
Time, Clocks, and the Ordering 
of Events in a Distributed System

Leslie Lamport

Presented by Mark Colbert



Overview

• Why Order?

• Partial Ordering

• Logical (Lamport) Clocks

• Mutual Exclusion

• Physical Clocks

• References



Why Order?

• Distributed Systems 

• Mutual Exclusion

• Database Serialization



Partial Ordering

• usually we order by physical time

• cannot perfectly synchronize clocks

• a “happened before” b

• what if b “happened before” a too?

• concurrent



Logical (Lamport) Clocks

• use notion of partial ordering to find an 
arbitrary total ordering

• logical clocks do not require any basis in 
physical time, just a counter

• clock ticks represented by passing events

• processes send messages to one another 
with timestamps (current time for process)



Logical (Lamport) Clocks

• rules for logical clocks

• each process increments its counter 
(clock) after every event

• if an event is a message, set the counter, c, 
to:
c = max(timestamp + 1, c + 1)



Using Logical Clocks
pr

oc
es

s 
P

pr
oc

es
s 

Q

pr
oc

es
s 

R

0

1

2

3

0

1

4

5

0

1

2

3

4

5
6

7

8

10
9

4

5
11

10

11



Example
pr

oc
es

s 
P

p1

p2

p3

p4

pr
oc

es
s 

Q

q1

q2

q3

q4

q5

q6

pr
oc

es
s 

R

r1

r2

r3

r4

q7



Example
pr

oc
es

s 
P

p1

p2

p3

p4

pr
oc

es
s 

Q

q1

q2

q3

q4

q5

q6

pr
oc

es
s 

R

r1

r2

r3

r4

q7

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7



Mutual Exclusion

• Shared resource between processes

• Requirements

• A process must release a resource before 
another can obtain

• Different requests must be granted in the 
order they were requested

• Every process which is granted the 
resource must release it



Mutual Exclusion

P0

Pj

Pk

request queue

m

m
request message

Centralized 
Approach

...
(scheduler)



Mutual Exclusion

• Centralized Approach

• does not guarantee order

• suppose Pj sends a request to P0 then 
sends a message to Pk

• upon receiving the message, Pk sends a 
request that arrives before Pj’s request

• order is broken



Mutual Exclusion

Pi

Pj

Pk

...

request queue

Tm

Tm

Tm

Tm

time stamped
request message

Lamport’s 
Approach



Mutual Exclusion

Pi

Pj

Pk

...

request queue

Ta

Ta

Ta

Ta

time stamped
acknowledgment 

message

Lamport’s 
Approach



Mutual Exclusion
• Lamport’s Approach (Obtaining)

• Pi broadcast request message to all 
processes with time stamp

• each process adds the request to its 
request queue and sends a time stamped 
acknowledgment 

• obtains access if request is first on Pi’s 
request queue and Pi receives a message 
from all processes with a time stamp no 
later than original broadcasted time stamp



Mutual Exclusion

• Lamport’s Approach (Release)

• broadcast a message to all other 
processes releasing the resource

• process removes resource request from 
queue



Physical Clocks

• Similar notion, except that difference 
between time must be minimal

• Update the clock

• t = max(t’, Tm + Ts)

• t’ - current time of the clock

• Tm - time stamp of the message

• Ts - minimum delay for the message to 
travel



References

• Lamport, L., Time, Clocks, and Ordering of 
Events in a Distributed System, 
Communications of the ACM, July 1978

• Bic, L., Shaw, A., 
Operating Systems Principles
Prentice Hall, 2003


