
A NonStop Kernel

�� �� �� �� �	 �� ��

�� �� �� �� �	 �� ��

�� �� �� �� �	 �� ��

�� �� �� �� �	 �� ��

�� �� �� �� �	 �� ��

� � �� �� ��

�
�

�
�

��
��

��
��

�� �� �� �� � !" #$ %& '()*

+, -. /0 12 34 +, -. /0 12 34 +, -. /

56 78 9: ;< => 56 78 9: ;< => 56 78 9: ;< => 56 56 78 9: ;< => 56 78 9?@ AB CD EF GH ?@ AB CD EF GH ?@ AB CD EF GH ?@ ?@ AB CD EF GH ?@ AB

IJ KL MN OP QR IJ KL MNST UV WX YZ [\ ST UV]^ _` ab cd ef]^ _` ab cd ef gh ij kl mn op gh ij kl mn op

Luke Levesque
COP6614

Outline

Hardware and Fault Models
NonStop Kernel
Messages
System bus
Process pairs
Additional Issues
Recent Improvements

Introduction

Timeframe: late 70s early 80s.
Fault-tolerant hardware and operating systems had been around
for a while, but they were special-purpose (telephone equipment,
etc.)
Needed an expandable, general purpose fault-tolerant system for
many different commercial needs (banks, airlines, etc.).

Primarily transaction processing
Enter Tandem Computers and the NonStop kernel.

Specialized hardware coupled with the kernel
Designed to be online and operational 24/7 even "in the
presence of a single fault".

Hardware

System is a network of nodes
Redundancy is the key here
Each node contains two or more processors

Each has memory, power supplies, etc..
16-bit processors

Redundant busses, disk I/O, and disks
Busses are faster than CPU to keep data
moving across all nodes

Hardware

CPUs are stack-oriented
1K words (512KB)
ECC RAM with double detection
Battery backup
Separate code and data areas

Data can be viewed as stack or flat
All I/O was with DMA

 Instruction set has built in support for sending
messages (microcoded)

Hardware

Received messages are placed in buffer and an
interrupt given (memory access vs. instruction)
Entire system may be located locally or at
remote locations

Up to 255 processors

CPU was microcoded

qr st uv wx yz qr st uv wx yz qr st uv wx yz qr qr st uv wx y{| }~ � � �� �� ��� �� �� ��� �� �� �� �� �� �� �� �� �� �� ��� �� �� �� � �� �� �� �� � �� �� �� �� � �� �� �� �� �� �

¡¢ £¤ ¥¦ §¨ ©ª ¡¢ £¤ ¥¦ §¨ ©«¬ ® ¯° ±² ³´ «¬µ¶ ·¸ ¹º »¼ ½¾ µ¶ ·

¿À ÁÂ ÃÄ ÅÆ ÇÈ ¿À ÁÂ ÃÄ ÅÆ ÇÈ

¿À ÁÂ ÃÄ ÅÆ ÇÈ ¿À ÁÂ ÃÄ ÅÆ ÇÈ

ÉÊ ËÌ ÍÎ ÏÐ ÑÒ ÉÊ ËÌ ÍÎ ÏÐ ÑÒ

ÓÔ ÕÖ ×Ø ÙÚ ÛÜ ÓÔ ÕÖ ×Ø ÙÚ ÛÜ ÓÔ ÕÖ ×Ø Ù

ÓÔ ÕÖ ×Ø ÙÚ ÛÜ ÓÔ ÕÖ ×Ø ÙÚ ÛÜ ÓÔ ÕÖ ×Ø Ù

ÓÔ ÕÖ ×Ø ÙÚ ÛÜ ÓÔ ÕÖ ×Ø ÙÚ ÛÜ ÓÔ ÕÖ ×Ø Ù
ÝÞ

ÝÞ
ÝÞ

ßà á
ßà á

ßà á âãä åæ çè éê ë âãä åæ çè éê ë âã

ìí îï ðñ òó ôõ ìí îï ðñ òó ôõ ìíö÷ øù úû üý þÿ ö÷ øù úû üý þÿ ö

ö÷ øù úû üý þÿ ö÷ øù úû üý þÿ ö

ö÷ øù úû üý þÿ ö÷ øù úû üý þÿ ö

Hardware Layout CPU
Dynabus

CPU0

CPU2
I/O
Bus

CPU1
I/O
Bus

CPU1 CPU2

Disk
Controller 0 Disk

Controller 1

Disk Drive 0

Disk Drive 1

Tape Controller

Tape Drive

CPU0
I/O
Bus

Async I/O Controller

Terminals

Sync I/O

To other node

To other node

Hardware Fault Model

Single fault should not bring down system
Redundancy helps with this

Must be able to repair and reintegrate while
online
Types of faults:

Power supply, processor, memory: Disables that
processor
Interprocessor bus or I/O channel: Disables that
bus
I/O Controller: Disables the controller

Hardware Fault Model

Physical events that create a fault:
Permanent hardware failure. Uses recovery
algorithm to prevent data loss.
Intermittent hardware failures are difficult to
detect. May corrupt data. Fail-fast.
External factors (A/C breaks, 'user error', etc.)

Corruption-free recovery is important in all
cases!

NonStop Kernel Overview
System provides many advanced feature:

Multiprogramming
1 gig of virtual memory per processor
Reliable Communication (inter-process and
interprocessor)
Fault tolerant
Modular and Expandable
Everything is a file (abstraction)
SQL/Database integrated with file system

NonStop Kernel - Inspiration

Such a kernel had never been done before, so
no existing work to study
Authors instead took inspiration from:

Brinch Hansen's Nucleus: Detailed reliable
message passing between processes and devices
and the API needed to support it.
Dijkstra's THE system: Rings of protection with
levels of abstraction.

NonStop Kernel - Processes
Processors support 256 processes each
Code sharing allowed
Cost of context switch is mostly because of memory
mapping
All processors have both a monitor and memory manager
process

Monitor function creates/removes processes, controls
the message system, responds to information queries,
and fault recovery/management

Processid composed of: node number, processor number,
process number, and a timestamp or symbolic name

NonStop Kernel - Processes

Process synchronization primitives
Counting semaphores

Used mostly within the kernel for access to shared I/O,
etc..

Local event flags
Signals the process that a specific event has occurred

Disk I/O complete
Incoming message from another process
Message has been completed elsewhere

Primitives are not exhaustive

Messages

Any sort of communication outside a process is done
with messages.

Even system calls, such as creating a new process
Shared memory does not exist in system, even among
local processes

Messages can be queued FIFO or by priority
Message interface hides details of sending and receiving

Includes location of process and any sort of transmission
errors

Messages consist of a request and a response

Messages

This methology is very similar to making a function call
and getting a result

Each request is acknowledged, to improve fault tolerance
Also allows for background processing of requests
This is NOT RPC

Application is not allowed direct access to messages at all
Accomplished using standard user/supervisor mode of
processor
Gives OS complete control over handling messages and
error conditions

Messages
Messages are sent by value, NOT address
System status messages can be sent without expecting a reply

No buffer can be used
Messages may be queued up internally (no need to service
right away)
Message cancellation provides a way to signal other hardware
or software failures not necessarily caused by the two
processes

Might trigger recovery algorithms in processes as needed
Cleans up waiting messages if process or processor fails

Message Resource Control

Risk using up lots of resources when sending messages
Need to keep resources available for system messages
and to avoid monopolization
Resources also need to be available to receive incoming
messages
Solution

LCBs (Link Control Block) for sending and receiving can
be reserved in advance by OS and processes
An additional pool of the remaining LCBs can be utilized if
all reserved LCBs are in use

Message Resource Control

Solution
If an LCB cannot be obtained after 10 seconds
(hardcoded value), the call will fail and no message
can be sent until an LCB is freed
Message buffers are allocated as needed and from
different pools depending on the type of request
Server processes have some buffer pools
permanently allocated so they can always service
requests

System Bus Protocol

Messages between processes on the same processor is
easy
Messages to other processors and nodes need to detect
and handle errors seamlessly
Types of errors

Process does not exist
Other processor is off-line
No free LCB

Recovery mechanism was desired to be as simple as
possible yet fulfill all requirements

System Bus Protocol

Message packets sent with sequence numbers
and checksum
After transmission, sender puts packet info on
Wait ACKnowledge (WACK) list

When packet is acknowledged, it is taken off the
list
If packet not acknowledged in 1 second, packet is
resent on secondary bus

Repeat failures mark that route as down

System Bus Protocol
When packets arrive at a processor (signaled by an
interrupt), it checks:

Sequence numbers are as expected
Checksum is good
Correct Routing

On error, packet is flushed. Sender must do error
handling on its own.
Info about each processor and their packets is
maintained in the Bus Receive Table (BRT)
ACKs are sent unsequenced or piggybacked as needed

System Bus Protocol

How do we know CPUs are alive and well?
Every second, each processor sends an
unsequenced ACK over both busses to each
processor

Also serves to clean up from lost message
ACKs

If processor is not heard from within two
seconds, it is marked as down and all messages
destined to it are canceled

Process Pairs
Hardware is redundant, but what about applications or I/O
device drivers?
Solution is process-pairs

Pair of processes and symbolic name make up an I/O
device driver or application process
Primary process (of the pair) handles requests and
sends checkpoint data to backup process so that it is
up to date
If the primary process fails, the backup process can
take over without delay and without service
interruption

Process Pairs

A symbolic name is associated with BOTH
primary and backup processes in a name table
on each node
When a message is sent to the named process,
the table directs the message to the primary
process

If the process was down, the table entries are
swapped and the message resent to the backup
process

Process Pairs Error Recovery

More advanced error recovery needed during
non-retryable requests (database modifications,
voting tabulation, etc..)
A system of tracking such requests must be used
to prevent certain requests from being
processed more than once
Such requests are assigned sequence numbers to
aid in synchronization between processes

Process Pairs Error Recovery

Example: R and R' are primary/backup
requester. S and S' are primary/backup server.
1. R=0 R'=0 --> S=0 S'=0

2. IF req seq < my seq, THEN return saved status

3. R=0 R'=0 S=0 --> S'=0
4. R=0 R'=0 S=1 --> S'=1
5. R=1 R'=0 <-- S=1 S'=1
6. R=1 --> R'=1 S=1 S'=1

Process Pairs Error Recovery

If R' or S' fail, the operation is not affected
If R fails just after making the request, R' repeats
the request. S will just send the saved status.
If S fails during the operation, S' becomes S and
either does nothing or completes the operation.

R may resend the request, and the request will
either be done or the saved status returned
Could be a small window for operations to be
physically repeated

Additional Issues

Some performance loss due to message passing
Offset against fault tolerance

Can be difficult to develop process pairs
High level languages (COBOL) can do some of
this automatically

Designing a good online application is the most
difficult part

Monolithic
Too many processes

Additional Issues

In transaction systems, the CPU is used to move
data around, with very little processing
Improving memory access will therefore
improve performance

More processors are often added just for this
reason - more memory!

Recent NonStop
Improvements

Interprocessor communication was converted
into fiber optics (FOX system). Reduced
electrical noise issues.

Store and forward with multiple paths

Before going to MIPS processors in the 90s,
certain models had microcode in RAM to allow
processor updates
More I/O channels
Special dual diagnostic processors

Recent NonStop
Improvements

Spare RAM
Newer versions of the hardware, such as in the
S-series, use lockstep processors

Two processors perform the same operations
Output from both is compared to detect failure

Moved from MIPS processors to Itanium in 2003
Loose lockstepping
Mostly common components

Processors still use share-nothing architecture!

Conclusion

No previous work on continuous uptime
Tandem created a system capable of continuous
operation even during a hardware or software
fault

Everything is redundant in hardware and
software

Message-oriented system
Corruption of data is avoided during fault

Bartlett, Joel: A NonStop Kernel, Tandem Computers, 1981.
Bartlet, Joel, et al. Fault Tolerance in Tandem Computer Systems.
Tandem publication 90-5. May 1990.
Dijkstra, E. W., The Structure of the "THE" Multiprogramming
System. Comm. ACM 11, May 1968, pp. 341-346.
Brinch Hansen, P., The Nucleus of a Multi-Programming System,
Comm. ACM 13, April 1970, pp. 238-241, 250.
HP NonStop Advanced Architecture FAQ.
http://www.hp.com/go/nonstop. Feb 2004.
HP NonStop Kernel Product Description.
http://www.hp.com/go/nonstop. Sept 2002.

References

