
Computer, Network,
and Java Security

Introduction

l Need for Computer/Internet security

¡ Consumers buying products, trading stocks, and banking online

¡ Credit-card, social security, and confidential business information exchanged

¡ Security attacks

l Data theft and hacker attacks

l Wireless transmissions easier to intercept

l Security fundamentals

¡ Privacy: no third party

¡ Integrity: information unaltered

¡ Authentication: proving identities

¡ Non-repudiation: legal proof of message received

¡ Availability: Network stays in operation continuously

Computer Security: General Rules

l Limits of computer security

¡ Absolute computer security is not feasible

¡ Given unlimited resources any form of security can be broken

¡ Objective: cost for breaking a system must far outweigh rewards

l End-to-end security

¡ In multitier systems, each tier must have its own security

¡ Security is as strong as the weakest link

l Complex vs. Simple systems

¡ Complex systems: high cost of design and implementation

¡ Simple systems: Easier understood, better analyzed

l Always required

¡ Security must be an integral part of a system design

Types of Threats

l Secrecy Attacks

¡Attempts to steal confidential information

l Integrity Attacks

¡Attempts to alter information with malicious intent

l Availability Attacks

¡Attempts to disrupt a system’s normal operation

Example of Attacks

l Brute force

¡ Involves searching every key until the right one unlocks the system

l Trojan Horse

¡ Involves planting an enemy program as an insider in such a way that it

is not apparently noticeable

l Person-in-the middle attack

¡ Attacker intercepts the communication between two parties without their

knowledge

Protections

l Network related:

¡ Firewalls

¡ Virtual Private Networks

l Cryptography

¡ Design of algorithms for encrypting and decrypting information

l Plaintext: unencrypted data

l Ciphertext: encrypted data

l Key: used by sender and receiver to encrypt and decrypt message

¡ Provides confidentiality (only the intended recipient can make

sense of the message)

Protections (cont’d)

l Authentication

¡ Confirms user’s identity (e.g. passwords, smart cards,

biometrics, etc.)

l Authorization

¡ After authentication, access to the user is governed by an

access control policy

l Auditing and logs

¡ Keeping a record of resource access that were granted or

denied can serve in preventing or analyzing a break-in

Security Layered Architecture

PHY

Link Layer

Network

Transport

Application

Securing cabling, avoiding
Interference, Spread Spectrum

WEP, PPP LCP

IPSEC, firewalls, VPN

SSL/TLS

Encryption, Authentication,
Authorization

Java Encryption, Authentication,
Authorization, JVM security

Cryptanalysis

l Even if keys are secret, it is possible to compromise the

security of a system

l Cryptanalysis: trying to decrypt ciphertext without

knowledge of the decryption key

¡Cryptanalytic attacks

l Attacks can be reduced if proper key management

structures are in place and keys use expiration dates

General Security Considerations

l Know your enemy

l Identify assumptions and weaknesses

l Control secrets

l Remember human factors

l Limit the scope of access

l Understand your environment

l Remember physical security

l Make security pervasive

Java Security Extensions

l If you are using JDK 1.3.x, download

¡ JCE 1.2.2

¡ JAAS 1.0 class libraries

¡ JSSE 1.0.3

l Copy *.jar to C:\jdk1.3.1\jre\lib\ext

l Insert the follow two lines to C:\jdk1.3.1\jre\lib\security\java.security

after the line security.provider.2=…

security.provider.3=com.sun.crypto.provider.SunJCE

security.provider.4=com.sun.net.ssl.internal.ssl.Provider

Cryptography Algorithms

l Based on the secrecy of the algorithm (Ancient Ciphers mostly):

¡ Substitution ciphers: given letter replaced by different letter. Example:

Rot13, rotates a character in the message by 13 positions

¡ Transposition ciphers: letter ordering shifted

l Based on the secrecy of the key (Modern Algorithms):

¡ One-way hash functions

¡ Symmetric ciphers

¡ Asymmetric ciphers

1. One-way hash functions

l Given input message M of any length, compute h = H(M) to produce a hash value h of

length m

l Properties:

¡ Given M, it is easy to compute h

¡ Given h, it is hard to compute M such that H(M)=h

¡ Given M, it is hard to find a message M’, such that H(M)=H(M’)

l Useful to produce fingerprints

¡ RSA’s MD4, MD5 (RFC 1321, 1992)

l MD=Message Digest

l RSA=Ron Rivest, Adi Shamir, and Leonard Adlemaen

l Produce a 128-bit hash

¡ NIST and NSA’s SHA, SHA-1 (1994)

l SHA=Secure hashing algorithm

l Produces a 160-bit hash used in the Digital Signature Algorithm (DSA)

Example: MD5

a4c3b4cd38ade6b5e2e101d879a966f5a quick brown dog jumped over a lazy
fox

32c63351ac1c7070ab0f7d5e017dbceaa quick blue fox jumped over a lazy dog

13b5eeb338c2318b790f2ebccb91756fa quick brown fox jumped over a lazy
dog

Hash value (in hexadecimal)Original Message

MD5/SHA in Java
import java.security.*;
import java.io.*;

public class md5 {

public static void main(String args[]) {

if (args.length != 1) {
System.out.println("Usage: java md5 <your text>");
System.exit(1);

}
try {

// Create an output file "digest"
FileOutputStream digestStream = new FileOutputStream("digest");
// Use the MD5 algorithm. SHA will work as well
MessageDigest md=MessageDigest.getInstance("MD5");
byte buf[] = args[0].getBytes();
// Update the data and digest it
md.update(buf);
digestStream.write(md.digest());

} catch (Exception e) {
System.out.println(e);

}
}

}

2. Symmetric Ciphers

l A symmetric cipher in conjunction with a secret key translates

plaintext to ciphertext (Secret-key cryptography)

l Cipher can also recover plaintext from ciphertext using the same key

l Both encryption and decryption use the same key

l Formally

¡ Ek(M) = C, where M is the plaintext, C is the ciphertext and k is the

key

¡ Dk(C) = M, where C, M and k have the same meaning

l The essential property: Dk(Ek(M)) = M

Symmetric Ciphers (cont’d)

l Disadvantages

¡ Need secure method to transfer key

¡ No authentication because same key used on both ends

¡ Sender needs separate secret key for each receiver

l Key distribution center (KDC)

¡ Shares secret key with users in network

¡ Encrypts session key with secret keys to sender and receiver

¡ Session key used for transaction

¡ New keys and less couriers for transactions, but security depends on

security on KDC

Symmetric Ciphers (cont’d)

Encrypting and decrypting a message using a symmetric secret key

Symmetric Ciphers and KDC

Distributing a session key with a key distribution center

Symmetric Ciphers (cont’d)

l Types of symmetric ciphers:

¡ Block ciphers operate on a group of bits. The same plaintext

block will encrypt to the same ciphertext block when using the

same key.

¡ Stream ciphers operate on the stream of bits or bytes. They

produce always different ciphertext.

l Most block algorithms obey the Feistel Network property

(algorithms for encryption/decryption are the same)

Implementations

l Data Encryption Standard (DES)

¡ Uses block cipher: Creates bit groups from message and applies

algorithm to whole block

¡ DES standard set by American National Standards Institute (ANSI) for

years, no loner considered secure

l Triple DES (3DES) replaced DES

¡ Three DES systems in row with unique secret key

l Advanced Encryption Standard (AES) is new standard

¡ Nation Institute of Standards and Technology (NIST) currently

evaluating Rijndael for AES

3. Asymmetric Ciphers

l Uses public-key (distributed) and private-key (kept secret)

l Public-key decrypts private-key and vice-versa

l Computationally infeasible to deduce private-key from public-key

l Authentication

¡ If receiver’s public-key and sender’s private key are both used, both

parties are authenticated

l RSA: most common public-key algorithm

¡ Used by most Fortune 1000 and e-commerce businesses

Asymmetric Ciphers

l asymmetric ciphers involve the use of different keys for

encryption/decryption:

¡Ek1(M) = C, where k1 is the encryption key

¡Dk2(C) = M, where k2 is the decryption key

l Essential property: Dk1(Ek2(M)) = M

l k1 and k2 are mathematically related and they are

referred as the public and private keys

Asymmetric Ciphers

l Security is determined by the strength of the algorithm and the key’s length

¡ Assume there is a computer capable of trying a billion keys per second

l Key of 16 bits, 2^16 possibilities, easy to break

l Key of 128 bits, 10^22 years to try all possibilities

l Use:

¡ Public-key crypthography

l E.g. SSL

¡ Digital signatures

¡ Certificates

¡ Pretty Good Privacy (PGP), encrypts e-mails and files using “web of trust”

Public-key Cryptography (cont’d)

Encrypting and decrypting a message using public-key cryptography.

Public-key Cryptography (cont’d)

Authentication with a public-key algorithm

Key Management

Secrecy of private keys crucial to system security

l Poor key management: mishandling of private keys

l Key generation: process by which keys created

¡ Should be as random as possible

l Brute-force cracking: decrypting message using every

possible decryption key

Java Cryptography Extension (JCE)

l provides Java applications with various security facilities

l supports

¡ secret-key encryption

l 3DES

¡ public-key algorithms

l Diffie-Hellman

l RSA

l customizable levels of encryption through

¡ multiple encryption algorithms

¡ various key sizes

l architecture is provider-based

¡ developers add algorithms by adding providers’ algorithms

Encipher (1/2)
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import java.security.*;
import java.security.spec.*;
import com.sun.crypto.provider.SunJCE;
import javax.swing.*;
import javax.crypto.*;
import javax.crypto.spec.*;

public class Encipher {

private static final byte[] salt = {
(byte)0xf5, (byte)0x33, (byte)0x01, (byte)0x2a,
(byte)0xb2, (byte)0xcc, (byte)0xe4, (byte)0x7f

};
private int iterationCount = 100; // iteration count
String password = "abc123";

public Encipher() {

Security.addProvider(new SunJCE());

String line=null;
StringBuffer buffer= new StringBuffer();
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
while(true) {

try { line = in.readLine(); }
catch(Exception e){}
if(line.equals("")) break;
buffer.append(line + "\n");

}
String originalText = buffer.toString();

Encipher (2/2)
Cipher cipher = null;

try {
PBEKeySpec keySpec = new PBEKeySpec(password.toCharArray());
SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("PBEWithMD5AndDES");
SecretKey secretKey = keyFactory.generateSecret(keySpec);
PBEParameterSpec parameterSpec = new PBEParameterSpec(salt, iterationCount);
cipher = Cipher.getInstance("PBEWithMD5AndDES");
cipher.init(Cipher.ENCRYPT_MODE, secretKey, parameterSpec);

}
catch (Exception e) {}

byte[] outputArray = null;
try {

outputArray = originalText.getBytes("ISO-8859-1");
}
catch (Exception e) {}

CipherOutputStream out = new CipherOutputStream(System.out, cipher);
try {

out.write(outputArray);
out.flush();
out.close();

}
catch (Exception e) {}

}

public static void main(String[] args)
{

Encipher crypto = new Encipher();
}

}

Decipher (1/2)
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import java.security.*;
import java.security.spec.*;
import com.sun.crypto.provider.SunJCE;
import javax.swing.*;
import javax.crypto.*;
import javax.crypto.spec.*;

public class Decipher {

private static final byte[] salt = {
(byte)0xf5, (byte)0x33, (byte)0x01, (byte)0x2a,
(byte)0xb2, (byte)0xcc, (byte)0xe4, (byte)0x7f

};
private int iterationCount = 100; // iteration count
String password = "abc123";

public Decipher() {

Security.addProvider(new SunJCE());
Vector fileBytes = new Vector();
Cipher cipher = null;
try {

PBEKeySpec keySpec = new PBEKeySpec(password.toCharArray());
SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("PBEWithMD5AndDES");
SecretKey secretKey = keyFactory.generateSecret(keySpec);
PBEParameterSpec parameterSpec = new PBEParameterSpec(salt, iterationCount);
cipher = Cipher.getInstance("PBEWithMD5AndDES");
cipher.init(Cipher.DECRYPT_MODE, secretKey,

parameterSpec);
}
catch (Exception e) {}

Decipher (2/2)

try{
CipherInputStream in = new CipherInputStream(System.in, cipher);
byte contents = (byte) in.read();
while (contents != -1) {

fileBytes.add(new Byte(contents));
contents = (byte) in.read();

}
in.close();

}
catch (Exception e) {}

byte[] decryptedText = new byte[fileBytes.size()];

for (int i = 0; i < fileBytes.size(); i++)
decryptedText[i] = ((Byte)fileBytes.elementAt(i)).byteValue();

System.out.println(new String(decryptedText));
}

public static void main(String[] args)
{

Decipher crypto = new Decipher();
}

}

Run the example

l The secret key was predefined in Encipher.java and Decipher.java

l Create a plain text file “plaintext.txt” with the source data

l To encode:

cat plaintext.txt | java Encipher > ciphertext.txt

l ciphertxt.txt now contains the encoded text

l To decode:

cat ciphertext.txt | java Encipher

Key Agreement Protocols

l Public-key algorithms not efficient for large amounts of

data

¡ Large computing power requirements slow communication

l Key Agreement Protocol

¡Two parties exchange keys over unsecure medium

¡Digital envelope: symmetric secret key encrypted using

public-key encryption

Digital Envelope

Digital Signatures

l Provide proof of authenticity of the sender and integrity of the message

l The sender cannot deny that he/she signed a document (non-repudiation)

l Rely on public-key cryptography

l The basic digital signature protocol is:

¡ The sender encrypts the document with his/her private key, implicitly signing

the document

¡ The message is sent

¡ The receiver decrypts the document with the sender's public key, thereby

verifying the signature

Digital Signatures (cont’d)

l To reduce processing time, often only a hash of the message is signed:

Digital Signatures (cont’d)

l Encryption can be included to guarantee confidentiality:

Public Key Infrastructure (PKI)

l Integrates public-key cryptography with digital certificates and

certification authorities (CA’s)

¡ Digital certificate: identifies user, issued by certification authority (such

as VeriSign)

¡ Digital certificates stored in certificate repositories

l Certificate authority hierarchy

¡ Root certification authority, the Internet Policy Registration Authority

(IPRA), signs certificates for policy creation authorities who set policies

for obtaining digital certificates

¡ Policy creation authorities sign for CA’s who sign for individuals and

organizations

¡ Signings use public-key cryptography

l Changing keys necessary for maintaining security

¡ Digital certificates have expiration dates

¡ Canceled and revoked certificates placed on certificate

revocation list (CRL)

l Ensuring authenticity

¡ Check certificate with CRL (inconvenient)

¡Online Certificate Status Protocol (OCSP) validates certificates

in real-time

l PKI and digital certificate transactions are more secure than phone

line, mail or even credit-card transactions

PKI, Certificates and CA (cont’d)

Certificates

l Issued by a CA

l Digitally signed by the CA

l Implicit assumption: CA’s signature is widely available and trusted

l Use X.509 format

X.509 Format

lVersion and Serial Number
lSubject Name and afiliation
l Issuer Name
lSignature Algorithm
lPeriod of Validity

Certificate

A portion of the VeriSign digital certificate. (Courtesy of VeriSign, Inc.)

A Certificate Authority

Java Security Architecture

Java Security

l Java code can originate and run anywhere in the

network

l Java has been designed to run code securely via

enforcement of security policies during execution

Evolution of Java Security

l JDK 1.0: The sandbox

¡The sandbox model

confines Java applets to

a defined arena where

they cannot affect

system resources

¡Applications enjoy

unlimited access to all

resources

Evolution of Java Security

l JDK 1.1: all or nothing

¡ Introduced signed applets

which enjoyed unlimited

access to all resources

just like local applications

¡No selective access

Evolution of Java Security

l JDK 2: fine-grained

security

¡Flexible policy for applets

and applications

¡ Introduces the concept of

ProtectionDomain

Java 2 Security Architecture

1. Byte-code verifier

l It screens the code to be sure that it was produced by a trustworthy

compiler:

¡ the format of the class file, the right length, the correct magic

numbers, no operand stack overflows and underflows, and so on.

¡ confirms or denies that the class file is consistent with the

specifications

l Its behavior may be altered with command line options on the

interpreter, when applicable.

2. ClassLoader

l The ClassLoader loads Java byte codes into the JVM

l Works in conjunction with the SecurityManager and the access

controller to enforce security rules

l Information about the URL from which the code originated and the

code's signers is initially available to the ClassLoader

3. CodeSource

l The object java.security.CodeSource fully describes a piece of code:

¡ code's origin (URL)

¡ digital certificates containing public keys corresponding to private keys

used to sign the code.

l Many access-control decisions are based in part on this property

4. Protection domains

l It is more flexible to group classes into protection domains and

associate permissions with those domains (Rather than to associate

permissions to individual classes)

l This relationship between the class and the permissions via the

protection domain provides for flexible implementation mechanisms.

5. Policy

l The numerous mappings of permissions to classes are collectively

referred to as policy

l A policy file is used to configure the policy for a particular

implementation

l It can be composed by a simple text editor or using policytool (GUI)

6. Permissions

l Permission classes represent access to various system resources

such as files, sockets, and so on

l For example, permission may be given to read and write files in the

/tmp directory

l Permission classes are additive. They represent approvals, but not

denials

l A number of permission classes are subclasses of the abstract

java.security.Permission class, examples of which include

FilePermission, AWTPermission, and even customized protections

like SendMailPermission

7. SecurityManager

l The class java.lang.SecurityManager is at the focal point of

authorization

l SecurityManager consists of a number of check methods. For

example:

¡ checkRead (String file) can determine read access to a file.

¡ checkPermission(Permission perm, Object context) method can check to

see if the requested access has the given permission based on the policy.

l The access controller will raise an exception if the requested

permission cannot be granted.

8. AccessController

l The java.security.AccessController class is used for three purposes:

¡ To decide whether access to a critical system resource should be

allowed or denied, based on the security policy currently in effect

¡ To mark code as privileged, thus affecting subsequent access

determinations

¡ To obtain a snapshot of the current calling context, so access-control

decisions from a different context can be made with respect to the

saved context

l While the SecurityManager can be overridden, the static methods in

AccessController are always available

9. keystore

l The keystore is a password-protected database that holds private

keys and certificates.

l A password is selected at the time of creation

l Each database entry can be guarded by its own password for extra

security

l Certificates accepted into the keystore are considered to be trusted.

Keystore information can be used and updated by the security tools

provided with the SDK

Example: Application Security

import java.io.*;
import java.util.*;

public class writeFile {
public writeFile() {

String filename="thisisthefile.txt";
File file = new File(filename);
try {

BufferedWriter output = new BufferedWriter(new FileWriter(file));
output.write("Hello there");
output.close();

}
catch (SecurityException e) {

System.err.println("writeFile: caught security exception"); }
catch (IOException e) {

System.err.println("writeFile: caught IO exception"); }
}

public static void main(String[] args) {
writeFile wf = new writeFile();

}
}

Running the Example

lThis succeeds:
java writeFile

lThis produces a security exception:
java –Djava.security.manager writeFile

Defining the policy

lCreate the file my.policy:
grant {

permission java.io.FilePermission
"<<ALL FILES>>", "write";

};

lNow run the program:
java –Djava.security.manager –

Djava.security.policy=my.policy writeFile

Example: Applet Security
import java.io.*; import java.util.*; import java.awt.*; import

java.applet.*;

public class writeFile extends Applet {
public void paint(Graphics g) {
String filename="thisisthefile.txt";
File file = new File(filename);
try {

BufferedWriter output = new BufferedWriter(new FileWriter(file));
output.write("Hello there");
output.close();
g.drawString("File " + filename + " written", 10, 10);

}
catch (SecurityException e) {

g.drawString("writeFile: caught security exception", 10, 10); }
catch (IOException e) {

g.drawString("writeFile: caught IO exception", 10, 10); }
}

public static void main(String[] args) {
Frame f = new Frame("writeFile");
writeFile wf = new writeFile();
wf.start();
f.add("Center", wf); f.setSize(300,300); f.show();
}

}

HTML

<html>
<title> Java Security Example: Writing Files</title>
<h1> Java Security Example: Writing Files </h1>
<hr>
<APPLET CODE = writeFile.class WIDTH = 500 HEIGHT

= 50 >
</APPLET>
<hr>
</html>

Running the Example

lThis produces a security exception:
appletviewer index.html

lThis succeeds:
appletviewer –J”-
Djava.security.manager=my.policy” index.html

Browsers and Security

l Default lack of trust in downloaded code

¡ Addressed by the sandbox model

l Limited access to command-line options within the browser

¡ No simple way to deploy and use customized policy files

l Inadequate support for some security features in the JVMs bundled

with browsers

¡ Solved by using a java plug-in

SDK Security Tools

lKeytool
¡Manages keystores and certificates

lJarsigner
¡Generates and verifies JAR signatures

lPolicytool
¡Manages policy files via a GUI-based tool

keytool

l Create/Manage public/private key pairs

l Issue certificate requests (sent to the appropriate Certification

Authority)

l Import certificate replies (obtained from the Certification Authority

you contacted)

l Designate public keys belonging to other parties as trusted

keytool

l Keystore

¡ repository for storing public and private keys

¡ modifying stored keys requires use of password

¡ default keystore located in home/user/.keystore

l command line arguments
-genkey

produces private and public key pair

-export

export a certificate

-import

import certificate from trusted source

-list

list all contents of keystore

-alias <alias_name>

identify public and private pair for later use

keytool

l keytool-generated certificates identified through

¡commonName (CN)

¡organizationUnit (OU)

¡organizationName (O)

¡localityName (L)

¡stateName (S)

¡country (C)

keytool

l To generate a public and private key pair

keytool –genkey –alias MyCertificate

l Obtain digital certificate from certificate authority

keytool –certreq –alias MyCertificate –file

myRequest.cer

l Submit certificate file to authority

¡ follow authority’s steps on Web site

l To generate certificate other users may use

keytool –export –alias MyCertificate –file

myCertificate.cer

Digital Signatures for Java Code

l Java Plug-in supports RSA-signed applets
l Steps
¡ generate RSA keypair

keytool –genkey –keyalg RSA –alias MyCertificate

¡ export digital signature to file
keytool –export –alias MyCertificate –file myCertificate.cer

¡ add to keystore
keytool –import –alias MyTrustedCertificate –keystore cacerts

–file myCertificate.cer
• cacerts is complete path to keystore

¡ sign applet’s JAR file with digital signature
jarsigner FileTreeApplet.jar MyCertificate

¡ enable Java Plug-in instead of Web browser’s JVM
htmlconverter signedApplet.html

Example

l See LectureSet6/applet_signature
l Server side:
¡ keytool -genkey -alias alias -keystore
server.ks -storepass storepass -keypass keypass

¡ keytool -selfcert -alias alias -keystore
server.ks -storepass storepass -keypass keypass

¡ keytool -export -file client.cer -alias alias
-keystore server.ks -storepass storepass -
keypass keypass

¡ keytool -list -keystore server.ks -
storepass storepass -keypass keypass

¡ jarsigner -keystore server.ks -storepass
storepass -keypass keypass WriteFile.jar rlent

Example: Client side

lUsing appletviewer:
¡keytool -printcert -file client.cer
¡keytool -import -file client.cer
-keystore client.ks -storepass
storepass -keypass keypass
¡appletviewer -J-
Djava.security.policy=client.policy
index.html

lUsing a browser
¡Install Java plug-in !

Authentication

l Current authentication models

¡ restrict access to certain aspects of a program

¡ allow users to connect to a network

¡ regulate resources available to users on network

l Java Authentication and Authorization Service (JAAS)

¡ based on plug-in framework

¡ allows Kerberos and single sign-on implementations

Kerberos

l Employs secret key cryptography
l Authentication handled by
¡ Kerberos system

l authenticates client’s identity

¡ secondary Ticket Granting Service (TGS)
l similar to key distribution centers
l authenticates client’s rights to access services

l Authentication cycle
1. client submits user name and password to Kerberos server
2. server returns Ticket-Granting Ticket (TGT)

l encrypted with client’s key

3. client decrypts TGT
4. client requests service ticket by sending decrypted TGT to TGS
5. server authorizes client with renewable service ticket

Single Sign-On

l Single sign-on allows users to log into different
servers once with single password.

l three types:
1. workstation login scripts

• login script sends password to each application
– stores password on workstation

2. authentication server scripts
• authenticate users with central server

3. tokens
• once authenticated, non-reusable token identifies user

Java Authentication and
Authorization Service (JAAS)
l Protects applications from unauthorized users.

l Based on Pluggable Authentication Module (PAM)

¡ supports multiple authentication systems

¡ different authentication systems may be combined

l Can control access by

¡ user

l governs access to resources on user policies

¡ group

l associates user to group, bases policies on group privileges

¡ role-based security policies

l similar to group policies

l unlike group policies, no default policies exist

• users obtain privileges to needed applications based on intended task

JAAS (cont’d)

l Example AuthenticateNT
l To execute:

java –Djava.security.policy=java.policy
-Djava.security.auth.policy=jaas.policy
-Djava.security.auth.login.config=jaas.config
AuthenticateNT

Secure Sockets Layer (SSL)

lNonproprietary protocol
lUsed to secure communications between

computers
l Implements
¡public-key technology using RSA algorithm
¡digital certificates
lto authenticate server
lto protect private information

lDoes not require user authentication

TCP/IP and SSL Protocol Stack

SSL (cont’d)

l Process:
1. client sends message to server
2. server responds with digital certificate
3. client and server negotiate session keys

• use public key cryptography for negotiation

4. once keys established, communication proceeds
• information encrypted
• information transmitted
• information decrypted at receiving end

l Primarily secure point-to-point
connections

Java Secure Socket Extension
(JSSE)

l SSL encryption integrated into Java through Java Secure Socket

Extension (JSEE)

l Secures passage of information between two clients

l Use of SSL connections transparent to user

SSL Handshake Protocol

Example SSL Client/Server

~/LectureSet6/ssl, files:
lclient/client.java
lserver/server.java

Run the example: Server side

l Create keystore and certificate:
keytool –genkey –keystore SSLStore –alias

SSLCertificate –keypass keypass –storepass storepass
If SSLStore does not exist, this will create keystore with storepass as

password
l To check stored entries:

keytool –list –keystore SSLStore
l Execute sslServer

java –Djavax.net.ssl.keyStore=SSLStore
-Djavax.net.ssl.keyStorePassword=password sslServer

l Export Certificate
keytool –export –alias SSLCertificate –keystore

SSLStore –file mycertificate.cer

Now make file mycertificate.cer available to client

Run the example: Client side

l Get file mycertificate.cer from server
l Import Certificate

keytool –import –alias SSLCertificate –keystore
SSLStore –file mycertificate.cer

l To check the entry:
keytool –list –keystore SSLStore

l Execute sslClient
java –Djavax.net.ssl.trustStore=SSLStore

-Djavax.net.ssl.trustStorePassword=password sslClient

Example HTTPS

~/LectureSet6/https, files:
l sslWebClient.java
l Two versions of the server:
¡sslWebServer.java (security parameters externally

defined)
¡sslWebServer2.java(security parameters internally

defined)

l cert-s.sh and cert-c.sh create certificates for
server and client
l runs.sh and runc.sh execute server and client

with external parameters

