University of Central Florida School of Computer Science
 COT $4210 \quad$ Spring 2004

Prof. Rene Peralta

T1

1. Consider integers written in base 3 with no leading 0 s. Let L_{1} be the set of such strings which represent odd numbers.
(a) Construct a DFA that accepts L_{1}.
(b) Construct a left-linear grammar for L_{1}.
2. Consider the language L_{2} generated by the following grammar

$$
\begin{aligned}
& S \rightarrow A B+C \\
& A \rightarrow a B+C \\
& B \rightarrow A b+C \\
& C \rightarrow b+a a a C
\end{aligned}
$$

Characterize L_{1} using a combination of set notation and regular expressions.
3. What does it mean for an infinite set to be "countable"?
4. Construct a DFA equivalent to the following NFA.

5. Consider the language over $\Sigma=\{a, b, c\}$ consisting of strings with more occurrences of the pattern "abc" than occurrences of the pattern "abb". Is this a regular language? Justify your answer.

