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Why Order?

• Distributed Systems 

• Mutual Exclusion

• Database Serialization



Partial Ordering

• usually we order by physical time

• cannot perfectly synchronize clocks

• a “happened before” b

• what if b “happened before” a too?

• concurrent



Logical (Lamport) Clocks

• use notion of partial ordering to find an 
arbitrary total ordering

• logical clocks do not require any basis in 
physical time, just a counter

• clock ticks represented by passing events

• processes send messages to one another 
with timestamps (current time for process)



Logical (Lamport) Clocks

• rules for logical clocks

• each process increments its counter 
(clock) after every event

• if an event is a message, set the counter, c, 
to:
c = max(timestamp + 1, c + 1)



Using Logical Clocks
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Mutual Exclusion

• Shared resource between processes

• Requirements

• A process must release a resource before 
another can obtain

• Different requests must be granted in the 
order they were requested

• Every process which is granted the 
resource must release it



Mutual Exclusion
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Mutual Exclusion

• Centralized Approach

• does not guarantee order

• suppose Pj sends a request to P0 then 
sends a message to Pk

• upon receiving the message, Pk sends a 
request that arrives before Pj’s request

• order is broken



Mutual Exclusion
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Mutual Exclusion
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Mutual Exclusion
• Lamport’s Approach (Obtaining)

• Pi broadcast request message to all 
processes with time stamp

• each process adds the request to its 
request queue and sends a time stamped 
acknowledgment 

• obtains access if request is first on Pi’s 
request queue and Pi receives a message 
from all processes with a time stamp no 
later than original broadcasted time stamp



Mutual Exclusion

• Lamport’s Approach (Release)

• broadcast a message to all other 
processes releasing the resource

• process removes resource request from 
queue



Physical Clocks

• Similar notion, except that difference 
between time must be minimal

• Update the clock

• t = max(t’, Tm + Ts)

• t’ - current time of the clock

• Tm - time stamp of the message

• Ts - minimum delay for the message to 
travel
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