
 2003 Prentice Hall, Inc. All rights reserved.

16.6 Producer/Consumer Relationship
without Synchronization

• Buffer
– Shared memory region

• Producer thread
– Generates data to add to buffer
– Calls wait if consumer has not read previous message in

buffer
– Writes to empty buffer and calls notify for consumer

• Consumer thread
– Reads data from buffer
– Calls wait if buffer empty

• Synchronize threads to avoid corrupted data

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Buffer.java

1 // Fig. 16.4: Buffer.java
2 // Buffer interface specifies methods called by Producer and Consumer.
3
4 public interface Buffer {
5 public void set(int value); // place value into Buffer
6 public int get(); // return value from Buffer
7 }

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Producer.java

Line 5

Line 6

Line 16

Lines 22-23

1 // Fig. 16.5: Producer.java
2 // Producer's run method controls a thread that
3 // stores values from 1 to 4 in sharedLocation.
4
5 public class Producer extends Thread {
6 private Buffer sharedLocation; // reference to shared object
7
8 // constructor
9 public Producer(Buffer shared)
10 {
11 super("Producer");
12 sharedLocation = shared;
13 }
14
15 // store values from 1 to 4 in sharedLocation
16 public void run()
17 {
18 for (int count = 1; count <= 4; count++) {
19
20 // sleep 0 to 3 seconds, then place value in Buffer
21 try {
22 Thread.sleep((int) (Math.random() * 3001));
23 sharedLocation.set(count);
24 }
25

Producer extends
Thread

This is a shared object

Method run is overridden

The thread goes to sleep,
then the buffer is set

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Producer.java

26 // if sleeping thread interrupted, print stack trace
27 catch (InterruptedException exception) {
28 exception.printStackTrace();
29 }
30
31 } // end for
32
33 System.err.println(getName() + " done producing." +
34 "\nTerminating " + getName() + ".");
35
36 } // end method run
37
38 } // end class Producer

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Consumer.java

Line 5

Line 6

Line 16

Lines 24-25

1 // Fig. 16.6: Consumer.java
2 // Consumer's run method controls a thread that loops four
3 // times and reads a value from sharedLocation each time.
4
5 public class Consumer extends Thread {
6 private Buffer sharedLocation; // reference to shared object
7
8 // constructor
9 public Consumer(Buffer shared)
10 {
11 super("Consumer");
12 sharedLocation = shared;
13 }
14
15 // read sharedLocation's value four times and sum the values
16 public void run()
17 {
18 int sum = 0;
19
20 for (int count = 1; count <= 4; count++) {
21
22 // sleep 0 to 3 seconds, read value from Buffer and add to sum
23 try {
24 Thread.sleep((int) (Math.random() * 3001));
25 sum += sharedLocation.get();
26 }
27

Consumer extends
Thread

This is a shared object

Method run is overridden

The thread goes to sleep,
then the buffer is read

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

Consumer.java

28 // if sleeping thread interrupted, print stack trace
29 catch (InterruptedException exception) {
30 exception.printStackTrace();
31 }
32 }
33
34 System.err.println(getName() + " read values totaling: " + sum +
35 ".\nTerminating " + getName() + ".");
36
37 } // end method run
38
39 } // end class Consumer

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

UnsynchronizedB
uffer.java

Line 4

Line 5

Lines 8 and 13

Lines 17 and 22

1 // Fig. 16.7: UnsynchronizedBuffer.java
2 // UnsynchronizedBuffer represents a single shared integer.
3
4 public class UnsynchronizedBuffer implements Buffer {
5 private int buffer = -1; // shared by producer and consumer threads
6
7 // place value into buffer
8 public void set(int value)
9 {
10 System.err.println(Thread.currentThread().getName() +
11 " writes " + value);
12
13 buffer = value;
14 }
15
16 // return value from buffer
17 public int get()
18 {
19 System.err.println(Thread.currentThread().getName() +
20 " reads " + buffer);
21
22 return buffer;
23 }
24
25 } // end class UnsynchronizedBuffer

This class implements the
Buffer interface

The data is a single integer

This method sets the
value in the buffer

This method reads the
value in the buffer

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t.java

Line 9

Lines 12-13

Lines 15-16

1 // Fig. 16.8: SharedBufferTest.java
2 // SharedBufferTest creates producer and consumer threads.
3
4 public class SharedBufferTest {
5
6 public static void main(String [] args)
7 {
8 // create shared object used by threads
9 Buffer sharedLocation = new UnsynchronizedBuffer();
10
11 // create producer and consumer objects
12 Producer producer = new Producer(sharedLocation);
13 Consumer consumer = new Consumer(sharedLocation);
14
15 producer.start(); // start producer thread
16 consumer.start(); // start consumer thread
17
18 } // end main
19
20 } // end class SharedCell

Create a Buffer object

Create a Producer and
a Consumer

Start the Producer and
Consumer threads

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t.java

Consumer reads -1
Producer writes 1
Consumer reads 1
Consumer reads 1
Consumer reads 1
Consumer read values totaling: 2.
Terminating Consumer.
Producer writes 2
Producer writes 3
Producer writes 4
Producer done producing.
Terminating Producer.

Producer writes 1
Producer writes 2
Consumer reads 2
Producer writes 3
Consumer reads 3
Producer writes 4
Producer done producing.
Terminating Producer.
Consumer reads 4
Consumer reads 4
Consumer read values totaling: 13.
Terminating Consumer.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t.java

Producer writes 1
Consumer reads 1
Producer writes 2
Consumer reads 2
Producer writes 3
Consumer reads 3
Producer writes 4
Producer done producing.
Terminating Producer.
Consumer reads 4
Consumer read values totaling: 10.
Terminating Consumer.

 2003 Prentice Hall, Inc. All rights reserved.

16.7 Producer/Consumer Relationship with
Synchronization

• Synchronize threads to ensure correct data

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SynchronizedBuf
fer.java

Line 4

Line 6

Line 9

Line 12

Lines 15 and 21

1 // Fig. 16.9: SynchronizedBuffer.java
2 // SynchronizedBuffer synchronizes access to a single shared integer.
3
4 public class SynchronizedBuffer implements Buffer {
5 private int buffer = -1; // shared by producer and consumer threads
6 private int occupiedBufferCount = 0; // count of occupied buffers
7
8 // place value into buffer
9 public synchronized void set(int value)
10 {
11 // for output purposes, get name of thread that called this method
12 String name = Thread.currentThread().getName();
13
14 // while there are no empty locations, place thread in waiting state
15 while (occupiedBufferCount == 1) {
16
17 // output thread information and buffer information, then wait
18 try {
19 System.err.println(name + " tries to write.");
20 displayState("Buffer full. " + name + " waits.");
21 wait();
22 }
23
24 // if waiting thread interrupted, print stack trace
25 catch (InterruptedException exception) {
26 exception.printStackTrace();
27 }

This class implements the
Buffer interface

Remember the number of
filled spaces

Get the name of the thread

Wait while the buffer is filled

Method set is declared
synchronized

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SynchronizedBuf
fer.java

Line 31

Line 35

Line 39

Line 44

Line 47

28
29 } // end while
30
31 buffer = value; // set new buffer value
32
33 // indicate producer cannot store another value
34 // until consumer retrieves current buffer value
35 ++occupiedBufferCount;
36
37 displayState(name + " writes " + buffer);
38
39 notify(); // tell waiting thread to enter ready state
40
41 } // end method set; releases lock on SynchronizedBuffer
42
43 // return value from buffer
44 public synchronized int get()
45 {
46 // for output purposes, get name of thread that called this method
47 String name = Thread.currentThread().getName();
48

Write to the buffer

Increment the buffer count

Alert a waiting thread

Get the name of the thread

Method get is declared
synchronized

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SynchronizedBuf
fer.java

Lines 50 and 56

Line 68

Line 72

Line 74

49 // while no data to read, place thread in waiting state
50 while (occupiedBufferCount == 0) {
51
52 // output thread information and buffer information, then wait
53 try {
54 System.err.println(name + " tries to read.");
55 displayState("Buffer empty. " + name + " waits.");
56 wait();
57 }
58
59 // if waiting thread interrupted, print stack trace
60 catch (InterruptedException exception) {
61 exception.printStackTrace();
62 }
63
64 } // end while
65
66 // indicate that producer can store another value
67 // because consumer just retrieved buffer value
68 --occupiedBufferCount;
69
70 displayState(name + " reads " + buffer);
71
72 notify(); // tell waiting thread to become ready to execute
73
74 return buffer;

Wait while the buffer is empty

Decrement the buffer count

Alert a waiting thread

Return the buffer

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SynchronizedBuf
fer.java

75
76 } // end method get; releases lock on SynchronizedBuffer
77
78 // display current operation and buffer state
79 public void displayState(String operation)
80 {
81 StringBuffer outputLine = new StringBuffer(operation);
82 outputLine.setLength(40);
83 outputLine.append(buffer + "\t\t" + occupiedBufferCount);
84 System.err.println(outputLine);
85 System.err.println();
86 }
87
88 } // end class SynchronizedBuffer

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t2.java

Line 11

Line 19

Lines 22-23

1 // Fig. 16.10: SharedBufferTest2.java
2 // SharedBufferTest2creates producer and consumer threads.
3
4 public class SharedBufferTest2 {
5
6 public static void main(String [] args)
7 {
8 // create shared object used by threads; we use a SynchronizedBuffer
9 // reference rather than a Buffer reference so we can invoke
10 // SynchronizedBuffer method displayState from main
11 SynchronizedBuffer sharedLocation = new SynchronizedBuffer();
12
13 // Display column heads for output
14 StringBuffer columnHeads = new StringBuffer("Operation");
15 columnHeads.setLength(40);
16 columnHeads.append("Buffer\t\tOccupied Count");
17 System.err.println(columnHeads);
18 System.err.println();
19 sharedLocation.displayState("Initial State");
20
21 // create producer and consumer objects
22 Producer producer = new Producer(sharedLocation);
23 Consumer consumer = new Consumer(sharedLocation);
24

Create a Buffer object

Output initial state

Create a Producer and
a Consumer

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t2.java

Lines 25-26

25 producer.start(); // start producer thread
26 consumer.start(); // start consumer thread
27
28 } // end main
29
30 } // end class SharedBufferTest2

Operation Buffer Occupied Count

Initial State -1 0

Consumer tries to read.

Buffer empty. Consumer waits. -1 0

Producer writes 1 1 1

Consumer reads 1 1 0

Consumer tries to read.
Buffer empty. Consumer waits. 1 0

Producer writes 2 2 1

Consumer reads 2 2 0

Producer writes 3 3 1

Start the Producer and
Consumer threads

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t2.java

Consumer reads 3 3 0

Consumer tries to read.
Buffer empty. Consumer waits. 3 0

Producer writes 4 4 1

Consumer reads 4 4 0
Producer done producing.
Terminating Producer.

Consumer read values totaling: 10.
Terminating Consumer.

Operation Buffer Occupied Count

Initial State -1 0

Consumer tries to read.
Buffer empty. Consumer waits. -1 0

Producer writes 1 1 1

Consumer reads 1 1 0

Producer writes 2 2 1

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t2.java

Producer tries to write.
Buffer full. Producer waits. 2 1

Consumer reads 2 2 0

Producer writes 3 3 1

Consumer reads 3 3 0

Producer writes 4 4 1

Producer done producing.
Terminating Producer.
Consumer reads 4 4 0

Consumer read values totaling: 10.
Terminating Consumer.

Operation Buffer Occupied Count

Initial State -1 0

Producer writes 1 1 1

Consumer reads 1 1 0

Producer writes 2 2 1

 2003 Prentice Hall, Inc.
All rights reserved.

Outline

SharedBufferTes
t2.java

Consumer reads 2 2 0

Producer writes 3 3 1

Consumer reads 3 3 0

Producer writes 4 4 1

Producer done producing.
Terminating Producer.
Consumer reads 4 4 0

Consumer read values totaling: 10.
Terminating Consumer.

