
 2003 Prentice Hall, Inc.  All rights reserved.

16.6  Producer/Consumer Relationship 
without Synchronization

• Buffer
– Shared memory region

• Producer thread
– Generates data to add to buffer
– Calls wait if consumer has not read previous message in 

buffer
– Writes to empty buffer and calls notify for consumer

• Consumer thread
– Reads data from buffer
– Calls wait if buffer empty

• Synchronize threads to avoid corrupted data



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Buffer.java

1      // Fig. 16.4: Buffer.java
2      // Buffer interface specifies methods called by Producer and Consumer.
3      
4      public interface Buffer {
5      public void set( int value );  // place value into Buffer
6      public int get();              // return value from Buffer
7      }



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Producer.java

Line 5

Line 6

Line 16

Lines 22-23

1      // Fig. 16.5: Producer.java
2      // Producer's run method controls a thread that
3      // stores values from 1 to 4 in sharedLocation.
4      
5      public class Producer extends Thread {
6      private Buffer sharedLocation; // reference to shared object
7      
8      // constructor
9      public Producer( Buffer shared )
10    {
11    super( "Producer" );
12 sharedLocation = shared;
13    }
14    
15    // store values from 1 to 4 in sharedLocation
16    public void run()
17    {
18    for ( int count = 1; count <= 4; count++ ) {  
19    
20    // sleep 0 to 3 seconds, then place value in Buffer
21    try {
22    Thread.sleep( ( int ) ( Math.random() * 3001 ) );
23 sharedLocation.set( count );  
24    }
25    

Producer extends 
Thread

This is a shared object

Method run is overridden

The thread goes to sleep, 
then the buffer is set



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Producer.java

26    // if sleeping thread interrupted, print stack trace
27    catch ( InterruptedException exception ) {
28    exception.printStackTrace();
29    }
30    
31    } // end for
32    
33    System.err.println( getName() + " done producing." + 
34    "\nTerminating " + getName() + ".");
35    
36    } // end method run
37    
38    } // end class Producer



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Consumer.java

Line 5

Line 6

Line 16

Lines 24-25

1      // Fig. 16.6: Consumer.java
2      // Consumer's run method controls a thread that loops four
3      // times and reads a value from sharedLocation each time.
4      
5      public class Consumer extends Thread { 
6      private Buffer sharedLocation; // reference to shared object
7      
8      // constructor
9      public Consumer( Buffer shared )
10    {
11    super( "Consumer" );
12 sharedLocation = shared;
13    }
14    
15    // read sharedLocation's value four times and sum the values
16    public void run()
17    {
18 int sum = 0;
19    
20    for ( int count = 1; count <= 4; count++ ) {
21    
22    // sleep 0 to 3 seconds, read value from Buffer and add to sum
23    try {
24    Thread.sleep( ( int ) ( Math.random() * 3001 ) );    
25    sum += sharedLocation.get();
26    }
27    

Consumer extends 
Thread

This is a shared object

Method run is overridden

The thread goes to sleep, 
then the buffer is read



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Consumer.java

28    // if sleeping thread interrupted, print stack trace
29    catch ( InterruptedException exception ) {
30    exception.printStackTrace();
31    }
32    }
33    
34    System.err.println( getName() + " read values totaling: " + sum + 
35    ".\nTerminating " + getName() + ".");
36    
37    } // end method run
38    
39    } // end class Consumer



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

UnsynchronizedB
uffer.java

Line 4

Line 5

Lines 8 and 13

Lines 17 and 22

1      // Fig. 16.7: UnsynchronizedBuffer.java
2      // UnsynchronizedBuffer represents a single shared integer.
3      
4      public class UnsynchronizedBuffer implements Buffer {
5      private int buffer = -1; // shared by producer and consumer threads
6      
7      // place value into buffer
8      public void set( int value )
9      {
10    System.err.println( Thread.currentThread().getName() +
11    " writes " + value );
12    
13    buffer = value;
14    }
15    
16    // return value from buffer
17    public int get()
18    {
19    System.err.println( Thread.currentThread().getName() +
20    " reads " + buffer );
21    
22    return buffer; 
23    }
24    
25    } // end class UnsynchronizedBuffer

This class implements the 
Buffer interface

The data is a single integer

This method sets the 
value in the buffer

This method reads the 
value in the buffer



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t.java

Line 9

Lines 12-13

Lines 15-16

1      // Fig. 16.8: SharedBufferTest.java
2      // SharedBufferTest creates producer and consumer threads.
3      
4      public class SharedBufferTest {
5      
6      public static void main( String [] args )
7      {
8      // create shared object used by threads
9      Buffer sharedLocation = new UnsynchronizedBuffer();
10    
11    // create producer and consumer objects
12    Producer producer = new Producer( sharedLocation );
13    Consumer consumer = new Consumer( sharedLocation );
14    
15    producer.start();  // start producer thread
16    consumer.start();  // start consumer thread
17    
18    } // end main
19    
20    } // end class SharedCell

Create a Buffer object

Create a Producer and 
a Consumer

Start the Producer and 
Consumer threads



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t.java

Consumer reads -1
Producer writes 1
Consumer reads 1
Consumer reads 1
Consumer reads 1
Consumer read values totaling: 2.
Terminating Consumer.
Producer writes 2
Producer writes 3
Producer writes 4
Producer done producing.
Terminating Producer.

Producer writes 1
Producer writes 2
Consumer reads 2
Producer writes 3
Consumer reads 3
Producer writes 4
Producer done producing.
Terminating Producer.
Consumer reads 4
Consumer reads 4
Consumer read values totaling: 13.
Terminating Consumer.



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t.java

Producer writes 1
Consumer reads 1
Producer writes 2
Consumer reads 2
Producer writes 3
Consumer reads 3
Producer writes 4
Producer done producing.
Terminating Producer.
Consumer reads 4
Consumer read values totaling: 10.
Terminating Consumer.



 2003 Prentice Hall, Inc.  All rights reserved.

16.7  Producer/Consumer Relationship with 
Synchronization

• Synchronize threads to ensure correct data



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SynchronizedBuf
fer.java

Line 4

Line 6

Line 9

Line 12

Lines 15 and 21

1      // Fig. 16.9: SynchronizedBuffer.java
2      // SynchronizedBuffer synchronizes access to a single shared integer.
3      
4      public class SynchronizedBuffer implements Buffer {
5      private int buffer = -1; // shared by producer and consumer threads
6      private int occupiedBufferCount = 0; // count of occupied buffers
7      
8      // place value into buffer
9      public synchronized void set( int value )
10    {
11    // for output purposes, get name of thread that called this method
12    String name = Thread.currentThread().getName();
13    
14    // while there are no empty locations, place thread in waiting state
15    while ( occupiedBufferCount == 1 ) {
16    
17    // output thread information and buffer information, then wait
18    try {
19    System.err.println( name + " tries to write." );
20 displayState( "Buffer full. " + name + " waits." );
21    wait();
22    }
23    
24    // if waiting thread interrupted, print stack trace
25    catch ( InterruptedException exception ) {
26    exception.printStackTrace();
27    }

This class implements the 
Buffer interface

Remember the number of 
filled spaces

Get the name of the thread

Wait while the buffer is filled

Method set is declared 
synchronized



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SynchronizedBuf
fer.java

Line 31

Line 35

Line 39

Line 44

Line 47

28    
29    } // end while
30    
31    buffer = value; // set new buffer value
32    
33    // indicate producer cannot store another value
34    // until consumer retrieves current buffer value
35    ++occupiedBufferCount;
36    
37 displayState( name + " writes " + buffer );
38    
39    notify(); // tell waiting thread to enter ready state
40    
41    } // end method set; releases lock on SynchronizedBuffer 
42    
43    // return value from buffer
44    public synchronized int get()
45    {
46    // for output purposes, get name of thread that called this method
47    String name = Thread.currentThread().getName();
48    

Write to the buffer

Increment the buffer count

Alert a waiting thread

Get the name of the thread

Method get is declared 
synchronized



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SynchronizedBuf
fer.java

Lines 50 and 56

Line 68

Line 72

Line 74

49    // while no data to read, place thread in waiting state
50    while ( occupiedBufferCount == 0 ) {
51    
52    // output thread information and buffer information, then wait
53    try {
54    System.err.println( name + " tries to read." );
55 displayState( "Buffer empty. " + name + " waits." );
56    wait();
57    }
58    
59    // if waiting thread interrupted, print stack trace
60    catch ( InterruptedException exception ) {
61    exception.printStackTrace();
62    }
63    
64    } // end while
65    
66    // indicate that producer can store another value 
67    // because consumer just retrieved buffer value
68    --occupiedBufferCount;
69    
70 displayState( name + " reads " + buffer );
71    
72    notify(); // tell waiting thread to become ready to execute
73    
74    return buffer;

Wait while the buffer is empty

Decrement the buffer count

Alert a waiting thread

Return the buffer



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SynchronizedBuf
fer.java

75    
76    } // end method get; releases lock on SynchronizedBuffer 
77    
78    // display current operation and buffer state
79    public void displayState( String operation )
80    {
81 StringBuffer outputLine = new StringBuffer( operation );
82 outputLine.setLength( 40 );
83 outputLine.append( buffer + "\t\t" + occupiedBufferCount );
84    System.err.println( outputLine );
85    System.err.println();
86    }
87    
88    } // end class SynchronizedBuffer



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t2.java

Line 11

Line 19

Lines 22-23

1      // Fig. 16.10: SharedBufferTest2.java
2      // SharedBufferTest2creates producer and consumer threads.
3      
4      public class SharedBufferTest2 {
5      
6      public static void main( String [] args )
7      {
8      // create shared object used by threads; we use a SynchronizedBuffer
9      // reference rather than a Buffer reference so we can invoke 
10    // SynchronizedBuffer method displayState from main
11 SynchronizedBuffer sharedLocation = new SynchronizedBuffer();
12    
13    // Display column heads for output
14 StringBuffer columnHeads = new StringBuffer( "Operation" );
15 columnHeads.setLength( 40 );
16 columnHeads.append( "Buffer\t\tOccupied Count" );
17    System.err.println( columnHeads );
18    System.err.println();
19 sharedLocation.displayState( "Initial State" );
20    
21    // create producer and consumer objects
22    Producer producer = new Producer( sharedLocation );
23    Consumer consumer = new Consumer( sharedLocation );
24    

Create a Buffer object

Output initial state

Create a Producer and 
a Consumer



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t2.java

Lines 25-26

25    producer.start();  // start producer thread
26    consumer.start();  // start consumer thread
27    
28    } // end main
29    
30    } // end class SharedBufferTest2

Operation                               Buffer          Occupied Count

Initial State                           -1              0

Consumer tries to read.

Buffer empty. Consumer waits.           -1              0

Producer writes 1                       1               1

Consumer reads 1                        1               0

Consumer tries to read.
Buffer empty. Consumer waits.           1               0

Producer writes 2                       2               1

Consumer reads 2                        2               0

Producer writes 3                       3               1

Start the Producer and 
Consumer threads



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t2.java

Consumer reads 3                        3               0

Consumer tries to read.
Buffer empty. Consumer waits.           3               0

Producer writes 4                       4               1

Consumer reads 4                        4               0
Producer done producing.
Terminating Producer.

Consumer read values totaling: 10.
Terminating Consumer.

Operation                               Buffer          Occupied Count

Initial State                           -1              0

Consumer tries to read.
Buffer empty. Consumer waits.           -1              0

Producer writes 1                       1               1

Consumer reads 1                        1               0

Producer writes 2                       2               1 



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t2.java

Producer tries to write.
Buffer full. Producer waits.            2               1

Consumer reads 2                        2               0

Producer writes 3                       3               1

Consumer reads 3                        3               0

Producer writes 4                       4               1

Producer done producing.
Terminating Producer.
Consumer reads 4                        4               0

Consumer read values totaling: 10.
Terminating Consumer.

Operation                               Buffer          Occupied Count

Initial State                           -1              0

Producer writes 1                       1               1

Consumer reads 1                        1               0

Producer writes 2                       2               1



 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t2.java

Consumer reads 2                        2               0

Producer writes 3                       3               1

Consumer reads 3                        3               0

Producer writes 4                       4               1

Producer done producing.
Terminating Producer.
Consumer reads 4                        4               0

Consumer read values totaling: 10.
Terminating Consumer.


