A NonStop Kernel

- Luke Levesque
COP6614

Outline

=Hardware and Fault Models
=NonStop Kernel

=mMessages

mSystem bus

=Process pairs

= Additional Issues

mRecent Improvements

Introduction

= Timeframe: late 70s early 80s.

= Fault-tolerant hardware and operating systems had been around
for a while, but they were special-purpose (telephone equipment,
etc.)

=Needed an expandable, general purpose fault-tolerant system for
many different commercial needs (banks, airlines, etc.).

> Primarily transaction processing
=Enter Tandem Computers and the NonStop kernel.
> Specialized hardware coupled with the kernel

~ Designed to be online and operational 24/7 even "in the
presence of a single fault".

" = = = = = = = = A

Hardware

mSystem is a network of nodes
» Redundancy is the key here
» Each node contains two or more processors
e Each has memory, power supplies, etc..
e | 6-bit processors

» Redundant busses, disk I/O, and disks

e Busses are faster than CPU to keep data
moving across all nodes

" = = = = = = = = A

Hardware

= CPUs are stack-oriented
~ IK words (512KB)
» ECC RAM with double detection
~ Battery backup
~ Separate code and data areas

e Data can be viewed as stack or flat
» All I/0O was with DMA

= [nstruction set has built in support for sending

messages (mjcrocoded) .

Hardware

mReceived messages are placed in buffer and an
interrupt given (memory access vs. instruction)

mEntire system may be located locally or at
remote locations

~ Up to 255 processors
= CPU was microcoded

™

| | | | | | | N
Hardware Layout cPu
Dynabus
CPUO Llcpus CPUD
Sync I/O
Disk i\ISk Di) I/' el Dick — 1o other node
is
Controller 0 Di§k—Bn7v?' 1 | controller 1 —To other node
U
CPUO CPU1 CPU2
1/0 Tape Controller 110 /O
Async I/O Controller
['FEr' inals
| | | | | || |

A

Hardware Fault Model

=Single fault should not bring down system
> Redundancy helps with this

=Must be able to repair and reintegrate while
online
= Types of faults:

- Power supply, processor, memory: Disables that
processor

> Interprocessor bus or I/O channel: Disables that

b-us [| [| [| [| [| [|
» |/O Controller: Disables the controlleA

Hardware Fault Model

=Physical events that create a fault:

> Permanent hardware failure. Uses recovery
algorithm to prevent data loss.

» Intermittent hardware failures are difficult to
detect. May corrupt data. Fail-fast.

- External factors (A/C breaks, 'user error’, etc.)

= Corruption-free recovery is important in all
cases!

NonStop Kernel Overview

mSystem provides many advanced feature:
> Multiprogramming
> | gig of virtual memory per processor

> Reliable Communication (inter-process and
interprocessor)

> Fault tolerant

> Modular and Expandable

~ Everything is a file (abstraction)

> SQL/Database integrated with file system

" = = = = = = = = A

NonStop Kernel - Inspiration

mSuch a kernel had never been done before, so
no existing work to study

= Authors instead took inspiration from:

» Brinch Hansen's Nucleus: Detailed reliable
message passing between processes and devices
and the AP| needed to support it.

> Dijkstra's THE system: Rings of protection with
levels of abstraction.

NonStop Kernel - Processes

mProcessors support 256 processes each

= Code sharing allowed

= Cost of context switch is mostly because of memory
mapping

= All processors have both a monitor and memory manager
process

> Monitor function creates/removes processes, controls
the message system, responds to information queries,
and fault recovery/management

=Processid composed of: node nhumber, processor number,
process humber, and a timestamp or symbolic name

A

NonStop Kernel - Processes

=Process synchronization primitives
> Counting semaphores

e Used mostly within the kernel for access to shared |/O,
etc..

>~ Local event flags

e Signals the process that a specific event has occurred
¢+ Disk I/O complete
+ Incoming message from another process
+ Message has been completed elsewhere

=Primitives are not exhaustive

" = = = = = = = = A

Messages

= Any sort of communication outside a process is done
with messages.

~ Even system calls, such as creating a new process

~ Shared memory does not exist in system, even among
local processes

=Messages can be queued FIFO or by priority
mMessage interface hides details of sending and receiving

> Includes location of process and any sort of transmission
errors

mMessages consist of a request and a response

= = = = = = &= &= A

Messages

= This methology is very similar to making a function call
and getting a result

~ Each request is acknowledged, to improve fault tolerance

>~ Also allows for background processing of requests
> This is NOT RPC

= Application is not allowed direct access to messages at all

~ Accomplished using standard user/supervisor mode of
processor

~ Gives OS complete control over handling messages and
error conditions

Messages

mMessages are sent by value, NOT address
=System status messages can be sent without expecting a reply
> No buffer can be used

= Messages may be queued up internally (no need to service
right away)

mMessage cancellation provides a way to signal other hardware
or software failures not necessarily caused by the two
processes

» Might trigger recovery algorithms in processes as needed
> Cleans up waiting messages if process or processor fails

Message Resource Control

=Risk using up lots of resources when sending messages

=Need to keep resources available for system messages
and to avoid monopolization

mResources also need to be available to receive incoming
messages
=Solution

~ LCBs (Link Control Block) for sending and receiving can
be reserved in advance by OS and processes

~ An additional pool of the remaining LCBs can be utilized if
all reserved LCBs are in use

" = = = = = = = = A

Message Resource Control

mSolution

» |f an LCB cannot be obtained after 10 seconds
(hardcoded value), the call will fail and no message
can be sent until an LCB is freed

~ Message buffers are allocated as needed and from
different pools depending on the type of request

~ Server processes have some buffer pools
permanently allocated so they can always service
requests

System Bus Protocol

=mMessages between processes on the same processor is
easy

mMessages to other processors and nodes need to detect
and handle errors seamlessly
= Types of errors
~ Process does not exist
» Other processor is off-line
> No free LCB

mRecovery mechanism was desired to be as simple as
possible yet fulfill all requirements

" = = = = = = = & A

System Bus Protocol

mMessage packets sent with sequence numbers
and checksum

= After transmission, sender puts packet info on
Wait ACKnowledge (WACK) list

>~ When packet is acknowledged, it is taken off the
list

~ |f packet not acknowledged in | second, packet is
resent on secondary bus

mRepeat failures mark that route as down '

System Bus Protocol

=When packets arrive at a processor (signaled by an
interrupt), it checks:

~ Sequence numbers are as expected
> Checksum is good
» Correct Routing

=On error, packet is flushed. Sender must do error
handling on its own.

=Info about each processor and their packets is
maintained in the Bus Receive Table (BRT)

= ACKSs are sent unsequenced or piggybacked as neided

System Bus Protocol

mHow do we know CPUs are alive and well?

~ Every second, each processor sends an
unsequenced ACK over both busses to each
processor

e Also serves to clean up from lost message
ACKs

~ |f processor is not heard from within two
seconds, it is marked as down and all messages
destined to it are canceled

" = = = = = = = = A

Process Pairs

mHardware is redundant, but what about applications or |/O
device drivers?

mSolution is process-pairs

> Pair of processes and symbolic name make up an /O
device driver or application process

> Primary process (of the pair) handles requests and
sends checkpoint data to backup process so that it is
up to date

> |f the primary process fails, the backup process can
take over without delay and without service

| ir]-tergupt-ion- | | | ‘

Process Pairs

= A symbolic name is associated with BOTH
primary and backup processes in a name table
on each node

=When a message is sent to the named process,
the table directs the message to the primary
process
~ |f the process was down, the table entries are

swapped and the message resent to the backup
process

= = = = = = A

Process Pairs Error Recovery

=More advanced error recovery needed during
non-retryable requests (database modifications,
voting tabulation, etc..)

= A system of tracking such requests must be used
to prevent certain requests from being
processed more than once

mSuch requests are assigned sequence numbers to
aid in synchronization between processes

" = = = = = = = = A

Process Pairs Error Recovery

mExample: R and R'are primary/backup
requester. S and S' are primary/backup server.

=|. R=0 R'=0 --> §=0 S§'=0
> 2. IF req seq < my seq, THEN return saved status
=3. R=0 R'=0 S=0 --> §'=0
=4, R=0 R'=0 S=I| --> §'=|
=5, R=] R'=0<-- S=| §'=|
m6. R=| --> R'=] S=| §'=|

" = = = = = = = = A

Process Pairs Error Recovery

=lf R' or §' fail, the operation is not affected

=[f R fails just after making the request, R' repeats
the request. S will just send the saved status.

=[f S fails during the operation, S' becomes S and
either does nothing or completes the operation.

> R may resend the request, and the request will
either be done or the saved status returned

> Could be a small window for operations to be

physically repeated |

Additional Issues

mSome performance loss due to message passing
» Offset against fault tolerance
= Can be difficult to develop process pairs

~ High level languages (COBOL) can do some of
this automatically

mDesigning a good online application is the most
difficult part

» Monolithic

> Too many processes |
| | | | | | | | |

Additional Issues

=|n transaction systems, the CPU is used to move
data around, with very little processing

=|mproving memory access will therefore
improve performance

~ More processors are often added just for this
reason - more memory!

' Recent NonStop

Improvements
=|nterprocessor communication was converted
into fiber optics (FOX system). Reduced
electrical noise issues.

~ Store and forward with multiple paths

=Before going to MIPS processors in the 90s,
certain models had microcode in RAM to allow
processor updates

mMore |I/O channels

_mSpecial dual diagnostic processors .

' Recent NonStop

Improvements
=Spare RAM

mNewer versions of the hardware, such as in the
S-series, use lockstep processors

~ Two processors perform the same operations

> Output from both is compared to detect failure
=Moved from MIPS processors to Itanium in 2003

~ Loose lockstepping

> Mostly common components

_mProcessors still use share-nothing architec‘e!

Conclusion

=No previous work on continuous uptime

= Tandem created a system capable of continuous
operation even during a hardware or software
fault

~ Everything is redundant in hardware and
software

mMessage-oriented system

= Corruption of data is avoided during fault

" = = = = = = = = A

References

mBartlett, Joel: A NonStop Kernel, Tandem Computers, 1981.

mBartlet, Joel, et al. Fault Tolerance in Tandem Computer Systemes.
Tandem publication 90-5. May 1990.

mDijkstra, E. W., The Structure of the "THE" Multiprogramming
System. Comm. ACM ||, May 1968, pp. 341-346.

=Brinch Hansen, P., The Nucleus of a Multi-Programming System,
Comm. ACM 13, April 1970, pp. 238-241, 250.

=HP NonStop Advanced Architecture FAQ.
http://www.hp.com/go/nonstop. Feb 2004.

=HP NonStop Kernel Product Description.
http://www.hp.com/go/nonstop. Sept 2002.

" = = = = = = = = A

