University of Central Florida School of Computer Science COT 4210 Spring 2004

Prof. Rene Peralta sample questions T1

- 1. Consider integers written in base 3 with no leading 0s. Let L_1 be the set of such strings representing numbers that are congruent to 3 mod 4.
 - (a) Construct a DFA that accepts L_1 .
 - (b) Construct a left-linear grammar for L_1 .

answer: we have done this type of exercise ad nauseum, so I won't write an answer here

2. Write a regular expression for the set of strings over $\Sigma = \{0, 1\}$ which have an odd number of 1's.

answer: note you do not need to go through the entire DFA \rightarrow grammar \rightarrow regular expression sequence. "Odd number of 1's" means "one 1 plus an even number of 1's", so $\rightarrow 0^{*}10^{*}(0^{*}10^{*}10^{*})^{*}$. This is not the most compact representation, but we don't care about that here.

3. Describe the four types of grammars in the Chomsky Hierarchy.

answer: something like i) unrestricted, ii) $|LHS| \leq |RHS|$, iii) |LHS| = 1; iv) right-linear.

4. Outline the argument that uses Cantor's diagonalization technique to show the set of subsets of \aleph is not countable.

answer: It is a proof by contradiction: i) there is a bijection between infinite binary strings and subsets of \aleph , so we count the former instead; ii) assume, for a contradiction, that the set of infinite binary strings is countable; iii) the strings can thus be arranged in a list $s(1), s(2), s(3), \ldots$ iv) Let b(i) be the complement of the i^{th} bit of s(i); v) Then \vec{b} is a string which is not in the list, contradiction.

5. Show, using the pumping lemma for regular languages, that the set T consisting of binary string with more 1s than 0s is not regular.

answer: By contradiction. Assume the set is regular and let α be the "pumping constant" given by the pumping lemma. Let $\omega = 11^{\alpha}0^{\alpha}$. Then $\omega \in T$. The pumping lemma implies we can "erase" a (non-empty) substring from the prefix 11^{α} with the resulting string still being in T. But this clearly cannot be done, contradiction.