer empty. " + name + " waits." );
56    wait();
57    }
58    
59    // if waiting thread interrupted, print stack trace
60    catch ( InterruptedException exception ) {
61    exception.printStackTrace();
62    }
63    
64    } // end while
65    
66    // indicate that producer can store another value 
67    // because consumer just retrieved buffer value
68    --occupiedBufferCount;
69    
70 displayState( name + " reads " + buffer );
71    
72    notify(); // tell waiting thread to become ready to execute
73    
74    return buffer;

Wait while the buffer is empty

Decrement the buffer count

Alert a waiting thread

Return the buffer
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Outline

SynchronizedBuf
fer.java

75    
76    } // end method get; releases lock on SynchronizedBuffer 
77    
78    // display current operation and buffer state
79    public void displayState( String operation )
80    {
81 StringBuffer outputLine = new StringBuffer( operation );
82 outputLine.setLength( 40 );
83 outputLine.append( buffer + "\t\t" + occupiedBufferCount );
84    System.err.println( outputLine );
85    System.err.println();
86    }
87    
88    } // end class SynchronizedBuffer
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Outline

SharedBufferTes
t2.java

Line 11

Line 19

Lines 22-23

1      // Fig. 16.10: SharedBufferTest2.java
2      // SharedBufferTest2creates producer and consumer threads.
3      
4      public class SharedBufferTest2 {
5      
6      public static void main( String [] args )
7      {
8      // create shared object used by threads; we use a SynchronizedBuffer
9      // reference rather than a Buffer reference so we can invoke 
10    // SynchronizedBuffer method displayState from main
11 SynchronizedBuffer sharedLocation = new SynchronizedBuffer();
12    
13    // Display column heads for output
14 StringBuffer columnHeads = new StringBuffer( "Operation" );
15 columnHeads.setLength( 40 );
16 columnHeads.append( "Buffer\t\tOccupied Count" );
17    System.err.println( columnHeads );
18    System.err.println();
19 sharedLocation.displayState( "Initial State" );
20    
21    // create producer and consumer objects
22    Producer producer = new Producer( sharedLocation );
23    Consumer consumer = new Consumer( sharedLocation );
24    

Create a Buffer object

Output initial state

Create a Producer and 
a Consumer
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Outline

SharedBufferTes
t2.java

Lines 25-26

25    producer.start();  // start producer thread
26    consumer.start();  // start consumer thread
27    
28    } // end main
29    
30    } // end class SharedBufferTest2

Operation                               Buffer          Occupied Count

Initial State                           -1              0

Consumer tries to read.

Buffer empty. Consumer waits.           -1              0

Producer writes 1                       1               1

Consumer reads 1                        1               0

Consumer tries to read.
Buffer empty. Consumer waits.           1               0

Producer writes 2                       2               1

Consumer reads 2                        2               0

Producer writes 3                       3               1

Start the Producer and 
Consumer threads
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Outline

SharedBufferTes
t2.java

Consumer reads 3                        3               0

Consumer tries to read.
Buffer empty. Consumer waits.           3               0

Producer writes 4                       4               1

Consumer reads 4                        4               0
Producer done producing.
Terminating Producer.

Consumer read values totaling: 10.
Terminating Consumer.

Operation                               Buffer          Occupied Count

Initial State                           -1              0

Consumer tries to read.
Buffer empty. Consumer waits.           -1              0

Producer writes 1                       1               1

Consumer reads 1                        1               0

Producer writes 2                       2               1 
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Outline

SharedBufferTes
t2.java

Producer tries to write.
Buffer full. Producer waits.            2               1

Consumer reads 2                        2               0

Producer writes 3                       3               1

Consumer reads 3                        3               0

Producer writes 4                       4               1

Producer done producing.
Terminating Producer.
Consumer reads 4                        4               0

Consumer read values totaling: 10.
Terminating Consumer.

Operation                               Buffer          Occupied Count

Initial State                           -1              0

Producer writes 1                       1               1

Consumer reads 1                        1               0

Producer writes 2                       2               1
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Outline

SharedBufferTes
t2.java

Consumer reads 2                        2               0

Producer writes 3                       3               1

Consumer reads 3                        3               0

Producer writes 4                       4               1

Producer done producing.
Terminating Producer.
Consumer reads 4                        4               0

Consumer read values totaling: 10.
Terminating Consumer.


