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Executive Summary 
 
 
 This paper summarizes results from an investigation into the various methods for 

implementing parallel Genetic Algorithms (GAs).  Experiments were conduct on a Beowulf 

Cluster using three different parallel methods and topologies.  The results of these experiments 

show that parallelization can improve GA performance both in execution time (speedup) and 

quality of solutions found. 
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1 Introduction 
The primary source for this section were my class notes. 

 
 Genetic Algorithms ("GAs") are used to search for solutions to a wide variety of 

problems.  This search begins by encoding values for problem variables as genes represented by 

bit strings. Each chromosome contains a set of genes which together represent a possible solution 

(though not necessarily the best solution) to the problem being solved. 

 An individual's chromosome is used as input to the GA's fitness function which calculates 

a raw fitness for the solution represented by that chromosome.  The fitness function may also 

compute a scaled or proportional fitness value which can be used later in the selection process to 

determine parents for mating (crossover). 

 A GA executes for a given number of generations or until the optimal solution is found.  

The following pseudo-code shows the steps and number of repetitions of each function that must 

be performed by a GA: 

 
procedure GA 

    initialize population; 

    for (i=1 to number of generations){ 

        for (j=1 to population size) 

            evaluate fitness of each individual; 

        for (j=1 to population size / 2) 

            select two parents for crossover; 

            crossover to produce two children; 

        for (j=1 to population size) 

            perform mutation on children; 

        for (j=1 to population size) 

            insert children in next generation; 

    } 

end procedure GA  
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 The pseudo-code clearly illustrates the repetitious nature of a genetic algorithm.  In the 

majority of GAs, the fitness function is the most time consuming operation.  Given that fact, a 

GA is of the order O(G*P) as it relates to fitness function evaluation where G is the number of 

generations and P is the population size.  The speedup experiments described in this paper were 

performed for 500 generations with populations of 100 individuals.  This required 50,000 fitness 

evaluations per GA run. 

 Genetic algorithms are pseudo-random in their processing.  Functions such as selection, 

crossover and mutation use of a processor’s random number generator to make probabilistic 

decisions.  Since no random number generator is truly random, the same GA can be run with the 

same seeded generator and always produce the same result.  Therefore, it is often necessary to 

run a GA multiple times (e.g., 20-50) using a different random number seed with each run to 

compensate for any pseudo-random behavior. The best solution is the most optimal solution 

found during all runs. 

 The more times a GA is run, the better the chances are of finding a more optimal solution.  

However, this must be done at the cost of additional processing time.  For the speedup 

experiments described herein, each GA was run 32 times.  As a result, each GA required a grand 

total of 1,600,000 fitness evaluations to search for a solution. 

 Give the number of fitness evaluations, GAs would seem to benefit from some form of 

parallelization.  The goal of this project is to investigate those methods using a Beowulf Cluster 

and to determine whether such methods will reduce the required processing time and/or improve 

the quality of the solutions found. 

 In the next section, we describe some common methods for parallelizing a GA.  In 

Section 3 we provide details about the problem, GA parameters, and parallel methods used in our 
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experiments.  Sections 4 and 5 show the performance improvements obtained as a result of 

parallelization, both speedup and improved solution quality.  Finally, we conclude with some 

general observations and suggestions for follow up research.  
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2 Parallel Methods and Background Research 
The primary source for this section was (Cantu-Pas, 2000). 
 

 A number of different techniques have been published which parallelize a genetic 

algorithm.  Four major classifications were described in (Cantu-Pas, 2000) and include 1) Single-

Population Master-Slave GAs, 2) Multiple-Population GAs, 3) Fine Grained GAs, and 4) 

Hierarchical Hybrids.  We want to also mention Multiple-Run GAs and Functionally Parallel 

GAs as two additional parallelization methods.  Each of these six methods is described briefly 

below: 

• Multiple-Run GAs – An n-population GA is run on p processors (p [ n, n usually 

divisible by p).  Basically, this is  a stand-alone GA run on multiple processors 

simultaneously. Each population initialized with a different random number seed.  

Speedup is achieved by performing multiple runs in parallel rather than serially on a 

single processor.  This is the simplest form of a parallel GA and lowers execution 

time but does not effect the quality of solutions found. 

• Single-Population Master-Slave GAs – A single-population GA that offloads only 

fitness function evaluation to other processors.  Effective only if fitness evaluation 

time significantly exceeds communication time. May require multiple runs to 

compensate for pseudo-random behaviors.  More useful for GAs with extremely 

complex fitness functions. 

• Functionally Parallel GAs –A single-population GA run on multiple processors 

where each processor performs a specific GA function (e.g., fitness evaluation, 

selection, crossover, mutation).  An extension of the Single-Population Master-Slave 

GA.  Speedup of execution time is limited since at most four processors (one per 
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function) can be assigned to execute the GA.  May need to be run multiple times to 

compensate for pseudo-random behaviors. 

• Multiple-Population GAs – Most common parallel method.  Also known as the 

“island” or “multiple-deme” method.  An n-population GA is run on n processors.  

Each processor performs fitness evaluation and reproduction on its own population 

with periodic exchange of chromosomal material between processors.  Although 

similar to a Multiple-Run GA where n = p, the Multiple-Population GA includes 

exchange of chromosomes between processors and the potential for improved 

solution quality. 

• Fine-Grained GAs – A single population GA where each processor supports a single 

individual (chromosome). All fitness evaluations occur simultaneously. Reproduction 

occurs among individuals within defined local neighborhoods. Implementation of this 

parallel method requires high numbers of processors (e.g., 100+) and is the most 

difficult to code.  May need to be run multiple times to remove pseudo-random 

behaviors. 

• Hierarchical Hybrids – This catch-all category includes parallel GAs which 

combine the properties of the other five categories listed.  For example, a Hierarchical 

Hybrid might combine a Functionally Parallel GA with a second group of processors 

dedicated to fitness evaluation (Master-Slave). 
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3 Experiments Performed 
No primary source for this entire section.  All original material. 

 
 A number of experiments were performed using some of the parallel methods described 

in Section 2. The purpose of these experiments was to determine if improvements in execution 

time (speedup) and quality of solutions could be found using parallel GAs.  Three different 

parallel GAs were implemented in this project.  The first was a Multiple-Run GA.  The second 

and third parallel GAs were both Multiple-Population but using two different topologies: 1) a 

ring topology and 2) a fully connected network topology. 

GA Design, Parameters and Coding 

 To make comparisons between methods easier, the same problem, GA structure and GA 

parameters were used for most of the experiments.  The GA was designed to solve a 6-order 

symbolic regression problem for the following equation: 

y = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g + h cos(x) 

 A file of twenty-five (X,Y) pairs was read in at the start of the program.  These would be 

used by the fitness function to determine the correctness of the solution represented by each 

chromosome.  Y values were generated for each X value between 1 and 25 with the following 

coefficients: 

    a = 2   e = -12 
    b = -144  f = 211 
    c = 2   g = -49 
    d = 121  h = 200 
 
 The X value from the file was plugged into the above equation.  Then each coefficient (a, 

b, c, d, e, f, g and h) obtained from an individual’s chromosome (8 genes per chromosome) were 

also plugged into the equation.  The equation was then evaluated and the result subtracted from 
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the correct Y value obtained from the input file.  The sum of the twenty-five absolute differences 

between these two numbers became the chromosome’ raw fitness value. 

 The lower the raw fitness, the closer a chromosome’s genes were to representing the 

coefficients listed above. 

 
• Our GA incorporated the following features for every experiment: 

• Population Size = 100 Individuals 

• Representation Method = Bit String 

• Number of Bits per Gene = 9 

• Number of Genes per Individual = 8 

• Crossover Rate = 0.7 

• Mutation Rate = 0.01 

 
 Three important parameters, 1) number of runs 2) number of processors, and 3) swap 

option were varied during each experiment. 

 

3.1 Swapping Options 

 The GA was designed to permit experimentation with various swapping options.  The 

first option (SWAPTYPE = 0) has the parallel GA perform without swapping.  No exchange of 

chromosomes occurs between populations.  Instead, the program acts as a Multiple-Run GA.  

Each GA executes as a stand alone program on a single processor.  However, all GAs are run 

simultaneously. 

 The second option (SWAPTYPE = 1) implements a Multiple-Population GA with a ring 

topology.  Each GA shares chromosomal material with its nearest neighbor to the right (next 
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higher rank).  The last GA/processor completes the ring by sending its data to the very first non-

control processor (rank = 1).  The amount of data (SWAPCOUNT) and frequency of the 

exchange (SWAPINTERVAL) are determined by parameters that must be set prior to 

compilation. For all experiments, these parameters were set to 5 and 10 respectively.  Random 

selection was used to determine the chromosomes to be sent to the next processor in the ring. 

 The third option (SWAPTYPE = 2) also implements a Multiple-Population GA.  

However, this version uses a fully connected network topology.  Every 10 generations, each GA 

sends chromosomes from randomly selected individuals to every other GA running on the 

cluster.  The chromosomes to be transmitted are selected randomly from the GA’s population. 

 In both Multiple-Population methods, chromosomal material received from other GAs 

was inserted into the receiving population by randomly selecting an existing individual for 

replacement. 

3.2 Source Code Overview 

 The GA was coded as a single “C” program with an associated “make” file (see disk 

included with this report.)  After making any necessary edits to set parameters, the program is 

compiled using the command  make –f pga.make.  To execute the program enter the 

following: 

   mpirun –np numprocessors pga numruns1 
 
 
where numprocessors is the number of processors on which the program will run and numruns is 

the number of runs to be execued on each processor. 

                                                 
1 Time did not permit the addition of SWAPTYPE as a command line argument.  This parameter must be changed in the source code, then the 
source recompiled. 
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 The program was designed to use a single processor (P0) as a control and data collection 

point.  All statistical information from other processors was forwarded to P0 for handling.  All 

other processors (Px where x ≥ 1) ran the portion of  code specific to the genetic algorithm.  

Exchange of chromosomes occurred only between Px processors in multiple-population GAs. 

 As a result of this design, it is necessary to set numprocessors equal to x +1 when 

invoking the program.  This ensures that there are x processors running the GA and one 

additional processor to collect statistics. 

 A listing of the complete source code with comments is provided in Appendix A as an 

attachment to this report.  All MPI calls have been bolded to assist in review of the code. 
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4 Speedup Results 
No primary source for this entire section.  All original material. 

 
 GAs using the three different swapping options outline in Section 2 were run on the 

SEECS Beowulf Cluster.  Statistics concerning execution time were gathered by P0 and output 

to a summary file. 

 For each swap option, multiple runs of the experiments were performed to test execution 

times for various combinations of GA-only processors and runs.  In all cases, the number of GA-

only processors multiplied by the number of runs was always equal to 32. The results of these 

experiments are described in the following sections. 

4.1 Speedup for Multiple-Run GA 

 The Multiple-Run GA exhibited a linear speedup tied to the number of processors used.  

The speedup was equal to or greater than the number of processors.  This is not surprising given 

that the same program is run in parallel on multiple machines rather than serially on a single 

machine.  The results of these experiments are listed in Table 1 below.  

Table 1: Speedup Results for GA Executed on From 1 to 32 Processors 

# Proc 
GA-only 

Number of 
Runs 

Total     
GA Time

Average 
GA Time

GA 
Speedup 

Total 
Time 

Avg Tot 
Time 

1 32 118.77 118.77 n/a 237.55 118.76
2 16 119.55 59.77 1.99 179.56 59.85
4 8 118.86 29.72 4.00 148.76 29.75
8 4 118.25 14.78 8.04 133.44 14.82
16 2 118.74 7.42 16.01 126.45 7.43
32 1 118.45 3.70 32.10 122.41 3.71

 
 
 The first column of the chart shows the number of GA-only processors used in each 

experiment. The second column shows the number of GA runs per processor.  For example, in 
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the last experiment, 32 processors ran the GA only once.  In second to the last row, two runs of 

the GA were performed on 16 processors.  The combinations of processors and runs were chosen 

to ensure that each experiment resulted in the same number of total runs (32) and thereby the 

same number of fitness evaluations (1.6M) regardless of the number of processors.   

 Columns three and four show the total time for GA-only processors and average time per 

processor (Total GA Time / # Proc).  The speedup in column 5 indicates how much faster the 

Multiple-Run GA performed on 2 or more processors compared to running the GA 32 times on a 

single processor (row 1). 

 The last two columns of the table are provided as information only.  They represent the 

total processing time including the time required by P0 for gathering and analyzing statistics sent 

from the GA-only processors.  

 

4.2 SpeedUp for Multiple-Population GAs with Ring Topology 

 The next set of experiments were performed to test speedup on a Multiple-Population 

GA.  In this set of experiments, chromosomes were passed in a ring topology.  Thus, every ten 

generations, each processor forwarded five chromosomes to its nearest neighbor to the right and 

received five chromosomes from its neighbor to the left.  The results are shown in Table 2. 

 Table 2: Speedup Results for Ring Topology GA Executed on From 1 to 32 Processors 

# Proc 
GA-only 

Number of 
Runs 

Total     
GA Time

Average 
GA Time

GA 
Speedup 

Total 
Time 

Avg Tot 
Time 

1 32 118.77 118.77 n/a 237.55 118.76
2 16 119.24 59.62 1.99 178.86 59.62
4 8 121.54 30.38 3.91 151.93 30.39
8 4 121.49 15.19 7.82 136.72 15.19
16 2 124.81 7.80 15.23 132.65 7.80
32 1 122.93 3.84 30.93 126.84 3.84
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 The first row of this table is used as a baseline for speedup comparisons.  Swapping is not 

possible with a single processor.  The results from the single processor, 32 run Multiple-Run GA 

are used here instead.   

 The speedup gained using the Multiple-Population method with 2 or more processors is 

almost as good as that obtained in the Multiple-Run GAs.  Speedup is slightly lower due to the 

addition of communications costs in sending and receiving chromosomes.  Informal experiments 

show that speedup decreases when the number of chromosomes exchange or the frequency of the 

exchange increases.  

4.3 Speedup for Multiple-Population GAs with Fully Connected Network Topology 

 The last set of experiments related to speedup using a Multiple-Population GA with a 

fully connected network.  Every 10 generations, each processor sent/received five chromosomes 

to/from every other processor in the cluster.  Results from these experiments are provided in 

Table 3. 

Table 3: Speedup Results for Network Topology GA Executed on From 1 to 32 Processors 

# Proc 
GA-only 

Number of 
Runs 

Total     
GA Time

Average 
GA Time

GA 
Speedup 

Total 
Time 

Avg Tot 
Time 

1** 32 118.77 118.77 n/a 237.55 118.76
2 16 119.63 59.81 1.99 179.45 59.82
4 8 124.47 31.12 3.82 155.59 31.12
8 4 137.37 17.17 6.92 154.55 17.17
16 2 549.24 34.33 3.46 583.67 34.33
32 1 1873.90 58.56 2.03 1932.73 58.57

 
 
 Speedup was comparable to previous methods for experiments performed with lower 

numbers of processors (2, 4 and 8).  However, speedup dropped dramatically for the experiments 

performed on 16 and 32 processors. 
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 Execution times shown in this and other tables includes communication time as well as 

processing time.  This makes it reasonable to assume that the amount of communication time 

required for the last two experiments negatively affected the overall execution time and hence 

the reduction in speedup.   

 For example, the 16-processor experiment required 5 * 16 or 80 chromosomes to be sent 

and received by every processor. This number multiplied by 16 processors and 72 bits per 

chromosome yields a total of 92,160 bits transmitted every 10 generations.  The amount 

transmitted grows to 368,640 bits every 10 generations for the 32-processor experiment.  The 

high volume of data coupled with additional MPI calls results in a loss of speedup as more 

processors are added to the fully connected network. 
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5 Qualitative Results 
No primary source for this entire section.  All original material. 

 
 Some parallel methods can improve the quality of solutions found by a GA as well as 

improve overall speedup of GA execution.  A second series of experiments was performed to 

determine if this was the case with either of the two Multiple-Population topologies described 

previously.   

 No direct improvement in solution quality can be obtained from a Multiple-Run GA since 

no data is shared between populations.  Any improvement in solution quality can only be gained 

indirectly by the ability to process more GA runs in a parallel environment. 

 Two methods were developed to compare solution quality.  The first was to test the range 

of values for Best_of_Run found by each parallel GA.  The second requires that we count the 

distribution of all Best_of_Run solutions found.  For these sets of experiments, we used the same 

GA developed for the speedup experiments.  However, each GA was performed for 25 runs on 

10 processors three different times using different starting random number seeds.  This gave us a 

total of 750 individuals representing the best of each run.  

5.1 Range of Best_of_Run Values 

 The range of solutions found by parallel GAs can provide some evidence to prove 

improved quality of solutions.  The highest and lowest Best_of_Run fitness values were found 

for the three experiments described previously.  Table 4 summarizes these results. 

Table 4:  Highest (best) and Lowest (worst) results of all experiment runs 

 Multiple Run
(no swap) 

Multiple Pop.
(Ring) 

Multiple Pop. 
(Network) 

Lowest 122,392 243 126 
Highest 45,941,294 115,054 1,033 

 



 15

 The Multiple-Run GA had the worst performance in terms of fitness solution range.  

Despite 750 runs, it could do no better than 122,392 (remember that this GA minimizes fitness – 

the lower the better).  And at least one run ended after 500 generations with fitness value greater 

than 45M. 

 The Multiple-Population GAs performed much better with significantly lower fitness 

values.  And for the GA with network topology, the upper bound on the fitness was only 1033.  

This last parallel method/topology combination was the best at finding the smallest optimal 

solution range.   

 As information, the following chart lists the actual coefficients found by the fully 

connected network Multiple-Population GA for the lowest and highest Best_of_Run values.  The 

first row (“A”) contains the correct solution – the answer.  The second and third rows contain the 

genotype for the individuals with fitness’ of 126 and 1033 respectively. 

Table 5: Coefficients foudn for highest (best) and lowest (worst) best of runs 

Fit. a b c d e f g h 
A 2 -144 2 121 -12 211 -49 200 

126 2 -144 2 121 -12 211 -51 200 
1033 2 -144 2 121 -13 238 -199 226 

 
 
 Both of these solutions are extremely close to actual coefficient values sought by the GA. 

5.2 Distribution of Best_of_Run Values 

 Using the same data from the experiments performed in Section 5.1, we can prepare a 

table (see Table 6) and graph (see Figure 1) showing distribution of the 750 Best_of_Run 

solutions found by the three parallel methods. To simplify grouping, each fitness value was 

converted to an integer which equaled the truncated base 10 log of the fitness.  For example, 

solutions 122,292 and 957,251 would both fall into the “5” group. 
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Table 6: Distribution of the raw fitness values from 0 to 10 

Count of Best Of 
Run Raw Fitness 

 
 
 

LOG10 
Multiple Run 

(no swap) 
Multiple Pop. 

(Ring) 
Multiple Pop. 

(Network) 
0 0 0 0 
1 0 0 0 
2 0 6 35 
3 0 18 18 
4 0 24 24 
5 9 289 185 
6 44 149 311 
7 164 264 177 
8 521 0 0 
9 12 0 0 
10 0 0 0 

Total 
Runs 

750 750 750 

 
 
 The table shows us that overall, the solutions get better for Multiple Population GAs.  

Further, the fully connected network seems to provide better solutions than the ring topology.  A 

chart graphically illustrating the above solution distribution is provided below: 
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Figure 1: Graph of raw fitness distributions for values from 0 to 10 
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 The distribution data described in this section corroborates the conclusions draw in 

Section 5.1 from the range information.  We therefore can conclude that for some problems (i.e., 

symbolic regression) a parallel GA can improve the quality of the solution found. 
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6 Conclusions  
No primary source for this section. 

 
 Genetic algorithms and cluster computing are a good match.  The use of a cluster to 

parallelize a GA is simple, straightforward, and given the cost of clusters, relatively affordable.  

In its simplest form a cluster allows the user to cut processing time linearly by the number of 

processors using just a Multiple-Run GA.  Dramatic speedup can be achieved by adding only a 

few lines of code to an existing GA. 

 The use of Multiple-Population GAs provides the added benefit of potentially better 

solutions.  Experiments were limited to a specific problem (symbolic regression), therefore we 

cannot state conclusively that solution improvement will occur in all instances. 

 In the future, we hope to test for improvements in solution quality with other toy problem 

classes (e.g., number matching, traveling salesman problem) and with larger more complex GAs.  

The results should be interesting. 

 Our particular area of interest at the present time is the effect of gene-specific selection 

pressure on GA performance (Stringer, 2001).  We hope to extend our investigation of parallel 

GAs to include gene-specific selection pressure, following up on neighborhood-wide  research 

already conducted by other individuals (Sarma and De Jong, 1996). 
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