
1

Implementing Remote 
Procedure Calls

Presented by Xingbo Gao
COP6614 Operating Systems Techniques
9/15/2005

Outline

RPC Introduction
PRC Structure
Client-Server Binding
Communication Protocols
Case Study: Sun RPC
Conclusion



2

RPC Introduction
- History and Design Motivation

Procedure calls are well-known and well-understood
Message passing emerged in mid 80s
Socket programming also appeared in the beginning of 
80s in BSD 4.x
Difficult to develop distributed applications
1981 Nelson's doctor dissertation extensively examined 
the design possibilities
1984 BIRRELL and NELSON developed the initial RPC 
packages at Xerox

RPC Model
Caller
(client process)

Callee
(server process)

Call procedure and
wait for reply

Resume execution

Request message
(parameters)

Reply message
(result)

Start procedure execution

Procedure
execution

Send reply



3

RPC advantages

Simple call syntax
Similar semantics to local procedure calls
Well-defined interface
Ease of use
Generality
Efficiency: simple and quick
Works on different machines and a single 
machine

Components and Call interactions

local
call

local
return

Pack
argument

Unpack
result

transmit

wait

receive

receive

transmit

Unpack
argument

Pack 
result

call

return

work

User User-stub RPCRuntime RPCRuntime Server-stub Server

importer exporter importer exporter

Caller machine Callee machine

interface interface

Network



4

Example One (remote computing)

N=add(a,b)
add
a

b

add

a
b

int add(a,b)
{

return(a+b);
}

Stubs

Kernel Kernel

Network communication

User Machine Server Machine

Example Two (stateful file server)

fid Mode R/W
pointer

.

.

.
.
. .

.
.
.

Open (filename, mode)

Return (fid)

Read (fid, 100, buf)

Return (bytes 0 to 99)

Read (fid, 100, buf)

Return (bytes 100 to 199)

Client Process Server Process



5

Client-Server Binding

Naming: how does a client specify what he 
wants to be bound to?

Location: how does a caller determine the 
machine address of the callee and specify 
to the callee the procedure to be invoked?

Client-Server Binding (contd)

Grapevine Entries

Individuals

Connect-site

Groups

Member-list

Grapevine Entries

Server2.NelsonServer1.Nelson FileAccess.Nelson

Server 2 IPServer 1 IP Server1.Nelson, Server2,Nelson

typeinstance 1 instance 2

(Includes two instances)

Grapevine Structure Example: one type + two instances

typeinstance



6

Sequence of events in binding and a subsequent call

Binding Scheme Discussion

Independent data structures in the exporting 
machine
Unique identifier for each import/export interface
Access controls on Grapevine database for two-
way authentication
Supported dynamic binding by specifying only 
the type of the interface and not its instance
Allowed an importer to bind to multiple exporting 
machine: useful in some open-ended 
multimachine algorithms



7

Communication Protocol
Aimed at minimizing the elapsed real-time for a call
Strove to minimize the server load by substantial numbers of users
Byte stream protocols (e.g. socket) were targeted at bulk data 
transfers, incurring a high cost for connection setup and tear-down
Large data transferring protocols also required maintenance of 
substantial state information during a connection
RPC send/reply messages were usually small (one or two packets),
it needed a special-designed, efficient transport layer protocol

Simple Calls

Call packet contains an identifier, desired procedure data 
and the arguments
Result packet contains the same identifier and the 
results data
A packet is retransmitted if no acknowledgement 
received; no new calls initiated until getting results back
Call identifier containing calling machine identifier 
(address), calling process identifier and a sequence 
number could eliminate duplicate call packets



8

Simple Calls (contd)

Complicated Calls

Explicit acknowledgements are used to handle lost 
packets, long duration calls and long intervals between 
calls
Caller periodically sends probe packet expecting the 
callee to acknowledge
Detects communication failures only, but couldn’t detect 
deadlocked callee, keeping RPC semantics similar to 
local procedure call
Large arguments or results are sent in multiple packets, 
with the last one requesting explicit acknowledgement



9

Complicated Calls (contd)

Exception Handling

Exceptions called signals.
An exception packet replaces a result packet if 
an exception happens
RPCRuntime on the caller machine handles the 
exception packet and activates the catch phase 
if any
Callee machine gets notified to resume or 
unwind the procedure activations 



10

Optimizations

Maintains a pool of idle server processes on the 
callee machines; excess server processes kill 
themselves upon completion
The successive new calls would be dispatched 
to the server process that handled the previous 
call in the same calling activity
In simple calls no processes created; typically 
only four process swaps in each call

Sun RPC case study
Best known UNIX PRC
Designed for Network File System (NFS)
XDR – Interface Definition Language

Interface name: program number, version number
Procedure identifier: procedure number

program STATELESS_FS_PROG {
version STATELESS_FS_VERS {

Data READ(readargs) = 1;
Nbytes WRITE(writeargs) = 2;

} = 1;
} = 0x20000000;

program number, version number plus procedure number uniquely identify a 
remote procedure



11

Sun RPC case study (contd)

rpcgen – generator of RPC components
Client stub procedure
Server stub procedure
Server main procedure
Dispatcher
Marshalling and unmarshalling procedures: 
used by client and server stub procedures

An example using Sun RPC
1. Write add.x specification file for a remote procedure interface
2. Call rpcgen: rpcgen add.x

• add_svc.c: server stub
• add_clnt.c: client stub
• add_xdr.c: xdr filters file: (un)marshalling

3. Create client executable:
gcc –o client client.c add_xdr.c add_client.c –lrpcsvc –lnsl

4. Create server executable:
gcc –o server server.c add_xdr.c add_svc.c –lrpcsvc –lnsl

5. Start server process: server &
6. Make a remote procedure call: 

client hostname 100 250
7. Or make a local procedure call: 

client localhost 100 250



12

The steps in creating an RPC application in Sun RPC

Sun RPC Binding

Binding – portmapper

Server:  register ((program number, version 
number), port number)

Client: request port number by (program 
number, version number)



13

Sun RPC Security

Unix-style authentication
Each request contains the credentials of the 
user, e.g. uid and gid of the user
Access control according to the credential 
information

DES-style authentication
Data Encryption Standard (DES) used for 
encryption
Referred as secure RPC

Conclusion

Easy to write distributed application with 
RPC
RPC is efficient and has low costs
Simple and similar semantics to local 
procedure calls
Secure and reliable



14

References

Andrew D. Birrell, Brue Jay Nelson, 
Implementing Remote Procedure Calls, 
ACM Transactions on Computer Systems, 
1984
Pradeep K Sinha, Distributed Operating 
Systems Concepts and Design, IEEE 
Press, 1997


