Computer, Network,
and Java Security

Introduction

Need for Computer/Internet security
Consumers buying products, trading stocks, and banking online
Credit-card, social security, and confidential business information exchanged
Security attacks
Data theft and hacker attacks
Wireless transmissions easier to intercept
Security fundamentals
Privacy: no third party
Integrity: information unaltered
Authentication: proving identities
Non-repudiation: legal proof of message received

Availability: Network stays in operation continuously

Computer Security: General Rules

Limits of computer security
Absolute computer security is not feasible
Given unlimited resources any form of security can be broken
Objective: cost for breaking a system must far outweigh rewards
End-to-end security
In multitier systems, each tier must have its own security
Security is as strong as the weakest link
Complex vs. Simple systems
Complex systems: high cost of design and implementation
Simple systems: Easier understood, better analyzed
Always required

Security must be an integral part of a system design

Types of Threats

Secrecy Attacks

Attempts to steal confidential information

Integrity Attacks

Attempts to alter information with malicious intent

Availability Attacks

Attempts to disrupt a system’s normal operation

Example of Attacks

Brute force

Involves searching every key until the right one unlocks the system

Trojan Horse

Involves planting an enemy program as an insider in such a way that it

IS not apparently noticeable

Person-in-the middle attack

Attacker intercepts the communication between two parties without their

knowledge

Protections

Network related:

Firewalls
Virtual Private Networks
Cryptography
Design of algorithms for encrypting and decrypting information
Plaintext: unencrypted data

Ciphertext: encrypted data

Key: used by sender and receiver to encrypt and decrypt message

Provides confidentiality (only the intended recipient can make

sense of the message)

Protections (cont’d)

Authentication

Confirms user’s identity (e.g. passwords, smart cards,

biometrics, etc.)

Authorization

After authentication, access to the user is governed by an

access control policy

Auditing and logs

Keeping a record of resource access that were granted or

denied can serve in preventing or analyzing a break-in

Security Layered Architecture

Java Encryption, Authentication,
Authorization, JVM security
Application < Encryption, Authentication,
__ Authorization
Transport — SSL/TLS
Network — IPSEC, firewalls, VPN
Link Layer _ WEP, PPP LCP
PHY < Securing cabling, avoiding
__Interference, Spread Spectrum

Cryptanalysis

Even if keys are secret, it is possible to compromise the
security of a system

Cryptanalysis: trying to decrypt ciphertext without
knowledge of the decryption key

Cryptanalytic attacks

Attacks can be reduced if proper key management

structures are in place and keys use expiration dates

General Security Considerations

Know your enemy

|dentify assumptions and weaknesses
Control secrets

Remember human factors

Limit the scope of access

Understand your environment
Remember physical security

Make security pervasive

Java Security Extensions

If you are using JDK 1.3.x, download
JCE 1.2.2
JAAS 1.0 class libraries
JSSE 1.0.3

Copy *.jar to C:\jdk1.3.1\jre\lib\ext

Insert the follow two lines to C:\jdk1.3.1\jre\lib\security\java.security

after the line security. provider. 2=...
security. provider.3=com sun. crypto. provider. SunJCE

security. provider.4=com sun. net.ssl.internal.ssl.Provider

Cryptography Algorithms

Based on the secrecy of the algorithm (Ancient Ciphers mostly):

Substitution ciphers: given letter replaced by different letter. Example:

Rot13, rotates a character in the message by 13 positions

Transposition ciphers: letter ordering shifted

Based on the secrecy of the key (Modern Algorithms):

One-way hash functions
Symmetric ciphers

Asymmetric ciphers

1. One-way hash functions

Given input message M of any length, compute h = H(M) to produce a hash value h of

length m

Properties:
Given M, it is easy to compute h
Given h, it is hard to compute M such that H(M)=h
Given M, it is hard to find a message M’, such that H(M)=H(M’)

Useful to produce fingerprints

RSA’s MD4, MD5 (RFC 1321, 1992)
MD=Message Digest
RSA=Ron Rivest, Adi Shamir, and Leonard Adlemaen
Produce a 128-bit hash

NIST and NSA’'s SHA, SHA-1 (1994)

SHA=Secure hashing algorithm
Produces a 160-bit hash used in the Digital Signature Algorithm (DSA)

Example: MD5

Original Message Hash value (in hexadecimal)

a quick brown fox jumped over a lazy 13b5eeb338c2318b790f2ebcchb91756f
dog

a quick blue fox jumped over a lazy dog | 32c63351aclc7070ab0f7d5e017dbcea

a quick brown dog jumped over a lazy a4c3b4cd38adebb5e2e101d879a966f5
fox

MD5/SHA In Java

I mport java.security.?*;
I mport java.io.*;

public class nd5 {
public static void main(String args[]) {

if (args.length !'= 1) { _
Systemout. println("Usage: java nmd5 <your text>");
Systemexit(1);

}
try {

/] Create an output file ' dlgest

Fi | eQut put St ream di gest Stream = new Fi | eQut put Strean{"di gest");
/1 Use the MD5 algorithm SHA will work as well

MessageDi gest nd=MessageDi gest . get |l nstance(" M5S");

byt e buf[? = args[0] . get Bytes();

// Update the data and di gest i t

nd. updat e(buf) ;

dlgestStrean1WW|te(nd di gest());

} catch (Exception e) {
Systemout.println(e);
}

2. Symmetric Ciphers

A symmetric cipher in conjunction with a secret key translates

plaintext to ciphertext (Secret-key cryptography)

Cipher can also recover plaintext from ciphertext using the same key
Both encryption and decryption use the same key

Formally

E. (M) = C, where M is the plaintext, C is the ciphertext and k is the
key

D.(C) = M, where C, M and k have the same meaning

The essential property: D, (E (M)) =M

Symmetric Ciphers (cont’'d)

Disadvantages
Need secure method to transfer key

No authentication because same key used on both ends

Sender needs separate secret key for each receiver

Key distribution center (KDC)
Shares secret key with users in network
Encrypts session key with secret keys to sender and receiver
Session key used for transaction

New keys and less couriers for transactions, but security depends on

security on KDC

Symmetric Ciphers (cont’'d)

Encrypting and decrypting a message using a symmetric secret key

Symmetric Ciphers and KDC

. .
11

Distributing a session key with a key distribution center

Symmetric Ciphers (cont’'d)

Types of symmetric ciphers:

Block ciphers operate on a group of bits. The same plaintext
block will encrypt to the same ciphertext block when using the

same key.

Stream ciphers operate on the stream of bits or bytes. They

produce always different ciphertext.

Most block algorithms obey the Feistel Network property

(algorithms for encryption/decryption are the same)

Implementations

Data Encryption Standard (DES)

Uses block cipher: Creates bit groups from message and applies

algorithm to whole block

DES standard set by American National Standards Institute (ANSI) for

years, no loner considered secure
Triple DES (3DES) replaced DES
Three DES systems in row with unique secret key

Advanced Encryption Standard (AES) is new standard

Nation Institute of Standards and Technology (NIST) currently
evaluating Rijndael for AES

3. Asymmetric Ciphers

Uses public-key (distributed) and private-key (kept secret)
Public-key decrypts private-key and vice-versa
Computationally infeasible to deduce private-key from public-key

Authentication

If receiver’s public-key and sender’s private key are both used, both

parties are authenticated

RSA: most common public-key algorithm

Used by most Fortune 1000 and e-commerce businesses

Asymmetric Ciphers

asymmetric ciphers involve the use of different keys for
encryption/decryption:

E..(M) = C, where k1 is the encryption key

D,,(C) = M, where k2 is the decryption key

Essential property: D,,(E,,(M)) = M

k1 and k2 are mathematically related and they are

referred as the public and private keys

Asymmetric Ciphers

Security is determined by the strength of the algorithm and the key’s length

Assume there is a computer capable of trying a billion keys per second
Key of 16 bits, 2*16 possibilities, easy to break

Key of 128 bits, 10722 years to try all possibilities
Use:
Public-key crypthography
E.g. SSL
Digital signatures
Certificates

Pretty Good Privacy (PGP), encrypts e-mails and files using “web of trust”

Public-key Cryptography (cont'd)

KTk

Encrypting and decrypting a message using public-key cryptography.

Public-key Cryptography (cont'd)

d ciph
! decr vt . Adeccvpt
E - = 1 i -
1 & yder's public ke
B (aathenti o
[a [-]

Authentication with a public-key algorithm

Key Management

Secrecy of private keys crucial to system security
Poor key management: mishandling of private keys

Key generation: process by which keys created

Should be as random as possible

Brute-force cracking: decrypting message using every

possible decryption key

Java Cryptography Extension (JCE)

provides Java applications with various security facilities

supports

secret-key encryption

3DES

public-key algorithms
Diffie-Hellman

RSA

customizable levels of encryption through
multiple encryption algorithms
various key sizes

architecture is provider-based

developers add algorithms by adding providers’ algorithms

Enmpher (1/2)

i mport java.aw . *;

i mport Java.amﬂ.event.

i mport java.io.*;

i mport java.util.~*;

i mport java.security.*;

i mport java.security.spec.?*;

i mport com sun. crypto. provider. SunJCE
i mport javax.sw ng. *;

i mport javax.crypto.*;

i mport javax.crypto.spec.*;

public class Encipher {

private static final byte[] salt = {
(byte)Oxf5, (byte)0x33, (byte)0x01, (byte)O0x2a,
(byte)O0xb2, (byte)Oxcc, (byte)Oxed, (byte)Ox7f
b
private int iterationCount = 100; /1 iteration count
String password = "abcl123";

publ i c Encipher() {
Security. addProvi der(new SunJCE());

String line=null;
StringBuffer buffer= new StringBuffer();
Buf f eredReader in = new BufferedReader (new | nput St reanReader (Systemin));
while(true) {
try { line = in.readLine(); }
catch(Exception e){}
if(line.equals("")) break;
buffer.append(line + "\'n");

}
String original Text = buffer.toString();

Encipher (2/2)

Ci pher cipher = null;
try {
PBEKeySpec keySpec = new PBEKeySpec(password.toCharArray());
Secret KeyFactory keyFactory = SecretKeyFactory. getlnstance("PBEW thMD5ANdDES") ;
Secret Key secretKey = keyFactory. generateSecret(keySpec);
PBEPar anet er Spec par anet er Spec = new PBEPar anet er Spec(salt, iterationCount);
ci pher = Cipher.getlnstance("PBEWthNMD5ANdDES");
ci pher.init(C pher. ENCRYPT_MODE, secretKey, paraneterSpec);

}
catch (Exception e) {}

byte[] outputArray = null
try {
output Array = origi nal Text.getBytes("ISO 8859-1");
}
catch (Exception e) {}

Ci pher Qut put Stream out = new Ci pher Qut put Streanm(System out, cipher);

try {
out.wite(outputArray);
out.flush();
out.close();
}
catch (Exception e) {}
}
public static void main(String[] args)
{
Enci pher crypto = new Enci pher();
}

Decipher (1/2)

i mport java.awt.*;

i mport java.awt.event.?*;

i mport java.io.*;

i mport java.util.~*;

i mport java.security.*;

i mport java.security.spec.?*;

i mport com sun. crypto. provider. SunJCE
i mport javax.sw ng. *;

i mport javax.crypto.*;

i mport javax.crypto.spec.*;

public class Decipher {

private static final byte[] salt = {
(byte)Oxf5, (byte)0x33, (byte)0x01, (byte)O0x2a,
(byte)O0xb2, (byte)Oxcc, (byte)Oxed, (byte)Ox7f
b
private int iterationCount = 100; /1 iteration count
String password = "abcl123";

publ i c Decipher() {

Security. addProvi der(new SunJCE());
Vector fileBytes = new Vector();
Ci pher cipher = null;
try {
PBEKeySpec keySpec = new PBEKeySpec(password.toCharArray());

Secr et KeyFactory keyFactory = SecretKeyFactory. getlnstance("PBEW thMD5ANdDES") ;

Secret Key secretKey = keyFactory. generateSecret(keySpec);
PBEPar aret er Spec par anet er Spec = new PBEPar anet er Spec(salt, iterationCount);
ci pher = Cipher.getlnstance("PBEWthNMD5ANdDES");
ci pher.init(C pher.DECRYPT _MODE, secretKey,
par anet er Spec) ;

}
catch (Exception e) {}

Decipher (2/2)

try{
Ci pherlnputStreamin = new CipherlnputStream(Systemin,
byte contents = (byte) in.read();
while (contents !=-1) {
fileBytes.add(new Byte(contents));
contents = (byte) in.read();
}
in.close();
}

catch (Exception e) {}
byte[] decryptedText = new byte[fileBytes.size()];

for (int i =0; i < fileBytes.size(); i++)

decryptedText[i] = ((Byte)fileBytes.elenmentAt(i)).byteVal ue();

Systemout.println(new String(decryptedText));
}

public static void main(String[] args)

{
}

Deci pher crypto = new Deci pher();

Run the example

The secret key was predefined in Encipher.java and Decipher.java
Create a plain text file “plaintext.txt” with the source data

To encode:

cat plaintext.txt | java Encipher > ciphertext.txt
ciphertxt.txt now contains the encoded text
To decode:

cat ciphertext.txt | java Encipher

Key Agreement Protocols

Public-key algorithms not efficient for large amounts of
data

Large computing power requirements slow communication

Key Agreement Protocol
Two parties exchange keys over unsecure medium

Digital envelope: symmetric secret key encrypted using

public-key encryption

Digital Envelope

=1L 1]

TN

i P

) HaDds ancr
AT Canrpany

TTOXT

BT

VTR
=]

SECT

BT

ol

Digital Signatures

Provide proof of authenticity of the sender and integrity of the message
The sender cannot deny that he/she signed a document (non-repudiation)
Rely on public-key cryptography

The basic digital signature protocol is:

The sender encrypts the document with his/her private key, implicitly signing

the document
The message is sent

The receiver decrypts the document with the sender's public key, thereby

verifying the signature

Digital Signatures (cont’'d)

To reduce processing time, often only a hash of the message is signed:

Hazhing
Algarithm

Ha=zhing
Algarithm

Encryption Fublic Key Ve rifi cation

Frivate ey "-:}
Digital \H D ti
C Signature j w LECTYPLON By, Texd

Sender FHecen er

Digital Signatures (cont’'d)

Encryption can be included to guarantee confidentiality:

-

sender's
private
by

Hazhing
Algorithm

Hazh
Encryplan

Digital
Signature

Sender

- el
Hazhing
Algorithm
hles=age hie=szage
Encryption Decryption Hazh
|
sender's public key E aardcation
I
Signature
D ecryption| Texd
receivers receiwer's
public key private key Faoehiar

Public Key Infrastructure (PKI)

Integrates public-key cryptography with digital certificates and
certification authorities (CA’S)

Digital certificate: identifies user, issued by certification authority (such

as VeriSign)

Digital certificates stored in certificate repositories

Certificate authority hierarchy

Root certification authority, the Internet Policy Registration Authority
(IPRA), signs certificates for policy creation authorities who set policies

for obtaining digital certificates

Policy creation authorities sign for CA’s who sign for individuals and

organizations

Signings use public-key cryptography

PKI, Certificates and CA (cont’d)

Changing keys necessary for maintaining security
Digital certificates have expiration dates

Canceled and revoked certificates placed on certificate

revocation list (CRL)
Ensuring authenticity
Check certificate with CRL (inconvenient)

Online Certificate Status Protocol (OCSP) validates certificates

in real-time

PKI and digital certificate transactions are more secure than phone

line, malil or even credit-card transactions

Certificates

Issued by a CA
Digitally signed by the CA
Implicit assumption: CA’s signature is widely available and trusted

Use X.509 format

X.509 Format

Version and Serial Number
Subject Name and afiliation
Issuer Name

@

Signature Algorithm
Period of Validity

Certificate

5 W

)

A Certificate Authority

/) YeriSign Secure Site - Microsoft Internet Explorer o] |

J File Edit Wiew Fawaorites Tools Help |

J.ﬁ.ddress I@ https:,fll'digitalid.verisign.com,l'cgi—bin,l'Xquer';-'.exe?Tem|:|Iate=authCertByIssuer&form_ﬁIe=..,l'FdF,l'authCerthIssj f?GD

\/griSigﬁ”

The Sign of Truat on the Mt

WWW.VERISIGN.COM is a
VeriSign Secure Site

Security remains the primary concern of on-line consumers. The YeriSign Secure Site
Program allows you to learn more about web sites yvou visit before you submit any

confidential information. Please verify that the information below is consistent with the
site ywou are wvisiting.

Mare VAN WVERISIGH. COM
Status Valid
Walidity Period 13-Jul-2000 - 13-Jul-2001
Country = LIS
State = California
Server 1D Locality = Mountain “iew
Information Organization = YerSign, Inc.
Organizational Unit = Production
Comrnon MName = wawas verisign. com

-
4| | b

|@ Done ’_Elﬂ Internet g
A portion of the VeriSign digital certificate. (Courtesy of VeriSign, Inc.)

Java Security Architecture

Java Security

Java code can originate and run anywhere in the

network

Java has been designed to run code securely via

enforcement of security policies during execution

Evolution of Java Security

JDK 1.0: The sandbox

The sandbox model
confines Java applets to
a defined arena where
they cannot affect
system resources
Applications enjoy
unlimited access to all

resources

Local Code Remote Code

@ | Sandbox Restricted
Access

-.’*‘0

JVM Full
Access
to Resources

Security Manager

System Resources
(files.network
connections, etc)

Evolution of Java Security

Local Trusted Remote Code
JDK 1.1: all or nothing °°_f’° gigggd
| | | — -
Introduced signed applets R
which enjoyed unlimited to Resources

access to all resources

' ' icati . System R
just like local applications =) siomnosouces

. connections, etc)

No selective access

Evolution of Java Security

JDK 2: fine-grained

Iﬁgﬁét%r{:nda E. ,_ = {2 Security Policy
ol Sandbox
. . JVM Full ‘domain E‘ domain Restricted
Flexible policy for applets Adcedsiil oo .1 CLEN SR S lcs
domain @i %0
and app“cat'c)ns ...
Intro d UCes th e conce pt Of 5 ystemnesnurces ..

(files,network
connections, etc)

ProtectionDomain

Java 2 Security Architecture

1. Byte-code verifier

It screens the code to be sure that it was produced by a trustworthy

compiler:
the format of the class file, the right length, the correct magic
numbers, no operand stack overflows and underflows, and so on.
confirms or denies that the class file is consistent with the
specifications

Its behavior may be altered with command line options on the

interpreter, when applicable.

2. ClassLoader

The ClassLoader loads Java byte codes into the JVM

Works in conjunction with the SecurityManager and the access

controller to enforce security rules

Information about the URL from which the code originated and the

code's signers is initially available to the ClassLoader

3. CodeSource

The object java.security.CodeSource fully describes a piece of code:
code's origin (URL)
digital certificates containing public keys corresponding to private keys

used to sign the code.

Many access-control decisions are based in part on this property

4. Protection domains

It is more flexible to group classes into protection domains and

associate permissions with those domains (Rather than to associate
permissions to individual classes)

This relationship between the class and the permissions via the

protection domain provides for flexible implementation mechanisms.

5. Policy

The numerous mappings of permissions to classes are collectively

referred to as policy

A policy file is used to configure the policy for a particular

Implementation

It can be composed by a simple text editor or using policytool (GUI)

6. Permissions

Permission classes represent access to various system resources
such as files, sockets, and so on

For example, permission may be given to read and write files in the
/tmp directory

Permission classes are additive. They represent approvals, but not
denials

A number of permission classes are subclasses of the abstract

java.security.Permission class, examples of which include

FilePermission, AWTPermission, and even customized protections

like SendMailPermission

/. SecurityManager

The class java.lang.SecurityManager is at the focal point of

authorization
SecurityManager consists of a number of check methods. For
example:

checkRead (String file) can determine read access to a file.

checkPermission(Permission perm, Object context) method can check to

see if the requested access has the given permission based on the policy.

The access controller will raise an exception if the requested

permission cannot be granted.

8. AccessController

The java.security.AccessController class is used for three purposes:

To decide whether access to a critical system resource should be

allowed or denied, based on the security policy currently in effect

To mark code as privileged, thus affecting subsequent access

determinations

To obtain a snapshot of the current calling context, so access-control
decisions from a different context can be made with respect to the
saved context

While the SecurityManager can be overridden, the static methods in

AccessController are always available

9. keystore

The keystore is a password-protected database that holds private

keys and certificates.
A password is selected at the time of creation

Each database entry can be guarded by its own password for extra

security

Certificates accepted into the keystore are considered to be trusted.
Keystore information can be used and updated by the security tools
provided with the SDK

Example: Application Security

I mport java.io.*;
I mport java.util.?*;

public class witeFile {
public witeFile() {

String filenanme="thisisthefile.txt";
File file = new File(fil enane);
try {
Buf feredWiter output = new BufferedWiter(new FileWiter(file));
output.wite("Hello there");
out put . cl ose();
}
catch (SecurityException e) {
Systemerr.printin("witeFile: caught security exception"); }
catch (1 Oexception e) {
Systemerr.println("witeFile: caught 1O exception"); }

}

public static void main(String[] args) {
witeFile wf = newwiteFile();

}

Running the Example

This succeeds:
java writeFile

This produces a security exception:
java —Djava.security.manager writeFile

Defining the policy

Create the file my.policy:
grant {

perm ssion java.i o. Fi | ePerm ssion
"<<ALL FILES>>", "wite";

¥
Now run the program:

java —Djava.security.manager —
Djava.security.policy=my.policy writeFile

Example: Applet Security

import java.io.*; inport java.util.*; inport java.aw.*; inport
j ava. appl et . *;

public class witeFile extends Applet {
public void paint(Gaphics g) {
String filenane="thisisthefile.txt";
File file = new File(fil enane);
try {
Buf feredWiter output = new BufferedWiter(new FileWiter(file));
output.wite("Hello there");
out put. cl ose();
g.drawstring("File " + filenane + " witten", 10, 10);
}
catch (SecurityException e) {
g.drawsString("witeFile: caught security exception", 10, 10); }
catch (1 Oexception e) {
g.drawsString("witeFile: caught 10 exception”, 10, 10); }
}

public static void main(String[] args) {
Frame f = new Frane("witeFile");
witeFile wf = newwiteFile();

wh.start();
f.add("Center", w); f.setSi ze(300, 300); f.show();
}

HTML

<htni >

<title> Java Security Exanple: Witing Files</title>
<hl> Java Security Exanple: Witing Files </hl>
<hr >

<APPLET CODE = witeFile.class WDITH = 500 HElI GHT
= 50 >

</ APPLET>
<hr >
</ htm >

Running the Example

This produces a security exception:
appletviewer index.html

This succeeds:

appletviewer —J"-
Djava.security.manager=my.policy”’ index.html

Browsers and Security

Default lack of trust in downloaded code
Addressed by the sandbox model

Limited access to command-line options within the browser
No simple way to deploy and use customized policy files

Inadequate support for some security features in the JVMs bundled

with browsers

Solved by using a java plug-in

SDK Security Tools

Keytool
Manages keystores and certificates

Jarsigner
Generates and verifies JAR signatures

Policytool
Manages policy files via a GUI-based tool

keytool

Create/Manage public/private key pairs

Issue certificate requests (sent to the appropriate Certification
Authority)

Import certificate replies (obtained from the Certification Authority

you contacted)

Designate public keys belonging to other parties as trusted

keytool

Keystore
repository for storing public and private keys

modifying stored keys requires use of password

default keystore located in hone/ user /. keyst ore

command line arguments
- genkey

produces private and public key pair
- export

export a certificate
-1 nmpor t

import certificate from trusted source
-11i st

list all contents of keystore
- al i as <alias_name>

identify public and private pair for later use

keytool

keyt ool -generated certificates identified through

commonName (CN)
organizationUnit (OU)
organizationName (O)
localityName (L)
stateName (S)

country (C)

keytool

To generate a public and private key pair

keyt ool —genkey —-alias MyCertificate

® Obtain digital certificate from certificate authority
keyt ool —certreq —alias MyCertificate —file

nyRequest . cer

® Submit certificate file to authority
O follow authority’s steps on Web site

® To generate certificate other users may use
keyt ool —export —-alias MyCertificate —file

myCertificate. cer

Digital Signatures for Java Code

Java Plug-in supports RSA-signed applets

Steps
generate RSA keypair

keyt ool —genkey —keyalg RSA —alias MCertificate

export digital signature to file
keyt ool —export —alias MyCertificate —file myCertificate.cer

add to keystore

keytool —inport —alias MyTrustedCertificate —keystore cacerts
—file nmyCertificate.cer
cacert s is complete path to keystore

O sign applet’s JAR file with digital signature

jarsigner FileTreeApplet.jar MyCertificate

O enable Java Plug-in instead of Web browser’'s JVM
ht Ml converter signedApplet. htm

Example

See LectureSet6/applet_signature

Server side:
keyt ool -genkey -alias alias - keystore
server. ks -storepass storepass -keypass keypass
keytool -selfcert -alias alias - keystore

server. ks -storepass storepass -keypass keypass

keytool -export -file client.cer -alias alias
-keyst ore server. ks -storepass storepass -
keypass keypass

keytool -1Ii st - keystore server. ks -
st or epass storepass -keypass keypass

jarsigner -keystore server.ks -storepass
st orepass -keypass keypass WiteFile.jar rlent

Example: Client side

Using appletviewer:
keytool -printcert -file client.cer

keytool -inport -file client.cer
- keystore client. ks -storepass
st orepass - keypass keypass

appl etvi ewer -J-
Dy ava. security. policy=client.policy
| ndex. ht m

Using a browser

Install Java plug-in!

Authentication

Current authentication models
restrict access to certain aspects of a program
allow users to connect to a network

regulate resources available to users on network

Java Authentication and Authorization Service (JAAS)
based on plug-in framework

allows Kerberos and single sign-on implementations

Kerberos

Employs secret key cryptography
Authentication handled by
Kerberos system
authenticates client’s identity
secondary Ticket Granting Service (TGS)
similar to key distribution centers
authenticates client’s rights to access services
Authentication cycle
client submits user name and password to Kerberos server
server returns Ticket-Granting Ticket (TGT)
encrypted with client’s key
client decrypts TGT
client requests service ticket by sending decrypted TGT to TGS
server authorizes client with renewable service ticket

Single Sign-On

Single sign-on allows users to log into different
servers once with single password.

three types:

workstation login scripts
login script sends password to each application
stores password on workstation
authentication server scripts
authenticate users with central server
tokens
once authenticated, non-reusable token identifies user

Java Authentication and
Authorization Service (JAAS)

Protects applications from unauthorized users.

Based on Pluggable Authentication Module (PAM)
supports multiple authentication systems

different authentication systems may be combined

Can control access by
user
governs access to resources on user policies

group

associates user to group, bases policies on group privileges
role-based security policies

similar to group policies

unlike group policies, no default policies exist

users obtain privileges to needed applications based on intended task

JAAS (cont’d)

Example Aut hent i cat eNT
To execute:

java —D ava. security. policy=java. policy
-Djava. security.aut h. policy=jaas. policy
-Djava. security.auth.l ogin.config=jaas.config
Aut henti cat eNT

Secure Sockets Layer (SSL)

Nonproprietary protocol

Used to secure communications between
computers

Implements

public-key technology using RSA algorithm

digital certificates
to authenticate server
to protect private information

Does not require user authentication

TCP/IP and SSL Protocol Stack

Application Layer (HTTP)

SSL

TCP

IP

SSL (cont'd)

Process:

client sends message to server
server responds with digital certificate

client and server negotiate session keys
use public key cryptography for negotiation
once keys established, communication proceeds
Information encrypted
Information transmitted
information decrypted at receiving end

Primarily secure point-to-point
connections

Java Secure Socket Extension
(JSSE)

SSL encryption integrated into Java through Java Secure Socket
Extension (JSEE)

Secures passage of information between two clients

Use of SSL connections transparent to user

SSL Handshake Protocol

1: ClientHello

2 ServerHello

o
|

5 Certificate (optional)

a
|

4: Certificate Eequest (optional)

30 server Key Exchange (optional)

& ServerHelloDone

7 Certificate (optional)

. L
Chent o Client Eey Exchange . Server

& Certificate Verify {-::pti-::-nal}h

10: Change Cipher Spec
11: Finished

i

i

12: Change Cipher Spec

I 3

13 Finished

I 3

14: Encrypted Data

Example SSL Client/Server

~/LectureSet6/ssl, files:
client/client.java
server/server.java

Run the example: Server side

Create keystore and certificate:

keyt ool —genkey —keystore SSLStore -—alias
SSLCertificate —keypass keypass —storepass storepass

If SSLStore does not exist, this will create keystore with storepass as

password
To check stored entries:
keyt ool —list —keystore SSLStore

Execute ssl Ser ver
j ava —D avax. net. ssl . keySt or e=SSLSt or e

- avax. net . ssl . keySt or ePasswor d=password ssl Ser ver
Export Certificate

keyt ool —export -—alias SSLCertificate —keystore
SSLStore —file mycertificate. cer

Now make file mycertificate.cer available to client

Run the example: Client side

Get file mycertificate.cer from server
Import Certificate
keytool —inport —alias SSLCertificate —keystore
SSLStore —file nycertificate. cer
To check the entry:
keytool —-list —-keystore SSLStore
Execute ssl O i ent

j ava - avax. net.ssl.trust St ore=SSLSt ore
- avax. net. ssl . trust St or ePasswor d=password ssl C i ent

Example HTTPS

~/LectureSet6/https, files:
sslWebClient.java

Two versions of the server:

sslWebServer.java (security parameters externally
defined)

sslWebServer2.java(security parameters internally
defined)

cert-s.sh and cert-c.sh create certificates for
server and client

runs.sh and runc.sh execute server and client
with external parameters

