
A Hardware Architecture 
for Implementing 
Protection Rings

Gaelen Hadlett



Introduction

• Why?

• What?

• How?

• Where?



Access Control

• Protection of Computation and Information

• Multiple Users with Different Goals

• Interaction or Exclusion

• Stored Information

• Data and Executables



Evaluation Criteria

• Four Criteria to Judge Usefulness

• Functional Capability

• Economy

• Simplicity

• Programming Generality



Functional Capability

• Meet Variety of Protection Needs

• Natural Flow

• Maximize Capabilities



Economy

• Complexity, Inconvenience, Storage

• Keep Cost Low To Keep Options Open

• Cost Proportional To Capability

• Specific and General Needs



Simplicity

• Tied to Economy

• K.I.S.S.

• Complexity Implies Insecurity

• Easily Understood

• Confident in Usage



Programming Generality

• Combinable Procedures

• Unaffected Internal Structure



Virtual Memory 
Overview

• Independent Segments

• Addressed (s, w)

• Segment Descriptor Words

• Addresses Single Segment

• Processor Provides Translations

• Occurs For Every Access

• Facility for Separate Memory



Multics Overview

• Three Basic Assumptions

• Process with New Virtual Memory for 
Each User

• Storage Organized as Collection of 
Segments

• Access Limited to Users by Segments 
Access Control List



Access Control 
Mechanisms

• Write, Read, Execute Flags

• Stored in sdw of Segment

• Access Determined in Translation

• No Provisions for Level of Access



Protection Rings

• Fixed Number of Domains

• r rings from 0 through r-1

• Decreasing Capabilities

• Capabilities of m subset of n, where m > n

• Highest Level of Access at Ring 0



Protection Rings

• Read, Write, Execute Flags

• Encode off or level of extent

0 1 2 3 4 5 6
Read = on
Write = on

Execute = off
read bracket

write bracket



Partial Implementation

0 1 2 3 4 5 6
Read = on
Write = on

Execute = on
write bracket

exec bracket

0 1 2 3 4 5 6
Read = on
Write = on

Execute = off
read bracket

write bracket

read bracket



Protection Rings

• Protected from higher rings

• Changing domains carefully controlled

• Changes restricted through gates

• Execution must be transfered to gate

• Gate extensions provide gate transfer

• Also stored in sdw



Protection Rings

• Upward Transfers

• No special gates required

• Following instruction must be executable 
in new ring

• Execution Bracket

• Not always lowest level

• Standard libraries have high level



Gate Extentions

0 1 2 3 4 5 6
Read = on
Write = off

Execute = on
Gate list = 0, 1, 2

write
exec

read

gate extension



Access Calls

• Downward Calling

• More Access

• Steady Calling

• Same Access

• Upward Calling

• Less Access



Downward Calling

• Assume cooperation from lower rings

• Call to gate of lower ring

• Called function has full access

• Implied by nested structure



Downward Calling

• Three Problems

• Called area must find new stack area

• Way to validate references

• Positive about callers ring level



Steady Calling

• Call and Return Without Ring Change

• No Protection Problem

• Same Set of Access Capabilities

• Same Mechanism as Downward Calling



Upward Calling

• Upward Call, Downward Return

• Ring n Calls Ring m Where m > n

• Two Major Problems

• Caller References Protected Arguments

• Called Has Less Access

• Gate Required For Return Call



Conclusion

• Easily Create Protected Subsystems

• Layered Implementation of Supervisor

• Self Protection



References

Schroeder, M. D. and Saltzer, J. H. , A Hardware 
Architecture for Implementing Protection 
Rings, Communications of the ACM 15(3), 
March 1972, pp. 157-170. 



Questions?


