Implementing Remote
Procedure Calls

Presented by Xingbo Gao
COP6614 Operating Systems Techniques
9/15/2005

= I
Outline

m RPC Introduction

m PRC Structure

m Client-Server Binding

m Communication Protocols
m Case Study: Sun RPC

m Conclusion

T
RPC Introduction
- History and Design Maotivation

m Procedure calls are well-known and well-understood
m Message passing emerged in mid 80s

m Socket programming also appeared in the beginning of
80s in BSD 4.x

m Difficult to develop distributed applications

m 1981 Nelson's doctor dissertation extensively examined
the design possibilities

m 1984 BIRRELL and NELSON developed the initial RPC
packages at Xerox

RPC Model

Caller Callee
(client process) (server process)

Call procedure and

wait for reply Request message
(parameters)

! Start procedure execution

Procedure
execution

) Send reply
Resume execution

|

|

Reply message |
(result) |
|

" NN
RPC advantages

m Simple call syntax

m Similar semantics to local procedure calls

m Well-defined interface

m Ease of use

m Generality

m Efficiency: simple and quick

m Works on different machines and a single
machine

" S
Components and Call interactions

Caller machine Network Callee machine

User User-stub RPCRuntime RPCRuntime Server-stub Server

importer exporter importer exporter

interface interface

e
Example One (remote computing)

User Machine Stubs Server Machine

Kernel Kernel

Network communication

" SN
Example Two (stateful file server)

Client Process Server Process

Open (filename, mode)

Return (fid)

Read (fid, 100, buf)

Return (bytes 0 to 99)

Read (fid, 100, buf)

Return (bytes 100 to 19

" JE
Client-Server Binding

m Naming: how does a client specify what he
wants to be bound to?

m Location: how does a caller determine the
machine address of the callee and specify
to the callee the procedure to be invoked?

Client-Server Binding (contd)

Grapevine Entries Grapevine Entries
instance type instance 1 instance 2 type
Individuals Groups Serverl.Nelson [Server2.Nelson |FileAccess.Nelson

(Includes two|instances)

Connect-site Member-list Server 1 IP Server 2 IP | [Serverl.Nelson, Server2,Nelson

Grapevine Structure Example: one type + two instances

" JJEE
Sequence of events in binding and a subsequent call

Caller machine Grapevine Caliee machine

User User-stub RPCRuntime RPCRuntime Server-stub Server
Record in eLixport[e Export]
table; AB, AB|
heaa |
Do update é—SetConnec!
L
Do update
L return
Import[Import]
ABl) A8l GetConnect 9 Lookup
]
Bind[A,B] Table
Record lookup
retum (—- result I
x+Flyl | F=>3 [transmit CheckUID |43 =>F [x+Fly]
in table
importar exporter importer @xporter
interface interface

" JE
Binding Scheme Discussion

m Independent data structures in the exporting
machine

m Unique identifier for each import/export interface

m Access controls on Grapevine database for two-
way authentication

m Supported dynamic binding by specifying only
the type of the interface and not its instance

m Allowed an importer to bind to multiple exporting
machine: useful in some open-ended
multimachine algorithms

"
Communication Protocol

m Aimed at minimizing the elapsed real-time for a call

m Strove to minimize the server load by substantial numbers of users

m Byte stream protocols (e.g. socket) were targeted at bulk data
transfers, incurring a high cost for connection setup and tear-down

m Large data transferring protocols also required maintenance of
substantial state information during a connection

m RPC send/reply messages were usually small (one or two packets),
it needed a special-designed, efficient transport layer protocol

" JEE
Simple Calls

m Call packet contains an identifier, desired procedure data
and the arguments

m Result packet contains the same identifier and the
results data

m A packet is retransmitted if no acknowledgement
received; no new calls initiated until getting results back

m Call identifier containing calling machine identifier

(address), calling process identifier and a sequence
number could eliminate duplicate call packets

Simple Calls (contd)

Caller machine Callee machine
User RPC +Stub RPC + Stub Sarver
Call[CalliD, digpatcherHint,
ispatcheriD, proced: ts]
call send call pkt |-= er ure, arguments] [;. voke proc Y do call
await ack
or result
é_ return M{CalllD, results] send resuilts é return

Fig.3. The packets transmitted during a simple call.

Complicated Calls

m Explicit acknowledgements are used to handle lost
packets, long duration calls and long intervals between

calls

m Caller periodically sends probe packet expecting the
callee to acknowledge

m Detects communication failures only, but couldn’t detect
deadlocked callee, keeping RPC semantics similar to
local procedure call

m Large arguments or results are sent in multiple packets,
with the last one requesting explicit acknowledgement

Complicated Calls (contd)

Caller machine Callee machine
User APC + Stub RPC + Stub Server
Call[CallD, Pkt LEL]
cali 9 sand call pkt 2[CalliD, Pk1=0, pleaseAck; ...] HSHH arg record
Wait for ack
Ack[CalliD, Pkt =0]
build next pt wait next pkt
Transmitit Data[CalllD, Pkt = 1, dontAck, | ; call 9 do call
Wait for pkt
D il =
Retrangmit ata[CalllD, Pkt = 1, pleassAck,]
'Wait for ack \L
A [l =1
ckCalllb, Pkt =1] acknowledge
‘Wait for result
\l/ Result[CalllD, Pkt = 2, dontAck,
< return { s SO] Send result é return
Wait for ack
Result{CalliD 2,
esult[CalliD, Pkt = 2, pleaseAck,] Retraredt
\L ‘Wait for ack
Ack[CalllD, Pkt = 2]
idle

Exception Handling

m Exceptions called signals.

m An exception packet replaces a result packet if

an exception happens

m RPCRuntime on the caller machine handles the
exception packet and activates the catch phase

if any

m Callee machine gets notified to resume or
unwind the procedure activations

" JE
Optimizations

m Maintains a pool of idle server processes on the
callee machines; excess server processes Kkill
themselves upon completion

m The successive new calls would be dispatched
to the server process that handled the previous
call in the same calling activity

m In simple calls no processes created; typically
only four process swaps in each call

" JEE
Sun RPC case study

m Best known UNIX PRC

m Designed for Network File System (NFS)

m XDR - Interface Definition Language
Interface name: program number, version number
Procedure identifier: procedure number

program STATELESS FS_PROG {
version STATELESS_FS_VERS {
Data READ(readargs) = 1,
Nbytes WRITE(writeargs) = 2;
=1
} = 0x20000000;

program number, version number plus procedure number uniquely identify a
remote procedure

10

" JE
Sun RPC case study (contd)

m rpcgen — generator of RPC components
Client stub procedure
Server stub procedure
Server main procedure
Dispatcher

Marshalling and unmarshalling procedures:

used by client and server stub procedures

g
An example using Sun RPC

Write add.x specification file for a remote procedure interface
Call rpcgen: rpcgen add.x
. add_svc.c: server stub
add_clnt.c: client stub
add_xdr.c: xdr filters file: (un)marshalling

3. Create client executable:
gcc —o client client.c add_xdr.c add_client.c —Irpcsvc —Insl
4, Create server executable:
gcc —o server server.c add_xdr.c add_svc.c —Irpcsve —Insl
. Start server process: server &
6. Make a remote procedure call:
client hostname 100 250
7. Or make a local procedure call:
client localhost 100 250

11

" JEE
The steps in creating an RPC application in Sun RPC

Client Prg Idl in rpcl
Idl Comp rpcgen |

Clnt Hﬂad XDR. Ser
Stub arfile filters Stub
v v
|CCOITID | |Cc0mu | |Ccomu | ‘Ccomu |
v v v v
Client Clnt Stub Server Stub Sarver
Objact file object file object filz object filz

/

Client side Server side -
‘ Rpc runtime Rpc runtime ’

Library Library

Client Server
Exe file Exe file

g
Sun RPC Binding

m Binding — portmapper

Server: register ((program number, version

number), port number)

Client: request port number by (program

number, version number)

12

" JE
Sun RPC Security

m Unix-style authentication
Each request contains the credentials of the
user, e.g. uid and gid of the user
Access control according to the credential
information

m DES-style authentication
Data Encryption Standard (DES) used for
encryption
Referred as secure RPC

"
Conclusion

m Easy to write distributed application with
RPC

m RPC is efficient and has low costs

m Simple and similar semantics to local
procedure calls

m Secure and reliable

13

"
References

m Andrew D. Birrell, Brue Jay Nelson,
Implementing Remote Procedure Calls,
ACM Transactions on Computer Systems,
1984

m Pradeep K Sinha, Distributed Operating
Systems Concepts and Design, IEEE
Press, 1997

14

