16.6 Producer/Consumer Relationship
without Synchronization

Buffer

— Shared memory region

Producer thread

— Generates data to add to buffer

— Callswait if consumer has not read previous message in
buffer

— Writes to empty buffer and calls noti fy for consumer

Consumer thread
— Reads data from buffer
— Calswalrnt if buffer empty

« Synchronize threads to avoid corrupted data

O 2003 Prentice Hall, Inc. All rights reserved. - -
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// Fig. 16.4: Buffer.java
// Buffer interface specifies methods called by Producer and Consumer.

public interface Buffer {
public void set( int value ); // place value into Buffer
public int get(); // return value from Buffer

}

A Outline

\%

Buffer.java

O 2003 Prentice Hall, Inc.
All rights reserved.
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// Fig. 16.5: Producer.java
// Producer®s run method controls a thread that
// stores values from 1 to 4 in sharedLocation.

A
\%

Producer extends a

Outline

public class Producer extends Thread {

Thread

private Buffer sharedLocation; ference to shared object
Line5
// constructor Thisisashared object

public Producer( Buffer shared )
{

super( "Producer );
sharedLocation = shared;

}

// store values from 1 to 4 in sharedLocation

|== B N\ J

Line 16

Lines 22-23

public void run()

{

for ( int count = 1; count <= 4; count++ ) {

// sleep O to 3 seconds, then place value in Buffer

try {
Thread.sleep( ( int ) ( Math.random() * 3001 ) );

Method run isoverridden

sharedLocation.set( count );

}

The thread goes to sleep,
then the buffer is set

O 2003 Prentice Hall, Inc.
All rights reserved.




26
27
28
29
30
31
32
33
34
35
36
S
38

// if sleeping thread interrupted, print stack trace
catch ( InterruptediException exception ) {
exception.printStackTrace();

}

} // end for

System.err._printIn( getName() + " done producing.” +
"\nTerminating " + getName() + ".");

} 7/ end method run

} // end class Producer

A

Outline

\%

Producer. java

O 2003 Prentice Hall, Inc.
All rights reserved.
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// Fig. 16.6: Consumer.java
// Consumer®s run method controls a thread that loops four
// times and reads a value from sharedLocation each time.

A
\%

Consumer extends a

Outline

public class Consumer extends Thread {

Thread

private Buffer sharedLocation; ference to shared object
Line5
// constructor Thisisashared object

public Consumer( Buffer shared )

{

super ( ‘Consumer™ );
sharedLocation = shared;

}

// read sharedLocation®s value four times and sum the values

|== B N\ J

Line 16

Lines 24-25

public void run()

{

int sum = 0;
for ( Int count = 1; count <= 4; count++ ) {
// sleep 0 to 3 seconds, read value from Buffer and add to sum

try {
Thread.sleep( ( int ) ( Math.random() * 3001 ) );

Method run isoverridden

sum += sharedLocation.get();

The thread goes to sleep,
then the buffer is read

O 2003 Prentice Hall, Inc.
All rights reserved.
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// if sleeping thread interrupted, print stack trace
catch ( InterruptediException exception ) {
exception.printStackTrace();
¥
be

System.err.printIn( getName() + " read values totaling: ™

"_\nTerminating " + getName() + ".'");
} 7/ end method run

} /7 end class Consumer

+ sum +

A

Outline

\%

Consumer. java

O 2003 Prentice Hall, Inc.
All rights reserved.
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// Fig. 16.7: UnsynchronizedBuffer .java
// UnsynchronizedBuffer represents a single shared integer.

A

Outline

\V

public class UnsynchronizedBuffer implements Buffer {
private int buffer = -1; red by producer and consumer thr

This class implements the
Buffer interface

ni1zedB

UrF rTCT - OV

a

// place value into buffer
public void set( int value )

The datais a single integer

{

System.err.printIn( Thread.currentThread() -getName
“writes " + value );

This method sets the
value in the buffer

buffer = value;

}

// return value from buffer
public Int get(
{

System.err._printIn( Thread.currentThrea
" reads " + buffer );

return buffer;

}

} 7/ end class UnsynchronizedBuffer

Lines 8 and 13

Lines 17 and 22

This method reads the
value in the buffer

O 2003 Prentice Hall, Inc.
All rights reserved.
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// Fig. 16.8: SharedBufferTest. java
// SharedBufferTest creates producer and consumer threads.

public class SharedBufferTest {

public static void main( String [] args )

{

// create shared object used by threads

Buffer sharedLocation = new UnsynchronizedBuffer();

// create producer and consumer objects
Producer producer = new Producer( sharedLocation );

Consumer consumer = new Consumer( sharedLocation );

producer.start(); // start producer thread
consumer.start(); // start consumer

} 7/ end main

} 7/ end class SharedCell

A Outline
Vv
SharedBufferTes
t.java
| ineO

Create aBuffer object
Lines12-13

Create aProducer and

aConsumer

Start the Producer and
Consumer threads

O 2003 Prentice Hall, Inc.
All rights reserved.



Consumer
Producer
Consumer
Consumer
Consumer
Consumer

reads -1
writes 1
reads 1
reads 1
reads 1
read values totaling: 2.

Terminating Consumer.

Producer
Producer
Producer
Producer

writes 2
writes 3
writes 4
done producing.

Terminating Producer.

Producer
Producer
Consumer
Producer
Consumer
Producer
Producer

writes 1
writes 2

reads 2

writes 3

reads 3

writes 4

done producing.

Terminating Producer.

Consumer
Consumer

Consumer read values totaling: 13.

reads 4
reads 4

Terminating Consumer .

A

Qutline

\%

SharedBufferTes

t.java

O 2003 Prentice Hall, Inc.

All rights reserved.



A Outline
Producer writes 1 V
Consumer reads 1
Producer writes 2 SharedBufferTes
Consumer reads 2 t.java
Producer writes 3 -
Consumer reads 3
Producer writes 4

Producer done producing.
Terminating Producer.

Consumer reads 4

Consumer read values totaling: 10.
Terminating Consumer .

O 2003 Prentice Hall, Inc.
All rights reserved.



16.7 Producer/Consumer Relationship with
Synchronization

« Synchronize threads to ensure correct data

O 2003 Prentice Hall, Inc. All rights reserved. - -
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// Fig. 16.9: SynchronizedBuffer.java
// SynchronizedBuffer synchronizes access to a single shared ant

This class implements the
Buffer interface

ine

public class SynchronizedBuffer implements Buffer {

SvnchronizedBuf

private int buffer = -1; // shared by producer and consumer t

private int occupiedBufferCount = 0; 77 Tount of occupied buf]

Remember the number of
filled spaces

// place value into buffer
public synchronized void set( int value )

{

Method set is declared
synchronized

=TT io U

// for output purposes, get name of thread that called thismethad

String name = Thread.currentThread() .getName();

Get the name of the thread

ITTC J

// while there are no empty locations, place thread in waiting state

while ( occupiedBufferCount == 1 ) {

Line 12

// output thread information and buffer iInforma

Wait while the buffer isfilled

try {
System.err._printIn( name + " O write.” );
displayState( “ r full. " + pname + " waits." );
wait(Q);

¥

// it waiting thread interrupted, print stack trace
catch ( InterruptedException exception ) {
exception.printStackTrace();

}

O 2003 Prentice Hall, Inc.
All rights reserved.
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} 7/ end while

A
\%

Outline

buffer = value; 4L set new buffer value |

Write to the buffer hronizedBuf

// indicate producer cannot store another value
// until consumer retrieves current buffer value

fer.java

++occupiedBufferCount;

I ncrement the buffer count

displayState( name + ™ writes " + buffer );

Line 35

notify() ; A/—teH waitingthread toenter ready Sstate————

Alert awaiting thread

} 7/ end method set; releases lock on SynchronizedBuffer

LITTO UV

Line44

// return value from buffer
public synchronized int get()

{

Method get is declared
synchronized

mathnd

// for output purposes, get name of thread that called thi

String name = Thread.currentThread() .getName();

Get the name of the thread

O 2003 Prentice Hall, Inc.
All rights reserved.
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// while no data to read, place thread in waiting state
while ( occupiedBufferCount == 0 ) {

A
\%

Outline

// output thread information and buffer informa
try {

dBuf

Wait while the buffer is empty

System.err.println( name + **
displayState( "B mpty. **
wait(Q);

tri read." );
+ name + " waits.” );

}

// it waiting thread interrupted, print stack trace
catch ( InterruptedException exception ) {
exception.printStackTrace();

}

} 7/ end while

// indicate that producer can store another value

J_W'_Ul.—

Lines 50 and 56

Line 68

Line72

Line 74

// because consumer just retrieved buffer value
—--occupiedBufferCount;

Decrement the buffer count

displayState( name + " reads " + buffer );

notify() ; 7/teH—watting—thread—tobecomeready—to—execut

Alert awaiting thread

return buffer;

Return the buffer

O 2003 Prentice Hall, Inc.
All rights reserved.
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} 7/ end method get; releases lock on SynchronizedBuffer

// display current operation and buffer state

public void displayState( String operation )

{
StringBuffer outputLine = new StringBuffer( operation );
outputLine.setLength( 40 );
outputLine.append( buffer + ""\t\t" + occupiedBufferCount );
System.err.printin( outputLine );
System.err.printin();

}

88 } // end class SynchronizedBuffer

A

Outline

\%

SynchronizedBuf
fer.java

O 2003 Prentice Hall, Inc.
All rights reserved.
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// Fig. 16.10: SharedBufferTest2.java A Outline
// SharedBufferTest2creates producer and consumer threads. v
public class SharedBufferTest2 { SharedBufferTes
public static void main( String [] args ) t2-Java
{ Create aBuffer object
// create shared object used by threads; we use a SynchronizedBuffer Line 11
// reference rather than a Buffer reference so we can invoke
// SynchronizedBuffer method displayState from main Line 19
SynchronizedBuffer sharedLocation = new SynchronizedBuffer();
Lines 22-23

// Display column heads for output
StringBuffer columnHeads = new StringBuffer( "“Operation™ );
columnHeads .setLength( 40 );

columnHeads -append( “"Buffer\t\tOccupied Count™ );
System.err.printIn( columnHeads );
System.err.printin();
sharedLocation.displayState( “Initial State™ );

// create producer and consumer objects
Producer producer = new Producer( sharedLocation );

Output initial state

Create aProducer and

Consumer consumer = new Consumer( sharedLocation );

aConsumer

O 2003 Prentice Hall, Inc.
All rights reserved.



26 consumer.start();—_77‘§tart—c0ﬁsumeF—thnead_____________________

25 producer.start();
27

28 } 7/ end main

29

// start producer thread

30 } // end class SharedBufferTest2

Operation

Initial State

Consumer tries to read.

Buffer empty. Consumer waits.

Producer writes 1

Consumer reads 1

Consumer tries to read.

Buffer empty. Consumer wailts.

Producer writes 2

Consumer reads 2

Producer writes 3

Buffer

Occupied Count

A Nuitlinao

Start the Producer and

Consumer threads

SharedBuTrerles
t2.java

Lines 25-26

O 2003 Prentice Hall, Inc.
All rights reserved.



Consumer reads 3

Consumer tries to read.
Buffer empty. Consumer wailts.

Producer writes 4
Consumer reads 4

Producer done producing.
Terminating Producer.

Consumer read values totaling: 10.

Terminating Consumer.

Operation
Initial State

Consumer tries to read.
Buffer empty. Consumer waits.

Producer writes 1

Consumer reads 1

Producer writes 2

Buffer

Occupied Count

0

A Outline

\%

SharedBufferTes
t2.java

O 2003 Prentice Hall, Inc.
All rights reserved.



Producer tries to write. A Outline
Buffer full. Producer waits. 2 1 v

Consumer reads 2 2 0 SharedBufferTes
Producer writes 3 3 1 €2 'java

Consumer reads 3 3 0

Producer writes 4 4 1

Producer done producing.
Terminating Producer.
Consumer reads 4 4 0

Consumer read values totaling: 10.
Terminating Consumer.

Operation Buffer Occupied Count
Initial State -1 0
Producer writes 1 1 1
Consumer reads 1 1 0
Producer writes 2 2 1

O 2003 Prentice Hall, Inc.
All rights reserved.



Consumer reads 2 2 0 A Outline
Producer writes 3 3 1 v
SharedBufferTes
Consumer reads 3 3 0 -
t2.java
Producer writes 4 4 1

Producer done producing.
Terminating Producer.
Consumer reads 4 4 0

Consumer read values totaling: 10.
Terminating Consumer.
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All rights reserved.



