
Appears in Proceedings of the 4th Symposium on Operating Systems Design and Implementation, 2000

Operating System Management of MEMS-based Storage Devices

John Linwood GriÆn, Steven W. Schlosser,

Gregory R. Ganger, David F. Nagle

Carnegie Mellon University

Abstract

MEMS-based storage devices promise signi�cant

performance, reliability, and power improvements

relative to disk drives. This paper compares and

contrasts these two storage technologies and ex-

plores how the physical characteristics of MEMS-

based storage devices change four aspects of oper-

ating system (OS) management: request schedul-

ing, data placement, failure management, and power

conservation. Straightforward adaptations of exist-

ing disk request scheduling algorithms are found to

be appropriate for MEMS-based storage devices. A

new bipartite data placement scheme is shown to

better match these devices' novel mechanical posi-

tioning characteristics. With aggressive internal re-

dundancy, MEMS-based storage devices can mask

and tolerate failure modes that halt operation or

cause data loss for disks. In addition, MEMS-based

storage devices simplify power management because

the devices can be stopped and started rapidly.

1 Introduction

Decades of research and experience have provided

operating system builders with a healthy under-

standing of how to manage disk drives and their

role in storage systems. This management includes

achieving acceptable performance despite relatively

time-consuming mechanical positioning delays, deal-

ing with transient and permanent hardware prob-

lems so as to achieve high degrees of data surviv-

ability and availability, and minimizing power dissi-

pation in battery-powered mobile environments. To

address these issues, a wide array of OS techniques

are used, including request scheduling, data layout,

prefetching, caching, block remapping, data replica-

tion, and device spin-down. Given the prevalence

and complexity of disks, most of these techniques

have been speci�cally tuned to their physical char-

acteristics.

When other devices (e.g., magnetic tape or Flash

RAM) are used in place of disks, the characteristics

of the problems change. Putting new devices behind

a disk-like interface is generally suÆcient to achieve

a working system. However, OS management tech-

niques must be tuned to a particular device's char-

acteristics to achieve the best performance, reliabil-

ity, and lifetimes. For example, request schedul-

ing techniques are much less important for RAM-

based storage devices than for disks, since location-

dependent mechanical delays are not involved. Like-

wise, locality-enhancing block layouts such as cylin-

der groups [18], extents [19], and log-structuring [24]

are not as bene�cial. However, log-structured �le

systems with idle-time cleaning can increase both

performance and device lifetimes of Flash RAM stor-

age devices with large erasure units [5].

Microelectromechanical systems (MEMS)-based

storage is an exciting new technology that will

soon be available in systems. MEMS are very

small scale mechanical structures|on the order of

10{1000�m|fabricated on the surface of silicon

wafers [33]. These microstructures are created using

photolithographic processes much like those used

to manufacture other semiconductor devices (e.g.,

processors and memory) [7]. MEMS structures can

be made to slide, bend, and de
ect in response

to electrostatic or electromagnetic forces from

nearby actuators or from external forces in the

environment. Using minute MEMS read/write

heads, data bits can be stored in and retrieved

from media coated on a small movable media

sled [1, 11, 31]. Practical MEMS-based storage

devices are the goal of major e�orts at many

research centers, including IBM Zurich Research

Laboratory [31], Carnegie Mellon University [1],

and Hewlett-Packard Laboratories [13].

Like disks, MEMS-based storage devices have unique

mechanical and magnetic characteristics that merit

speci�c OS techniques to manage performance, fault

tolerance, and power consumption. For example,

the mechanical positioning delays for MEMS-based

storage devices depend on the initial and destina-

tion position and velocity of the media sled, just as

disks' positioning times are dependent on the arm

position and platter rotational o�set. However, the

mechanical expressions that characterize sled motion

di�er from those describing disk platter and arm mo-

tion. These di�erences impact both request schedul-

ing and data layout trade-o�s. Similar examples ex-

ist for failure management and power conservation

mechanisms. To assist designers of both MEMS-

based storage devices and the systems that use them,

an understanding of the options and trade-o�s for

OS management of these devices must be developed.

This paper takes a �rst step towards developing this

understanding of OS management techniques for

MEMS-based storage devices. It focuses on devices

with the movable sled design that is being devel-

oped independently by several groups. With higher

storage densities (260{720Gbit/in2) and lower ran-

dom access times (less than 1ms) than disks, these

devices could play a signi�cant role in future sys-

tems. After describing a disk-like view of these de-

vices, we compare and contrast their characteristics

with those of disks. Building on these comparisons,

we explore options and implications for three major

OS management issues: performance (speci�cally,

request scheduling and block layout), failure man-

agement (media defects, device failures, and host

crashes), and power conservation.

While these explorations are unlikely to represent

the �nal word for OS management of these emerg-

ing devices, we believe that several of our high-level

results will remain valid:

� Disk scheduling algorithms can be easily

adapted to MEMS-based storage devices, im-

proving performance much like they do for

disks.

� Disk layout techniques can be adapted usefully,

but the Cartesian movement of the sled (instead

of the rotational motion of disks) allows further

re�nement of layouts.

� Striping of data and error correcting codes

(ECC) across tips can greatly increase a device's

tolerance to media, tip, and electronics faults;

in fact, many faults that would halt operation

or cause data loss in disks can be masked and

tolerated in MEMS-based storage devices.

� OS power conservation is much simpler for

MEMS-based storage devices. In particular,

miniaturization and lack of rotation enable

rapid transition between power-save and active

modes, obviating the need for complex idle-time

prediction and maximization algorithms.

The remainder of this paper is organized as follows.

Section 2 describes MEMS-based storage devices, fo-

cusing on how they are similar to and di�erent from

magnetic disks. Section 3 describes our experimen-

tal setup, including the simulator and the workloads

used. Section 4 evaluates request scheduling algo-

rithms for MEMS-based storage devices. Section 5

explores data layout options. Section 6 describes

approaches to fault management within and among

MEMS-based storage devices. Section 7 discusses

other device characteristics impacting the OS. Sec-

tion 8 summarizes this paper's contributions.

2 MEMS-based storage devices

This section describes a MEMS-based storage device

and compares and contrasts its characteristics with

those of conventional disk drives. The description,

which follows that of Reference [11], maps these de-

vices onto a disk-like metaphor appropriate to their

physical and operational characteristics.

2.1 Basic device description

MEMS-based storage devices can use the same ba-

sic magnetic recording technologies as disks to read

and write data on the media. However, because it

is diÆcult to build reliable rotating components in

silicon, MEMS-based storage devices are unlikely to

use rotating platters. Instead, most current designs

contain a movable sled coated with magnetic me-

dia. This media sled is spring-mounted above a two-

dimensional array of �xed read/write heads (probe

tips) and can be pulled in the X and Y dimensions

by electrostatic actuators along each edge. To ac-

cess data, the media sled is �rst pulled to a speci�c

location (x,y displacement). When this seek is com-

plete, the sled moves in the Y dimension while the

probe tips access the media. Note that the probe

tips remain stationary|except for minute X and

Z dimension movements to adjust for surface vari-

ation and skewed tracks|while the sled moves. In

contrast, rotating platters and actuated read/write

heads share the task of positioning in disks. Fig-

ures 1 and 2 illustrate this MEMS-based storage de-

vice design.

As a concrete example, the footprint of one MEMS-

based storage device design is 196mm2, with 64mm2

of usable media area and 6400 probe tips [1]. Divid-

ing the media into bit cells of 40�40nm, and ac-

counting for an ECC and encoding overhead of 2

bits per byte, this design has a formatted capac-

ity of 3.2GB/device. Note the square nature of the

bit cells, which is not the case in conventional disk

drives. With minute probe tips and vertical record-

El
ec

tro
ni

cs

El
ec

tro
ni

cs

El
ec

tro
ni

cs

Media coats
bottom surface
of sled

Tip
Arrays

1 cm

1 cm

Media
Sled

Chip
Substrate

2 mm

Figure 1: Components of a MEMS-based storage

device. The media sled is suspended above an array of

probe tips. The sled moves small distances along the X

and Y axes, allowing the stationary tips to address the

media.

ing, bits stored on these devices can have a 1-to-1

aspect ratio, resulting in areal densities 15{30 times

greater than those of disks. However, per-device ca-

pacities are lower because individual MEMS-based

storage devices are much smaller than disks. Be-

cause the mechanically-positioned MEMS compo-

nents have much smaller masses than correspond-

ing disk parts, their random access times are in the

hundreds of microseconds. For the default device

parameters in this paper, the average random 4KB

access time is 703�s.

2.2 Low-level data layout

The storage media on the sled is divided into rect-

angular regions as shown in Figure 3. Each region

contains M�N bits (e.g., 2500�2500) and is accessi-

ble by exactly one probe tip; the number of regions

on the media equals the number of probe tips. Each

term in the nomenclature below is de�ned both in

the text and visually in Figure 4.

Cylinders. Drawing on the analogy to disk termi-

nology, we refer to a cylinder as the set of all bits

with identical x o�set within a region (i.e., at identi-

cal sled displacement in X). In other words, a cylin-

der consists of all bits accessible by all tips when the

sled moves only in the Y dimension, remaining im-

mobile in the X dimension. Cylinder 1 is highlighted

in Figure 4 as the four circled columns of bits. This

de�nition parallels that of disk cylinders, which con-

sist of all bits accessible by all heads while the arm

remains immobile. There are M cylinders per sled.

In our default model, each sled has 2500 cylinders

that each hold 1350KB of data.

Tracks. A MEMS-based storage device might have

6400 tips underneath its media sled; however, due

Y Actuator

Beam Spring

X Actuator

Media
Area

Y Actuator

X Actuator

Media Anchor

Figure 2: The movable media sled. The actuators,

spring suspension, and the media sled are shown. An-

chored regions are solid and the movable structure is

shaded grey.

to power and heat considerations it is unlikely that

all 6400 tips can be active (accessing data) concur-

rently. We expect to be able to activate 200{2000

tips at a time. To account for this limitation, we

divide cylinders into tracks. A track consists of all

bits within a cylinder that can be read by a group

of concurrently active tips. The sled in Figure 4 has

sixteen tips (one per region; not all tips are shown),

of which up to four can be concurrently active|

each cylinder therefore has four tracks. Track 0 of

cylinder 1 is highlighted in the �gure as the leftmost

circled column of bits. Note again the parallel with

disks, where a track consists of all bits within a cylin-

der accessible by a single active head. In our default

model, each sled has 6400 tips and 1280 concurrently

active tips, so each cylinder contains 5 tracks that

each hold 270KB of data. Excluding positioning

time, accessing an entire track takes 3.47ms.

Sectors. Continuing the disk analogy, tracks are

divided into sectors. Instead of having each active

tip read or write an entire vertical column of N bits,

each tip accesses only 90 bits at a time|10 bits of

servo/tracking information and 80 data bits (8 en-

coded data bytes). Each 80-data-bit group forms

an 8-byte sector, which is the smallest individually

accessible unit of data on our MEMS-based storage

device. Each track in Figure 4 contains 12 sectors

(3 per tip). These sectors parallel the partitioning

of disk tracks into sectors, with three notable di�er-

ences. First, disk sectors contain more data (e.g.,

512 bytes vs. 8 bytes). Second, MEMS-based stor-

age devices can access multiple sectors concurrently:

Figure 4 shows the four active tips accessing sec-

tors 4, 5, 6, and 7. Third, MEMS-based storage de-

vices can support bidirectional access, meaning that

a data sector can be accessed in either the +Y or

Sweep area of one probe tipM bits

N bits

0 1 M-12

0

1

2

N-1

Bit

Bit
Sweep area of one probe tip

Servo Info

Encoded Data

Servo Info

Encoded Data

Servo Info

X

Y

Figure 3: Data organization on MEMS-based storage devices. The illustration depicts a small portion of the

magnetic media sled. Each small rectangle outlines the media area accessible by a single probe tip, with a total of 16

tip regions shown. A full device contains thousands of tips and tip regions. Each region stores M�N bits, organized

into M vertical columns of N bits, alternating between servo/tracking information (10 bits) and data (80 bits = 8

encoded data bytes). To read or write data, the media sled passes over the tips in the �Y directions while the tips

access the media.

Cylinder 1

Track 0 of Cylinder 1

Sector 2,
Track 0,

Cylinder 1

Denotes an active probe tip

Logical block 0 striped across sectors 0 and 1

X

Y

0

74

11

38

1

65

10

29

2

56

9

110

3

7

11

8

4

0

Logical block 1 striped across sectors 2 and 3

Figure 4: Cylinders, tracks, sectors, and logical blocks. This example shows a MEMS-based storage device with

16 tips and M�N = 3�280. A \cylinder" is de�ned as all data at the same x o�set within all regions; cylinder 1 is

indicated by the four circled columns of bits. Each cylinder is divided into 4 \tracks" of 1080 bits, where each track is

composed of four tips accessing 280 bits each. Each track is divided into 12 \sectors" of 80 bits each, with 10 bits of

servo/tracking information between adjacent sectors and at the top and bottom of each track. (There are nine sectors

in each tip region in this example.) Finally, sectors are grouped together in pairs to form \logical blocks" of 16 bytes

each. Sequential sector and logical block numbering are shown on the right. These de�nitions are discussed in detail

in Section 2.2.

�Y direction. In our default model, each track is

composed of 34,560 sectors of 8 bytes each, of which

up to 1280 sectors can be accessed concurrently. Ex-

cluding positioning time, each 1280 sector (10KB)

access takes 0.129ms.

Logical blocks. For the experiments in this paper,

we combine groups of 64 sectors into SCSI-like logical

blocks of 512 bytes each. Each logical block is there-

fore striped across 64 tips, and up to 20 logical blocks

can be accessed concurrently (1280�64 = 20). Dur-

ing a request, only those logical blocks needed to sat-

isfy the request and any �rmware-directed prefetch-

ing are accessed; unused tips remain inactive to con-

serve power.

2.3 Media access characteristics

Media access requires constant sled velocity in the Y

dimension and zero velocity in the X dimension. The

Y dimension access speed is a design parameter and

is determined by the per-tip read and write rates, the

bit cell width, and the sled actuator force. Although

read and write data rates could di�er, tractable con-

trol logic is expected to dictate a single access veloc-

ity in early MEMS-based storage devices. In our

default model, the access speed is 28mm/s and the

corresponding per-tip data rate is 0.7Mbit/s.

Positioning the sled for read or write involves sev-

eral mechanical and electrical actions. To seek to a

sector, the appropriate probe tips must be activated

(to access the servo information and then the data),

the sled must be positioned at the correct x,y dis-

placement, and the sled must be moving at the cor-

rect velocity for access. Whenever the sled seeks in

the X dimension|i.e., the destination cylinder dif-

fers from the starting cylinder|extra settling time

must be taken into account because the spring-sled

system oscillates in X after each cylinder-to-cylinder

seek. Because this oscillation is large enough to

cause o�-track interference, a closed loop settling

phase is used to damp the oscillation. To the �rst

order, this active damping is expected to require a

constant amount of time. Although slightly longer

settling times may ultimately be needed for writes,

as is the case with disks, we currently assume that

the settling time is the same for both read and write

requests. Settling time is not a factor in Y dimen-

sion seeks because the oscillations in Y are subsumed

by the large Y dimension access velocity and can be

tolerated by the read/write channel.

As the sled is moved away from zero displacement,

the springs apply a restoring force toward the sled's

rest position. These spring forces can either improve

or degrade positioning time (by a�ecting the e�ec-

tive actuator force), depending on the sled displace-

ment and direction of motion. This force is param-

eterized in our simulator by the spring factor|the

ratio of the maximum spring force to the maximum

actuator force. A spring factor of 75% means that

the springs pull toward the center with 75% of the

maximum actuator force when the sled is at full dis-

placement. The spring force decreases linearly to 0%

as sled displacement approaches zero. The spring

restoring force makes the acceleration of the sled

a function of instantaneous sled position. In gen-

eral, the spring forces tend to degrade the seek time

of short seeks and improve the seek time of long

seeks [11].

Large transfers may require that data from multi-

ple tracks or cylinders be accessed. To switch tracks

during large transfers, the sled switches which tips

are active and performs a turnaround, using the

actuators to reverse the sled's velocity (e.g., from

+28mm/s to �28mm/s). The turnaround time is

expected to dominate any additional activity, such

as the time to activate the next set of active tips,

during both track and cylinder switches. One or two

turnarounds are necessary for any seek in which the

sled is moving in the wrong direction|away from

the sector to be accessed|before or after the seek.

2.4 Comparison to conventional disks

Although MEMS-based storage devices involve some

radically di�erent technologies from disks, they

share enough fundamental similarity for a disk-like

model to be a sensible starting point. Like disks,

MEMS-based storage devices stream data at a high

rate and su�er a substantial distance-dependent po-

sitioning time delay before each nonsequential ac-

cess. In fact, although MEMS-based storage devices

are much faster, they have ratios of request through-

put to data bandwidth similar to those of disks from

the early 1990s. Some values of the ratio,
, of re-

quest service rate (IO/s) to streaming bandwidth

(MB/s) for some recent disks include
 = 26 (1989)

for the CDC Wren-IV [21],
 = 17 (1993) [12], and

 = 5:2 (1999) for the Quantum Atlas 10K [22].
 for

disks continue to drop over time as bandwidth im-

proves faster than mechanical positioning times. In

comparison, the MEMS-based storage device in this

paper yields
 = 19 (1422 IO/s � 76MB/s), compa-

rable to disks within the last decade. Also, although

many probe tips access the media in parallel, they

are all limited to accessing the same relative x,y o�-

set within a region at any given point in time|recall

that the media sled moves freely while the probe tips

remain relatively �xed. Thus, the probe tip paral-

lelism provides greater data rates but not concur-

rent, independent accesses. There are alternative

physical device designs that would support greater

access concurrency and lower positioning times, but

at substantial cost in capacity [11].

The remainder of this section enumerates a num-

ber of relevant similarities and di�erences between

MEMS-based storage devices and conventional disk

drives. With each item, we also discuss consequences

for device management issues and techniques.

Mechanical positioning. Both disks and MEMS-

based storage devices have two main components of

positioning time for each request: seek and rota-

tion for disks, X and Y dimension seeks for MEMS-

based storage devices. The major di�erence is that

the disk components are independent (i.e., desired

sectors rotate past the read/write head periodically,

independent of when seeks complete), whereas the

two components are explicitly done in parallel for

MEMS-based storage devices. As a result, total

positioning time for MEMS-base storage equals the

greater of the X and Y seek times, making the lesser

time irrelevant. The e�ect of this overlap on request

scheduling is discussed in Section 4.2.

Settling time. For both disks and MEMS-based

storage devices, it is necessary for read/write heads

to settle over the desired track after a seek. Set-

tling time for disks is a relatively small component

of most seek times (0.5ms of 1{15ms seeks). How-

ever, settling time for MEMS-based storage devices

is expected to be a relatively substantial component

of seek time (0.2ms of 0.2{0.8ms seeks). Because

the settling time is generally constant, this has the

e�ect of making seek times more constant, which in

turn could reduce (but not eliminate) the bene�t of

both request scheduling and data placement. Sec-

tion 4.3 discusses this issue.

Logical-to-physical mappings. As with disks,

we expect the lowest-level mapping of logical block

numbers (LBNs) to physical locations to be straight-

forward and optimized for sequential access; this will

be best for legacy systems that use these new de-

vices as disk replacements. Such a sequentially op-

timized mapping scheme �ts disk terminology and

has some similar characteristics. Nonetheless, the

physical di�erences will make data placement deci-

sions (mapping of �le or database blocks to LBNs)

an interesting topic. Section 5 discusses this issue.

Seek time vs. seek distance. For disks, seek

times are relatively constant functions of the seek

distance, independent of the start cylinder and di-

rection of seek. Because of the spring restoring

forces, this is not true of MEMS-based storage de-

vices. Short seeks near the edges take longer than

they do near the center (as discussed in Section 5).

Also, turnarounds near the edges take either less

time or more, depending on the direction of sled mo-

tion. As a result, seek-reducing request scheduling

algorithms [34] may not achieve their best perfor-

mance if they look only at distances between LBNs

as they can with disks.

Recording density. Some MEMS-based storage

devices use the same basic magnetic recording tech-

nologies as disks [1]. Thus, the same types of fab-

rication and grown media defects can be expected.

However, because of the much higher bit densities of

MEMS-based storage devices, each such media de-

fect will a�ect a much larger number of bits. This

is one of the fault management issues discussed in

Section 6.1.

Numbers of mechanical components. MEMS-

based storage devices have many more distinct me-

chanical parts than disks. Although their very small

movements make them more robust than the large

disk mechanics, their sheer number makes it much

more likely that some number of them will break. In

fact, manufacturing yields may dictate that the de-

vices operate with some number of broken mechan-

ical components. Section 6.1 discusses this issue.

Concurrent read/write heads. Because it is dif-

�cult and expensive for drive manufacturers to en-

able parallel activity, most modern disk drives use

only one read/write head at a time for data ac-

cess. Even drives that do support parallel activity

are limited to only 2{20 heads. On the other hand,

MEMS-based storage devices (with their per-tip ac-

tuation and control components) could theoretically

use all of their probe tips concurrently. Even after

power and heat considerations, hundreds or thou-

sands of concurrently active probe tips is a realistic

expectation. This parallelism increases media band-

width and o�ers opportunities for improved reliabil-

ity. Section 6.1 discusses the latter.

Control over mechanical movements. Unlike

disks, which rotate at constant velocity independent

of ongoing accesses, the mechanical movements of

MEMS-based storage devices can be explicitly con-

trolled. As a result, access patterns that su�er sig-

ni�cantly from independent rotation can be better

served. The best example of this is repeated access

to the same block, as often occurs for synchronous

metadata updates or read-modify-write sequences.

This di�erence is discussed in Section 6.2.

Startup activities. Like disks, MEMS-based stor-

age devices will require some time to ready them-

selves for media accesses when powered up. How-

ever, because of the size of their mechanical struc-

tures and their lack of rotation, the time and power

required for startup will be much less than for disks.

The consequences of this fact for both availability

(Section 6.3) and power management (Section 7) are

discussed in this paper.

Drive-side management. As with disks, manage-

ment functionality will be split between host OSes

and device OSes (�rmware). Over the years, increas-

ing amounts of functionality have shifted into disk

�rmware, enabling a variety of portability, reliabil-

ity, mobility, performance, and scalability enhance-

ments. We expect a similar trend with MEMS-based

storage devices, whose silicon implementations o�er

the possibility of direct integration of storage with

computational logic.

Speed-matching bu�ers. As with disks, MEMS-

based storage devices access the media as the sled

moves past the probe tips at a �xed rate. Since this

rate rarely matches that of the external interface,

speed-matching bu�ers are important. Further, be-

cause sequential request streams are important as-

pects of many real systems, these speed-matching

bu�ers will play an important role in prefetching

and then caching of sequential LBNs. Also, as with

disks, most block reuse will be captured by larger

host memory caches instead of in the device cache.

Sectors per track. Disk media is organized as a

series of concentric circles, with outer circles hav-

ing larger circumferences than inner circles. This

fact led disk manufacturers to use banded (zoned)

recording in place of a constant bit-per-track scheme

in order to increase storage density and bandwidth.

For example, banded recording results in a 3:2 ratio

between the number of sectors on the outermost (334

sectors) and innermost (229 sectors) tracks in the

Quantum Atlas 10K [8]. Because MEMS-based stor-

age devices instead organize their media in �xed-size

columns, there is no length di�erence between tracks

and banded recording is not relevant. Therefore,

block layout techniques that try to exploit banded

recording will not provide bene�t for these devices.

On the other hand, for block layouts that try to

consider track boundaries and block o�sets within

tracks, this uniformity (which was common in disks

10 or more years ago) will simplify or enable correct

implementations. The subregioned layout described

in Section 5 is an example of such a layout.

device capacity 3.2GB

number of tips 6400

maximum concurrent tips 1280

sled acceleration 803.6m/s2

sled access speed 28mm/s

constant settling time 0.22ms

spring factor 75%

per-tip data rate 0.7Mbit/s

media bit cell size 40�40nm

bits per tip region (M�N) 2500�2440

data encoding overhead 2 bits per byte

servo overhead per 8 bytes 10 bits (11%)

command processing overhead 0.2ms/request

on-board cache memory 0MB

external bus bandwidth 100MB/s

Table 1: Default MEMS-based storage device pa-

rameters. N=2440 in order to �t an integral number of

80-bit encoded sectors (with inter-sector servo) in each

column of bits. The default model includes no on-board

caching (or prefetching), but does assume speed-matching

bu�ers between the tips and the external bus.

3 Experimental setup

The experiments in this paper use the performance

model for MEMS-based storage described in Refer-

ence [11], which includes all of the characteristics de-

scribed above. Although it is not yet possible to val-

idate the model against real devices, both the equa-

tions and the default parameters are the result of

extensive discussions with groups that are designing

and building MEMS-based storage devices [2, 3, 20].

We therefore believe that the model is suÆciently

representative for the insights gained from experi-

ments to be useful. Table 1 shows default parame-

ters for the MEMS-based storage device simulator.

This performance model has been integrated into

the DiskSim simulation environment [10] as a disk-

like storage device accessed via a SCSI-like protocol.

DiskSim provides an infrastructure for exercising the

device model with various synthetic and trace-based

workloads. DiskSim also includes a detailed, vali-

dated disk module that can accurately model a va-

riety of real disks. For reference, some experiments

use DiskSim's disk module con�gured to emulate the

Quantum Atlas 10K, one of the disks for which pub-

licly available con�guration parameters have been

calibrated against real-world drives [8]. The Quan-

tum Atlas 10K has a nominal rotation speed of

10,000RPM, average seek time of 5.0ms, streaming

bandwidth of 17.3{25.2MB/s, and average random

single-sector access time of 8.5ms [22].

Some of the experiments use a synthetically-

generated workload that we refer to as the Random

workload. For this workload, request inter-arrival

times are drawn from an exponential distribution;

the mean is varied to simulate a range of workloads.

All other aspects of requests are independent: 67%

are reads, 33% are writes, the request size distribu-

tion is exponential with a mean of 4KB, and request

starting locations are uniformly distributed across

the device's capacity.

For more realistic workloads, we use two traces of

real disk activity: the TPC-C trace and the Cello

trace. The TPC-C trace comes from a TPC-C

testbed, consisting of Microsoft SQL Server atop

Windows NT. The hardware was a 300MHz Intel

Pentium II-based system with 128MB of memory

and a 1GB test database striped across two Quan-

tum Viking disk drives. The trace captures one hour

of disk activity for TPC-C, and its characteristics are

described in more detail in Reference [23]. The Cello

trace comes from a Hewlett-Packard system running

the HP-UX operating system. It captures disk ac-

tivity from a server at HP Labs used for program

development, simulation, mail, and news. While the

total trace is actually two months in length, we re-

port data for a single, day-long snapshot. This trace

and its characteristics are described in detail in Ref-

erence [25]. When replaying the traces, each traced

disk is replaced by a distinct simulated MEMS-based

storage device.

As is often the case in trace-based studies, our simu-

lated devices are newer and signi�cantly faster than

the disks used in the traced systems. To explore

a range of workload intensities, we replicate an ap-

proach used in previous disk scheduling work [34]:

we scale the traced inter-arrival times to produce a

range of average inter-arrival times. When the scale

factor is one, the request inter-arrival times match

those of the trace. When the scale factor is two, the

traced inter-arrival times are halved, doubling the

average arrival rate.

4 Request scheduling

An important mechanism for improving disk eÆ-

ciency is deliberate scheduling of pending requests.

Request scheduling improves eÆciency because po-

sitioning delays are dependent on the relative po-

sitions of the read/write head and the destination

sector. The same is true of MEMS-based storage

devices, whose seek times are dependent on the dis-

tance to be traveled. This section explores the im-

pact of di�erent scheduling algorithms on the per-

formance of MEMS-based storage devices.

4.1 Disk scheduling algorithms

Many disk scheduling algorithms have been devised

and studied over the years. Our comparisons focus

on four. First, the simple FCFS (�rst-come, �rst-

served) algorithm often results in suboptimal perfor-

mance, but we include it for reference. The SSTF

(shortest seek time �rst) algorithm was designed to

select the request that will incur the smallest seek

delay [4], but this is rarely the way it functions in

practice. Instead, since few host OSes have the in-

formation needed to compute actual seek distances

or predict seek times, most SSTF implementations

use the di�erence between the last accessed LBN and

the desired LBN as an approximation of seek time.

This simpli�cation works well for disk drives [34],

and we label this algorithm as SSTF LBN. The

CLOOK LBN (cyclical look) algorithm services re-

quests in ascending LBN order, starting over with

the lowest LBN when all requests are \behind" the

most recent request [28]. The SPTF (shortest po-

sitioning time �rst) policy selects the request that

will incur the smallest positioning delay [14,29]. For

disks, this algorithm di�ers from others in that it

explicitly considers both seek time and rotational

latency.

For reference, Figure 5 compares these four disk

scheduling algorithms for the Atlas 10K disk drive

and the Random workload (Section 3) with a range

of request arrival rates. Two common metrics for

evaluating disk scheduling algorithms are shown.

First, the average response time (queue time plus

service time) shows the e�ect on average perfor-

mance. As expected, FCFS saturates well be-

fore the other algorithms as the workload increases.

SSTF LBN outperforms CLOOK LBN, and SPTF

outperforms all other schemes. Second, the squared

coeÆcient of variation (�2=�2) is a metric of \fair-

ness" (or starvation resistance) [30, 34]; lower val-

ues indicate better starvation resistance. As ex-

pected, CLOOK LBN avoids the starvation e�ects

that characterize the SSTF LBN and SPTF algo-

rithms. Although not shown here, age-weighted

versions of these greedy algorithms can reduce re-

quest starvation without unduly reducing average

case performance [14, 29].

4.2 MEMS-based storage scheduling

Existing disk scheduling algorithms can be adapted

to MEMS-based storage devices once these devices

are mapped onto a disk-like interface. Most al-

gorithms, including SSTF LBN and CLOOK LBN,

only use knowledge of LBNs and assume that dif-

ferences between LBNs are reasonable approxima-

0 20 40 60 80

100

0
50

100
150

200

Average Response Time (ms)

M
ean A

rrival R
ate (H

z)

F
C

F
S

C
L

O
O

K
_L

B
N

S
S

T
F

_L
B

N
S

P
T

F

0

0.2

0.4

0.6

0.8 1

1.2

1.4

0
50

100
150

200

Squared Coefficient of Variation

M
ean A

rrival R
ate (H

z)

F
C

F
S

C
L

O
O

K
_L

B
N

S
S

T
F

_L
B

N
S

P
T

F

(a
)
A
v
era

g
e
resp

o
n
se

tim
es

(b
)
S
q
u
a
red

co
eÆ

cien
ts

o
f
v
a
ria

tio
n
(
�
2
=
�
2
)

F
ig
u
re

5
:
C
o
m
p
a
r
is
o
n
o
f
s
c
h
e
d
u
lin

g
a
lg
o
r
ith

m
s
fo
r
th
e
R
a
n
d
o
m

w
o
r
k
lo
a
d
o
n
th
e
Q
u
a
n
tu
m

A
tla

s
1
0
K

d
is
k
.

tio
n
s
o
f
p
o
sitio

n
in
g
tim

es.
S
P
T
F
,
w
h
ich

a
d
d
resses

d
isk

seek
s
a
n
d
ro
ta
tio

n
s,
is
a
m
o
re

in
terestin

g
ca
se.

W
h
ile

M
E
M
S
-b
a
sed

sto
ra
g
e
d
ev
ices

d
o
n
o
t
h
a
v
e
a

ro
ta
tio

n
a
l
la
ten

cy
co
m
p
o
n
en
t,
th
ey

d
o
h
a
v
e
tw
o
p
o
-

sitio
n
in
g
tim

e
co
m
p
o
n
en
ts:

th
e
X

d
im
en
sio

n
seek

a
n
d
th
e
Y
d
im
en
sio

n
seek

.
A
s
w
ith

d
isk

s,
o
n
ly

o
n
e

o
f
th
ese

tw
o
co
m
p
o
n
en
ts
(seek

tim
e
fo
r
d
isk

s;
th
e
X

d
im
en
sio

n
seek

fo
r
M
E
M
S
-b
a
sed

sto
ra
g
e
d
ev
ices)

is

a
p
p
ro
x
im
a
ted

w
ell

b
y
a
lin
ea
r
L
B
N

sp
a
ce.

U
n
lik
e

d
isk

s,
th
e
tw
o
p
o
sitio

n
in
g
co
m
p
o
n
en
ts

p
ro
ceed

in

p
a
ra
llel,

w
ith

th
e
g
rea

ter
su
b
su
m
in
g
th
e
lesser.

T
h
e

settlin
g
tim

e
d
ela

y
m
a
k
es

m
o
st

X
d
im
en
sio

n
seek

tim
es

la
rg
er

th
a
n
m
o
st
Y
d
im
en
sio

n
seek

tim
es.

A
l-

th
o
u
g
h
it
sh
o
u
ld

n
ev
er

b
e
w
o
rse,

S
P
T
F
w
ill

o
n
ly
b
e

b
etter

th
a
n
S
S
T
F
(w
h
ich

m
in
im
izes

X
m
o
v
em

en
ts,

b
u
t
ig
n
o
res

Y
)
w
h
en

th
e
Y
co
m
p
o
n
en
t
is
freq

u
en
tly

th
e
la
rg
er.

F
ig
u
re

6
sh
o
w
s
h
o
w

w
ell

th
ese

a
lg
o
rith

m
s
w
o
rk

fo
r
th
e
d
efa

u
lt
M
E
M
S
-b
a
sed

sto
ra
g
e
d
ev
ice

o
n
th
e

R
a
n
d
o
m

w
o
rk
lo
a
d
w
ith

a
ra
n
g
e
o
f
req

u
est

a
rriva

l

ra
tes.

In
term

s
o
f
b
o
th

p
erfo

rm
a
n
ce

a
n
d
sta

rv
a
-

tio
n
resista

n
ce,

th
e
a
lg
o
rith

m
s
�
n
ish

in
th
e
sa
m
e

o
rd
er

a
s
fo
r
d
isk

s:
S
P
T
F

p
ro
v
id
es

th
e
b
est

p
er-

fo
rm

a
n
ce

a
n
d
C
L
O
O
K
L
B
N
p
ro
v
id
es

th
e
b
est

sta
r-

va
tio

n
resista

n
ce.

H
o
w
ev
er,

th
eir

p
erfo

rm
a
n
ce

rel-

a
tiv

e
to

ea
ch

o
th
er

m
erits

d
iscu

ssio
n
.

T
h
e
d
i�
er-

en
ce

b
etw

een
F
C
F
S
a
n
d
th
e
L
B
N
-b
a
sed

a
lg
o
rith

m
s

(C
L
O
O
K
L
B
N
a
n
d
S
S
T
F
L
B
N
)
is
la
rg
er
fo
r
M
E
M
S
-

b
a
sed

sto
ra
g
e
d
ev
ices

b
eca

u
se

th
e
seek

tim
e
is

a

m
u
ch

la
rg
er
co
m
p
o
n
en
t
o
f
th
e
to
ta
l
serv

ice
tim

e.
In

p
a
rticu

la
r,
th
ere

is
n
o
su
b
seq

u
en
t
ro
ta
tio

n
a
l
d
ela

y.

A
lso

,
th
e
a
v
era

g
e
resp

o
n
se

tim
e
d
i�
eren

ce
b
etw

een

C
L
O
O
K
L
B
N
a
n
d
S
S
T
F
L
B
N
is
sm

a
ller

fo
r
M
E
M
S
-

b
a
sed

sto
ra
g
e
d
ev
ices,

b
eca

u
se

b
o
th

a
lg
o
rith

m
s
re-

d
u
ce

th
e
X
seek

tim
es
in
to

th
e
ra
n
g
e
w
h
ere

X
a
n
d
Y

seek
tim

es
a
re

co
m
p
a
ra
b
le.

S
in
ce

n
eith

er
a
d
d
resses

Y
seek

s,
th
e
g
reed

in
ess

o
f
S
S
T
F
L
B
N
is
less

e�
ectiv

e.

S
P
T
F
o
b
ta
in
s
a
d
d
itio

n
a
l
p
erfo

rm
a
n
ce

b
y
a
d
d
ressin

g

Y
seek

s.

F
ig
u
res

7
(a
)
a
n
d
7
(b
)
sh
o
w
h
o
w
th
e
sch

ed
u
lin
g
a
l-

g
o
rith

m
s
p
erfo

rm
fo
r
th
e
C
ello

a
n
d
T
P
C
-C

w
o
rk
-

lo
a
d
s,
resp

ectiv
ely.

T
h
e
rela

tiv
e
p
erfo

rm
a
n
ce

o
f
th
e

a
lg
o
rith

m
s
o
n
th
e
C
ello

tra
ce

is
sim

ila
r
to

th
e
R
a
n
-

d
o
m

w
o
rk
lo
a
d
.
T
h
e
o
v
era

ll
a
v
era

g
e
resp

o
n
se

tim
e

fo
r
C
ello

is
d
o
m
in
a
ted

b
y
th
e
b
u
siest

o
n
e
o
f
C
ello

's

eig
h
t
d
isk

s;
so
m
e
o
f
th
e
in
d
iv
id
u
a
l
d
isk

s
h
a
v
e
d
i�
er-

en
tly

sh
a
p
ed

cu
rv
es
b
u
t
still

ex
h
ib
it
th
e
sa
m
e
o
rd
er-

in
g
a
m
o
n
g
th
e
a
lg
o
rith

m
s.

O
n
e
n
o
tew

o
rth

y
d
i�
er-

en
ce

b
etw

een
T
P
C
-C

a
n
d
C
ello

is
th
a
t
S
P
T
F
o
u
t-

p
erfo

rm
s
th
e
o
th
er
a
lg
o
rith

m
s
b
y
a
m
u
ch

la
rg
er
m
a
r-

g
in

th
a
n
fo
r
T
P
C
-C

a
t
h
ig
h
lo
a
d
s.

T
h
is
o
ccu

rs
b
e-

ca
u
se
th
e
sca

led
-u
p
v
ersio

n
o
f
th
e
w
o
rk
lo
a
d
in
clu

d
es

m
a
n
y
co
n
cu
rren

tly
-p
en
d
in
g
req

u
ests

w
ith

v
ery

sm
a
ll

L
B
N

d
ista

n
ces

b
etw

een
a
d
ja
cen

t
req

u
ests.

L
B
N
-

b
a
sed

sch
em

es
d
o
n
o
t
h
a
v
e
en
o
u
g
h
in
fo
rm

a
tio

n
to

ch
o
o
se

b
etw

een
su
ch

req
u
ests,

o
ften

ca
u
sin

g
sm

a
ll

(b
u
t
ex
p
en
siv

e)
X
-d
im
en
sio

n
seek

s.
S
P
T
F
a
d
d
resses

th
is
p
ro
b
lem

a
n
d
th
erefo

re
p
erfo

rm
s
m
u
ch

b
etter.

4
.3

S
P
T
F
a
n
d
s
e
t
t
lin

g
t
im

e

O
rig

in
a
lly,

w
e
h
a
d
ex
p
ected

S
P
T
F
to
o
u
tp
erfo

rm
th
e

o
th
er

a
lg
o
rith

m
s
b
y
a
g
rea

ter
m
a
rg
in

fo
r
M
E
M
S
-

b
a
sed

sto
ra
g
e
d
ev
ices.

O
u
r
in
v
estig

a
tio

n
s
su
g
g
est

th
a
t
th
e
v
a
lu
e
o
f
S
P
T
F
sch

ed
u
lin
g
is
h
ig
h
ly

d
ep
en
-

d
en
t
u
p
o
n
th
e
settlin

g
tim

e
co
m
p
o
n
en
t
o
f
X
d
im
en
-

sio
n
seek

s.
W
ith

la
rg
e
settlin

g
tim

es,
X

d
im
en
sio

n

seek
tim

es
d
o
m
in
a
te

Y
d
im
en
sio

n
seek

tim
es,

m
a
k
-

in
g
S
S
T
F
L
B
N

m
a
tch

S
P
T
F
.
W
ith

sm
a
ll
settlin

g

tim
es,

Y
d
im
en
sio

n
seek

tim
es

a
re

a
m
o
re

sig
n
i�
-

ca
n
t
co
m
p
o
n
en
t.

T
o
illu

stra
te

th
is,

F
ig
u
re

8
co
m
-

p
a
res

th
e
sch

ed
u
lin
g
a
lg
o
rith

m
s
w
ith

th
e
co
n
sta

n
t

settlin
g
tim

e
set

to
zero

a
n
d
0
.4
4
m
s
(d
o
u
b
le
th
e
d
e-

0 20 40 60 80

100

0
500

1000
1500

2000
2500

3000
3500

Average Response Time (ms)

M
ean A

rrival R
ate (H

z)

F
C

F
S

C
L

O
O

K
_L

B
N

S
S

T
F

_L
B

N
S

P
T

F

0

0.2

0.4

0.6

0.8 1

1.2

1.4

0
500

1000
1500

2000
2500

3000
3500

Squared Coefficient of Variation

M
ean A

rrival R
ate (H

z)

FC
FS

C
L

O
O

K
_L

B
N

SST
F_L

B
N

SPT
F

(a
)
A
v
era

g
e
resp

o
n
se

tim
es

(b
)
S
q
u
a
red

co
eÆ

cien
ts

o
f
v
a
ria

tio
n
(
�
2
=
�
2
)

F
ig
u
re

6
:
C
o
m
p
a
r
is
o
n
o
f
s
c
h
e
d
u
lin

g
a
lg
o
r
ith

m
s
fo
r
th
e
R
a
n
d
o
m

w
o
r
k
lo
a
d
o
n
th
e
M
E
M
S
-b
a
s
e
d
s
to
ra
g
e

d
e
v
ic
e
.
N
o
te

th
e
sca

le
o
f
th
e
X

a
x
is
h
a
s
in
c
rea

sed
by

a
n
o
rd
er

o
f
m
a
gn
itu

d
e
rela

tive
to

th
e
gra

p
h
s
in

F
igu

re
5
.

0 20 40 60 80

100

0
10

20
30

40
50

60
70

Average Response Time (ms)

T
race S

caling F
actor

F
C

F
S

C
L

O
O

K
_L

B
N

S
S

T
F

_L
B

N
S

P
T

F

0 20 40 60 80

100

0
10

20
30

40
50

60

Average Response Time (ms)

T
race S

caling F
actor

F
C

F
S

C
L

O
O

K
_L

B
N

S
S

T
F

_L
B

N
S

P
T

F

(a
)
C
ello

a
v
era

g
e
resp

o
n
se

tim
es

(b
)
T
P
C
-C

a
v
era

g
e
resp

o
n
se

tim
es

F
ig
u
re

7
:
C
o
m
p
a
r
is
o
n
o
f
s
c
h
e
d
u
lin

g
a
lg
o
r
ith

m
s
fo
r
th
e
C
e
llo

a
n
d
T
P
C
-C

w
o
r
k
lo
a
d
s
o
n
th
e
M
E
M
S
-b
a
s
e
d

s
to
ra
g
e
d
e
v
ic
e
.

0 20 40 60 80

100

0
500

1000
1500

2000
2500

3000
3500

Average Response Time (ms)

M
ean A

rrival R
ate (H

z)

F
C

F
S

C
L

O
O

K
_L

B
N

S
S

T
F

_L
B

N
S

P
T

F

0 20 40 60 80

100

0
500

1000
1500

2000
2500

3000
3500

Average Response Time (ms)

M
ean A

rrival R
ate (H

z) F
C

F
S

C
L

O
O

K
_L

B
N

S
S

T
F

_L
B

N
S

P
T

F

(a
)
R
a
n
d
o
m

w
ith

zero
settlin

g
tim

e
(b
)
R
a
n
d
o
m

w
ith

d
o
u
b
le

settlin
g
tim

e

F
ig
u
re

8
:
C
o
m
p
a
r
is
o
n
o
f
a
v
e
ra
g
e
p
e
r
fo
r
m
a
n
c
e
o
f
th
e
R
a
n
d
o
m

w
o
r
k
lo
a
d
fo
r
z
e
ro

a
n
d
d
o
u
b
le

c
o
n
s
ta
n
t

s
e
ttlin

g
tim

e
o
n
th
e
M
E
M
S
-b
a
s
e
d
s
to
ra
g
e
d
e
v
ic
e
.

T
h
ese

a
re

in
co
m
pa
riso

n
to

th
e
d
efa

u
lt
m
od
el

(R
a
n
d
o
m

w
ith

co
n
sta

n
t
settlin

g
tim

e
o
f
0
.2
2
m
s)

sh
o
w
n
in

F
igu

re
6
(a
).

W
ith

n
o
settlin

g
tim

e,
S
P
T
F
sign

i�
ca
n
tly

o
u
tperfo

rm
s

C
L
O
O
K

L
B
N

a
n
d
S
S
T
F
L
B
N
.
W
ith

th
e
d
o
u
bled

settlin
g
tim

e,
C
L
O
O
K

L
B
N
,
S
S
T
F
L
B
N
,
a
n
d
S
P
T
F

a
re

n
ea
rly

id
en
tica

l.

0.42

0.23

0.39

0.21

0.38

0.20

0.41

0.22

0.38

0.20

0.38

0.19

0.41

0.22

0.38

0.20

0.37

0.19

0.39

0.21

0.42

0.23

0.38

0.20

0.41

0.22

0.38

0.20

0.41

0.22

0.41

0.22

0.38

0.20

0.38

0.19

0.38

0.20

0.41

0.22

0.42

0.23

0.39

0.21

0.38

0.20

0.39

0.21

0.42

0.23

Figure 9: Di�erence in request service time for subregion accesses. This �gure divides the region accessible by

an individual probe tip into 25 subregions, each 500�500 bits. Each box shows the average request service time (in

milliseconds) for random requests starting and ending inside that subregion. The upper numbers represent the service

time when the default settling time is included in calculations; numbers in italics represent the service time for zero

settling time. Note that the service time di�ers by 14{21% between the centermost and outermost subregions.

fault value). As expected, SSTF LBN is very close

to SPTF when the settling time is doubled. With

zero settling time, SPTF outperforms the other al-

gorithms by a large margin.

5 On-device data layout

Space allocation and data placement for disks con-

tinues to be a ripe topic of research. We expect the

same to be true of MEMS-based storage devices. In

this section, we discuss how the characteristics of

MEMS-based storage positioning costs a�ect place-

ment decisions for small local accesses and large se-

quential transfers. A bipartite layout is proposed

and shown to have potential for improving perfor-

mance.

5.1 Small, skewed accesses

As with disks, short distance seeks are faster than

long distance seeks. Unlike disks, MEMS-based stor-

age devices' spring restoring forces make the e�ective

actuator force (and therefore sled positioning time)

a function of location. Figure 9 shows the impact of

spring forces for seeks inside di�erent \subregions"

of a single tip's media region. The spring forces in-

crease with increasing sled displacement from the

origin (viz., toward the outermost subregions in Fig-

ure 9), resulting in longer positioning times for short

seeks. As a result, distance is not the only compo-

nent to be considered when �nding good placements

for small, popular data items|o�set relative to the

center should also be considered.

5.2 Large, sequential transfers

Streaming media transfer rates for MEMS-based

storage devices and disks are similar: 17.3{

25.2MB/s for the Atlas 10K [22]; 75.9MB/s for

MEMS-based storage devices. Positioning times,

however, are an order of magnitude shorter for

MEMS-based storage devices than for disks. This

makes positioning time relatively insigni�cant for

large transfers (e.g., hundreds of sectors). Figure 10

shows the request service times for a 256KB read

with respect to the X distance between the initial

and �nal sled positions. Requests traveling 1250

cylinders (e.g., from the sled origin to maximum sled

displacement) incur only a 10% penalty. This lessens

the importance of ensuring locality for data that will

be accessed in large, sequential chunks. In contrast,

seek distance is a signi�cant issue with disks, where

long seeks more than double the total service time

for 256KB requests.

5.3 A data placement scheme for
MEMS-based storage devices

To take advantage of the above characteristics,

we propose a 25-subregion bipartite layout scheme.

Small data are placed in the centermost subregions;

long, sequential streaming data are placed in outer

subregions. Two layouts are tested: a �ve-by-�ve

grid of subregions (Figure 9) and a simple columnar

division of the LBN space into 25 columns (viz., col-

umn 0 contains cylinders 0{99, column 1 contains

cylinders 100{199, etc.).

0

0.5

1

1.5

2

2.5

3

3.5

4

0 625 1250 1875 Max

Se
rv

ic
e

T
im

e
(m

s)

X Distance (cylinders)

Average Service Time

Figure 10: Large (256KB) request service time

vs. X seek distance for MEMS-based storage de-

vices. Because the media access time is large relative

to the positioning time, seeking the maximum distance

in X increases the service time for large requests by only

12%.

We compare these layout schemes against the \or-

gan pipe" layout [26, 32], an optimal disk-layout

scheme, assuming no inter-request dependencies. In

the organ pipe layout, the most frequently accessed

�les are placed in the centermost tracks of the disk.

Files of decreasing popularity are distributed to ei-

ther side of center, with the least frequently accessed

�les located closer to the innermost and outermost

tracks. Although this scheme is optimal for disks,

�les must be periodically shu�ed to maintain the

frequency distribution. Further, the layout requires

some state to be kept, indicating each �le's popular-

ity.

To evaluate these layouts, we used a workload of

10,000 whole-�le read requests whose sizes are drawn

from the �le size distribution reported in Refer-

ence [9]. In this size distribution, 78% of �les are

8KB or smaller, 4% are larger than 64KB, and

0.25% are larger than 1MB. For the subregioned and

columnar layouts, the large �les (larger than 8KB)

were mapped to the ten leftmost and ten rightmost

subregions, while the small �les (8KB or less) were

mapped to the centermost subregion. To conserva-

tively avoid second-order locality within the large or

small �les, we assigned a random location to each re-

quest within either the large or the small subregions.

For the organ pipe layout, we used an exponential

distribution to determine �le popularity, which was

then used to place �les.

Figure 11 shows that all three layout schemes achieve

a 12{15% improvement in average access time over a

simple random �le layout. Subregioned and colum-

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Default Settling time = 0

A
ve

ra
ge

 A
cc

es
s

T
im

e
(m

s)

none organpipe subregioned columnar

Figure 11: Comparison of layout schemes for

MEMS-based storage devices. For the default de-

vice, the organ pipe, subregioned, and columnar layouts

achieve a 12{15% performance improvement over a ran-

dom layout. Further, for the \settling time = 0" case,

the subregioned layout outperforms the others by an ad-

ditional 12%. It is interesting to note that an optimal

disk layout technique does not necessarily provide the best

performance for MEMS-based storage.

nar layouts for MEMS-based storage devices match

organ pipe, even with the conservative model and

no need for keeping popularity data or periodically

reshu�ing �les on the media. For the \no settling

time" case, the subregioned layout provides the best

performance as it addresses both X and Y.

6 Failure management

Fault tolerance and recoverability are signi�cant

considerations for storage systems. Although

MEMS-based storage devices are not yet available,

MEMS components have been built and tested for

many years. Their miniature size and movements

will make MEMS-based storage components less

fragile than their disk counterparts [17]. Still, there

will likely be more defective or failed parts in MEMS-

based storage because of the large number of distinct

components compared to disks and the fact that bad

parts cannot be replaced before or during assembly.

Although failure management for MEMS-based stor-

age devices will be similar to failure management

for conventional disks, there are several important

di�erences. One is that individual component fail-

ures must be made less likely to render a device

inoperable than in disks. Another is that MEMS-

based storage devices simplify some aspects of fail-

ure management|inter-device redundancy mainte-

nance and device restart, for example. This section

discusses three aspects of failure management: in-

ternal faults, device failures, and recoverability from

system crashes.

6.1 Internal faults

The common failure modes for disk drives include re-

coverable failures (for example, media defects or seek

errors) and non-recoverable failures (head crashes,

motor or arm actuator failure, drive electronics or

channel failure). MEMS-based storage devices have

similar failure modes with analogous causes. How-

ever, the ability to incorporate multiple tips into fail-

ure tolerance schemes allows MEMS-based storage

devices to mask most component failures, including

many that would render a disk inoperable.

Speci�cally, powerful error correcting codes can be

computed over data striped across multiple tips. In

our default model, each 512 byte logical block and

its ECC are striped across 64 tips. This ECC can

include both a horizontal component (across tips)

and a vertical component (within a single sector).

The horizontal ECC can recover from missing sec-

tors. The vertical ECC identi�es sectors that should

be treated as missing|with the e�ect of converting

some large errors into erasures, which can more eas-

ily be handled by the horizontal ECC. This single

mechanism addresses most internal failures that are

recoverable.

Media defects. In disk drives, unrecoverable me-

dia defects are handled by remapping logical block

numbers to non-defective locations, with data of-

ten being lost when defects \grow" during opera-

tion. In MEMS-based storage, most media defects

are expected to a�ect the data under a small num-

ber of tips (e.g., 1{4). Therefore, the horizontal ECC

can usually be used to reconstruct unavailable bits.

This capability is particularly important because

the higher density of MEMS-based storage causes

a given defect to a�ect more bits than it would in

a disk. Tolerance of large media defects can be fur-

ther extended by spreading each logical block's data

and ECC among physically distant tips|graph col-

oring schemes excel at the types of data mappings

required.

Tip failures. Failure of a conventional disk's

read/write head or control logic generally renders

the entire device inoperable. MEMS-based stor-

age replicates these functions across thousands of

components. With so many components, failure of

one or more is not only possible, but probable|

individual probe tips can break o� or \crash" into

the media, and fabrication variances will produce

faulty tips or faulty tip-speci�c logic. Most such

problems can be handled using the same mechanisms

that handle media failures, since failure of a tip or

its associated control logic translates into unavail-

ability of data in the corresponding tip region. The

horizontal ECC can be used to reconstruct this data.

As with disk drives, spare space needs to be with-

held from the fault-free mapping of data to physical

locations in MEMS-base storage. This spare space is

used to store data that cannot be stored at its default

physical location because of media or tip failures.

The parallel operation of tips within a track pro-

vides an opportunity to avoid the performance and

predictability penalties normally associated with de-

fect remapping in disk drives. Speci�cally, by setting

aside one or more spare tips in each track, unread-

able sectors can be remapped to the same sector

under a spare tip. A sector remapped in this way

would be accessed at exactly the same time as the

original (unavailable) sector would have been. In

contrast, disks \slip" LBNs over defective sectors or

re-map them to spare sectors elsewhere in a cylinder

or zone, changing their access times relative to their

original locations.

6.2 Device failures

MEMS-based storage devices are susceptible to sim-

ilar non-recoverable failures as disk drives: strong

external mechanical or electrostatic forces can dam-

age the actuator comb �ngers or snap o� the springs,

manufacturing defects can surface, or the device

electronics or channel can fail. These failures should

appear and be handled in the same manner as for

disks. For example, appropriate mechanisms for

dealing with device failures include inter-device re-

dundancy and periodic backups.

Interestingly, MEMS-based storage's mechanical

characteristics are a better match than those of

disks for the common read-modify-write operations

used in some fault-tolerant schemes (e.g., RAID-

5). Whereas conventional disks su�er a full rotation

to return to the same sector, MEMS-based storage

devices can quickly reverse direction, signi�cantly

reducing the read-modify-write latency (Table 2).

For the Random workload, a �ve-disk RAID-5 sys-

tem has 77% longer response times than a four-disk

striping-only system (14.3ms vs. 8.04ms); the la-

tency increase for MEMS-based storage devices is

only 27% (1.36ms vs. 1.07ms).

6.3 Recovery from host system crashes

File systems and databases must maintain inter-

nal consistency among persistent objects stored on

MEMS-based storage devices, just as they do for ob-

jects on disks. Although synchronous writes will still

hurt performance, the low service times of MEMS-

based storage devices will lessen the penalty.

Atlas 10K MEMS

sectors 8 334 8 334

read 0.14 6.00 0.13 2.19

reposition 5.86 0.00 0.07 0.07

write 0.14 6.00 0.13 2.19

total (ms) 6.14 12.00 0.33 4.45

Table 2: A comparison of read-modify-write times

for 4KB (8 sector) and disk track-length (334 sec-

tor) transfers. Conventional disks must wait for a

complete platter rotation during read-modify-write oper-

ations, whereas MEMS-based storage devices need only

perform a turnaround, a relatively inexpensive opera-

tion. This characteristic is particularly helpful for code-

based redundancy schemes (for example, RAID-5) or for

verify-after-write operations.

Another relevant characteristic of MEMS-based

storage devices is rapid device startup. Since no

spindle spin-up time is required, startup is almost

immediate|estimated at less than 0.5ms. In con-

trast, high-end disk drives can take 15{25 seconds

before spin-up and initialization is complete [22].

Further, MEMS-based storage devices do not ex-

hibit the power surge inherent in spinning up disk

drives, so power spike avoidance techniques (e.g.,

serializing the spin-up of multiple disk drives) are

unnecessary|all devices can be started simultane-

ously. Combined, these e�ects could reduce system

restart times from minutes to milliseconds.

7 Other considerations

This section discusses additional issues related to

our exploration of OS management for MEMS-based

storage devices.

Power conservation. Signi�cant e�ort has gone

into reducing a disk drive's power consumption, such

as reducing active power dissipation and introduc-

ing numerous power-saving modes for use during

idle times [6, 15, 16]. MEMS-based storage devices

are much more energy eÆcient than disks in terms

of operational power. Further, the physical char-

acteristics of MEMS-based storage devices enable

a simpler power management scheme: a single idle

mode that stops the sled and powers down all non-

essential electronics. With no rotating parts and lit-

tle mass, the media sled's restart time is very small

(estimated at under 0.5ms). This relatively small

penalty enables aggressive idle mode use, switching

from active to idle as soon as the I/O queue is empty.

Detailed energy breakdown and evaluation indicates

that our default MEMS-based storage device em-

ploying this immediate-idle scheme would dissipate

only 8{22% of the energy used by today's low-power

disk drives [27].

Alternate seek control models. Our device

model assumes that seeks are accomplished by a

\slew plus settle" approach, which involves maxi-

mum acceleration for the �rst portion of the seek,

followed by maximum deceleration to the destina-

tion point and speed, followed by a closed loop set-

tling time. With such seek control, the slew time

goes up as the square root of the distance and the

settling time is constant (to the �rst order). The al-

ternate seek control approach, a linear system seek,

would incorporate rate proportional feedback to pro-

vide damping and a step input force to initiate move-

ment to a desired location and velocity. Seeks based

on such a control system exhibit longer seek times

(including the settling times) that are much more

dependent on seek distance [35]. This should not

change our high-level conclusions, but will tend to

increase the importance of both SPTF scheduling

and subregion data layouts.

Erase cycles. Although our target MEMS-based

storage device employs traditional rewriteable mag-

netic media, some designs utilize media that must be

reset before it can be overwritten. For example, the

IBM Millipede [31] uses a probe technology based

on atomic force microscopes (AFMs), which stores

data by melting minute pits in a thin polymer layer.

A prominent characteristic of the Millipede design

is a block erase cycle requiring several seconds to

complete. Such block erase requirements would ne-

cessitate management schemes, like those used for

Flash RAM devices [5], to hide erase cycle delays.

8 Summary

This paper compares and contrasts MEMS-based

storage devices with disk drives and provides a foun-

dation for focused OS management of these new de-

vices. We describe and evaluate approaches for tun-

ing request scheduling, data placement and failure

management techniques to the physical characteris-

tics of MEMS-based storage.

One of the general themes of our results is that OS

management of MEMS-based storage devices can be

similar to, and simpler than, management of disks.

For example, disk scheduling algorithms can be

adapted to MEMS-based storage devices in a fairly

straightforward manner. Also, performance is much

less dependent on such optimizations as careful data

placement, which can yield order of magnitude im-

provements for disk-based systems [9, 19, 24]; data

placement still matters, but sub-optimal solutions

may not be cause for alarm. In the context of avail-

ability, internal redundancy can mask most prob-

lems, eliminating both data loss and performance

loss consequences common to disk drives. Similarly,

rapid restart times allow power-conservation soft-

ware to rely on crude estimates of idle time.

We continue to explore the use of MEMS-based stor-

age devices in computer systems, including their

roles in the memory hierarchy [27] and in enabling

new applications.

Acknowledgments

We thank Rick Carley, David Petrou, Andy Kloster-

man, John Wilkes, the CMU MEMS Laboratory,

and the anonymous reviewers for helping us re�ne

this paper. We thank the members and companies

of the Parallel Data Consortium (including CLARi-

iON, EMC, HP, Hitachi, In�neon, Intel, LSI Logic,

MTI, Novell, PANASAS, Procom, Quantum, Sea-

gate, Sun, Veritas, and 3Com) for their interest, in-

sights, and support. We also thank IBM Corpora-

tion and Intel Corporation for supporting our re-

search e�orts. John GriÆn is supported in part by a

National Science Foundation Graduate Fellowship.

References

[1] L. Richard Carley, James A. Bain, Gary K. Fedder,
David W. Greve, David F. Guillou, Michael S. C. Lu,
Tamal Mukherjee, Suresh Santhanam, Leon Abelmann,
and Seungook Min. Single-chip computers with mi-
croelectromechanical systems-based magnetic memory.
Journal of Applied Physics, 87(9):6680{6685, 1 May
2000.

[2] Center for Highly Integrated Information Processing and
Storage Systems, Carnegie Mellon University. http://-
www.ece.cmu.edu/research/chips/.

[3] Data Storage Systems Center, Carnegie Mellon Univer-
sity. http://www.ece.cmu.edu/research/dssc/.

[4] Peter J. Denning. E�ects of scheduling on �le memory
operations. AFIPS Spring Joint Computer Conference

(Atlantic City, New Jersey, 18{20 April 1967), pages 9{
21, April 1967.

[5] Fred Douglis, Ramon Caceres, Frans Kaashoek, Kai Li,
Brian Marsh, and Joshua A. Tauber. Storage alterna-
tives for mobile computers. Symposium on Operating

Systems Design and Implementation (Monterey, CA),
pages 25{39. USENIX Association, 14{17 November
1994.

[6] Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting
the power-hungry disk. Winter USENIX Technical Con-

ference (San Francisco, CA), pages 292{306. USENIX
Association, Berkeley, CA, 17{21 January 1994.

[7] G. K. Fedder, S. Santhanam, M. L. Reed, S. C. Eagle,
D. F. Guillou, M. S.-C. Lu, and L. R. Carley. Lam-
inated high-aspect-ratio microstructures in a conven-
tional CMOS process. IEEE Micro Electro Mechanical

Systems Workshop (San Diego, CA), pages 13{18, 11{15
February 1996.

[8] Greg Ganger and Jiri Schindler. Database of validated
disk parameters for DiskSim. http://www.ece.cmu.edu/-
~ganger/disksim/diskspecs.html.

[9] Gregory R. Ganger and M. Frans Kaashoek. Embedded
inodes and explicit grouping: exploiting disk bandwidth
for small �les. Annual USENIX Technical Conference

(Anaheim, CA), pages 1{17, January 1997.

[10] Gregory R. Ganger, Bruce L. Worthington, and Yale N.
Patt. The DiskSim Simulation Environment Version

1.0 Reference Manual, CSE{TR{358{98. Department of
Computer Science and Engineering, University of Michi-
gan, February 1998.

[11] John Linwood GriÆn, Steven W. Schlosser, Gregory R.
Ganger, and David F. Nagle. Modeling and performance
of MEMS-based storage devices. ACM SIGMETRICS

2000 (Santa Clara, CA, 17{21 June 2000). Published
as Performance Evaluation Review, 28(1):56{65, June
2000.

[12] John L. Hennessy and David A. Patterson. Computer

Architecture: A Quantitative Approach, 2nd ed. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 1995.

[13] Hewlett-Packard Laboratories Storage Systems Pro-
gram. http://www.hpl.hp.com/research/storage.html.

[14] David M. Jacobson and John Wilkes. Disk scheduling al-
gorithms based on rotational position. HPL{CSP{91{7.
Hewlett-Packard Laboratories, Palo Alto, CA, 24 Febru-
ary 1991, revised 1 March 1991.

[15] Kester Li, Roger Kumpf, Paul Horton, and Thomas E.
Anderson. A quantitative analysis of disk drive power
management in portable computers. Winter USENIX

Technical Conference (San Francisco, CA), pages 279{
291. USENIX Association, Berkeley, CA, 17{21 January
1994.

[16] Yung-Hsiang Lu, Tajana �Simuni�c, and Giovanni De
Micheli. Software controlled power management. 7th In-
ternational Workshop on Hardware/Software Codesign

(Rome, Italy), pages 157{161. ACM Press, 3{5 May
1999.

[17] Marc Madou. Fundamentals of Microfabrication. CRC
Press LLC, Boca Raton, Florida, 1997.

[18] Marshall K. McKusick, William N. Joy, Samuel J. Lef-

er, and Robert S. Fabry. A fast �le system for UNIX.
ACM Transactions on Computer Systems, 2(3):181{197,
August 1984.

[19] L. W. McVoy and S. R. Kleiman. Extent-like perfor-
mance from a UNIX �le system. Winter USENIX Tech-

nical Conference (Dallas, TX), pages 33{43, 21{25 Jan-
uary 1991.

[20] Microelectromechanical Systems Laboratory, Carnegie
Mellon University. http://www.ece.cmu.edu/~mems/.

[21] David A. Patterson, Peter Chen, Garth Gibson, and
Randy H. Katz. Introduction to redundant arrays of in-
expensive disks (RAID). IEEE Spring COMPCON (San
Francisco, CA), pages 112{117, March 1989.

[22] Quantum Corporation. Quantum Atlas 10K

9.1/18.2/36.4 GB Ultra 160/m SCSI Hard Disk Drive

Product Manual, Publication number 81-119313-05,
August 6, 1999.

[23] Erik Riedel, Christos Faloutsos, Gregory R. Ganger,
and David F. Nagle. Data mining on an OLTP sys-
tem (nearly) for free. ACM SIGMOD Conference 2000

(Dallas, TX), pages 13{21, 14{19 May 2000.

[24] Mendel Rosenblum and John K. Ousterhout. The de-
sign and implementation of a log-structured �le system.
ACM Transactions on Computer Systems, 10(1):26{52,

February 1992.

[25] Chris Ruemmler and John Wilkes. UNIX disk access
patterns. Winter USENIX Technical Conference (San
Diego, CA), pages 405{420, 25{29 January 1993.

[26] Chris Ruemmler and John Wilkes. Disk Shu�ing. Tech-
nical report HPL-91-156. Hewlett-Packard Company,
Palo Alto, CA, October 1991.

[27] Steven W. Schlosser, John Linwood GriÆn, David F.
Nagle, and Gregory R. Ganger. Designing computer
systems with MEMS-based storage. Ninth Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems (Boston, Mas-
sachusetts), 13{15 November 2000. To appear.

[28] P. H. Seaman, R. A. Lind, and T. L. Wilson. On telepro-
cessing system design, part IV: an analysis of auxiliary-
storage activity. IBM Systems Journal, 5(3):158{170,
1966.

[29] Margo Seltzer, Peter Chen, and John Ousterhout. Disk
scheduling revisited. Winter USENIX Technical Confer-

ence (Washington, DC), pages 313{323, 22{26 January
1990.

[30] T. J. Teorey and T. B. Pinkerton. A comparative anal-
ysis of disk scheduling policies. Communications of the
ACM, 15(3):177{184, March 1972.

[31] P. Vettiger, M. Despont, U. Drechsler, U. D�urig,
W. H�aberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz,
R. Widmer, and G. K. Binnig. The \Millipede"|more
than one thousand tips for future AFM data storage.
IBM Journal of Research and Development, 44(3):323{
340, 2000.

[32] Paul Vongsathorn and Scott D. Carson. A system for
adaptive disk rearrangement. Software|Practice and

Experience, 20(3):225{242, March 1990.

[33] Kensall D. Wise. Special issue on integrated sensors,
microactuators, and microsystems (MEMS). Proceedings
of the IEEE, 86(8):1531{1787, August 1998.

[34] Bruce L. Worthington, Gregory R. Ganger, and Yale N.
Patt. Scheduling for modern disk drives and non-random
workloads. CSE{TR{194{94. Department of Computer
Science and Engineering, University of Michigan, March
1994.

[35] Pu Yang. Modeling probe-based data storage devices.
Technical report. Department of Computer Science, Uni-
versity of California Santa Cruz, June 2000. Master's
thesis.

