Theorem 6.5	Let A, B, and C be $n \times m$ matrices and λ and μ be real numbers. The following properties
	of addition and scalar multiplication hold:

(a)
$$A + B = B + A$$
,

(b)
$$(A+B)+C=A+(B+C),$$

(c)
$$A + O = O + A = A$$
,

(d)
$$A + (-A) = -A + A = 0$$
,

(e)
$$\lambda(A+B) = \lambda A + \lambda B$$
,

(f)
$$(\lambda + \mu)A = \lambda A + \mu A$$
,

(g)
$$\lambda(\mu A) = (\lambda \mu) A$$
,

(h)
$$1A = A$$
.

Theorem 6.9 Let A be an $n \times m$ matrix, B be an $m \times k$ matrix, C be a $k \times p$ matrix, D be an $m \times k$ matrix, and λ be a real number. The following properties hold:

(a)
$$A(BC) = (AB)C$$
; (Associative law for multiplication)

(b)
$$A(B+D) = AB + AD$$
; (Distributive law)

(c)
$$I_m B = B$$
 and $BI_k = B$; (I dentity Element)

(d)
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$
.

Definition 6.10 An $n \times n$ matrix A is **nonsingular** (or *invertible*) if an $n \times n$ matrix A^{-1} exists with $AA^{-1} = A^{-1}A = I$. The matrix A^{-1} is called the **inverse** of A. A matrix without an inverse is called **singular** (or *noninvertible*).

The following properties regarding matrix inverses follow from Definition 6.10. The proofs of these results are considered in Exercise 5.

Theorem 6.11 For any nonsingular $n \times n$ matrix A:

- (a) A^{-1} is unique.
- (b) A^{-1} is nonsingular and $(A^{-1})^{-1} = A$.
- (c) If B is also a nonsingular $n \times n$ matrix, then $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem 6.13 The following operations involving the transpose of a matrix hold whenever the operation is possible:

(a)
$$(A^t)^t = A$$
,

(b)
$$(A+B)^t = A^t + B^t$$
,

(c)
$$(AB)^t = B^t A^t$$
,

(d) if
$$A^{-1}$$
 exists, then $(A^{-1})^t = (A^t)^{-1}$.

Definition 6.14

- (a) If A = [a] is a 1×1 matrix, then det A = a.
- (b) If A is an $n \times n$ matrix, the minor M_{ij} is the determinant of the $(n-1) \times (n-1)$ submatrix of A obtained by deleting the *i*th row and *j*th column of the matrix A.
- (c) The cofactor A_{ij} associated with M_{ij} is defined by $A_{ij} = (-1)^{i+j} M_{ij}$.
- (d) The determinant of the $n \times n$ matrix A, when n > 1, is given either by

$$\det A = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}, \quad \text{for any } i = 1, 2, \dots, n,$$

or by

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}, \quad \text{for any } j = 1, 2, \dots, n.$$

Theorem 6.15 Suppose A is an $n \times n$ matrix:

- (a) If any row or column of A has only zero entries, then det A = 0.
- If A has two rows or two columns the same, then $\det A = 0$.

- (c) If \tilde{A} is obtained from A by the operation $(E_i) \leftrightarrow (E_j)$, with $i \neq j$, then $\det \tilde{A} = -\det A$.

 (d) If \tilde{A} is obtained from A by the operation $(\lambda E_i) \to (E_i)$, then $\det \tilde{A} = \lambda \det A$.

 (e) If \tilde{A} is obtained from A by the operation $(E_i + \lambda E_j) \to (E_i)$ with $i \neq j$, then $\det \tilde{A} = \det A$.
 - (f) If B is also an $n \times n$ matrix, then det $AB = \det A \det B$.
 - (g) $\det A' = \det A$.
 - (h) When A^{-1} exists, $\det A^{-1} = (\det A)^{-1}$.
 - (i) If A is an upper triangular, or a lower triangular, or a diagonal matrix, then

Theorem 6.16 The following statements are equivalent for any $n \times n$ matrix A:

- (a) The equation Ax = 0 has the unique solution x = 0
- (b) The system Ax = b has a unique solution for any *n*-dimensional column vector **b**.
- (c) The matrix A is nonsingular; that is, A^{-1} exists.
- (d) det $A \neq 0$.
- (e) Gaussian elimination with row interchanges can be performed on the system Ax = b for any *n*-dimensional column vector **b**.

Definition 7.1 A vector norm on \mathbb{R}^n is a function, $\|\cdot\|$, from \mathbb{R}^n into \mathbb{R} with the following properties:

(i) $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$,

- (i) $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$, (ii) $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$, (iii) $\|\alpha\mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$, (iii) $\|\alpha\mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$,
- (iv) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$.

Definition 7.2 The l_2 and l_∞ norms for the vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$ are defined by

$$\|\mathbf{x}\|_2 = \left\{\sum_{i=1}^n x_i^2\right\}^{1/2}$$
 and $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$.

Theorem 7.3 (Cauchy-Bunyakovsky-Schwarz Inequality for Sums)

For each $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)^t$ in \mathbb{R}^n ,

$$\mathbf{x}^t \mathbf{y} = \sum_{i=1}^n x_i y_i \le \left\{ \sum_{i=1}^n x_i^2 \right\}^{1/2} \left\{ \sum_{i=1}^n y_i^2 \right\}^{1/2} = \|\mathbf{x}\|_2 \cdot \|\mathbf{y}\|_2.$$

If $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)^t$ are vectors in \mathbb{R}^n , the l_2 and l_∞ distances between x and y are defined by

$$\|\mathbf{x} - \mathbf{y}\|_2 = \left\{ \sum_{i=1}^n (x_i - y_i)^2 \right\}^{1/2} \text{ and } \|\mathbf{x} - \mathbf{y}\|_{\infty} = \max_{1 \le i \le n} |x_i - y_i|.$$

Definition 7.5 A sequence $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^n is said to **converge** to \mathbf{x} with respect to the norm $\|\cdot\|$ if, given any $\varepsilon > 0$, there exists an integer $N(\varepsilon)$ such that

$$\|\mathbf{x}^{(k)} - \mathbf{x}\| < \varepsilon$$
, for all $k \ge N(\varepsilon)$.

Theorem 7.6 The sequence of vectors $\{\mathbf{x}^{(k)}\}$ converges to \mathbf{x} in \mathbb{R}^n with respect to $\|\cdot\|_{\infty}$ if and only if $\lim_{k\to\infty} x_i^{(k)} = x_i$, for each $i = 1, 2, \ldots, n$.

Theorem 7.7 For each $x \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_{2} \le \sqrt{n} \|\mathbf{x}\|_{\infty}.$$

- **Definition 7.8** A matrix norm on the set of all $n \times n$ matrices is a real-valued function, $\|\cdot\|$, defined on this set, satisfying for all $n \times n$ matrices A and B and all real numbers α :
 - (i) $||A|| \ge 0$;
 - (ii) ||A|| = 0, if and only if A is O, the matrix with all 0 entries;
 - (iii) $\|\alpha A\| = |\alpha| \|A\|$;
 - (iv) $||A + B|| \le ||A|| + ||B||$;
 - (v) $||AB|| \le ||A|| ||B||$.

The distance between $n \times n$ matrices A and B with respect to this matrix norm is ||A - B||.

Theorem 7.9 If $||\cdot||$ is a vector norm on \mathbb{R}^n , then

$$||A|| = \max_{\|\mathbf{x}\|=1} ||A\mathbf{x}||$$

is a matrix norm.

Corollary 7.10 For any vector $\mathbf{z} \neq \mathbf{0}$, matrix A, and any natural norm $\|\cdot\|$, we have

$$||A\mathbf{z}|| \le ||A|| \cdot ||\mathbf{z}||.$$

Theorem 7.11 If $A = (a_{ij})$ is an $n \times n$ matrix, then

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

Definition 7.12 If A is a square matrix, the characteristic polynomial of A is defined by

$$p(\lambda) = \det(A - \lambda I).$$

Definition 7.13 If p is the characteristic polynomial of the matrix A, the zeros of p are eigenvalues, or characteristic values, of the matrix A. If λ is an eigenvalue of A and $\mathbf{x} \neq \mathbf{0}$ satisfies $(A - \lambda I)\mathbf{x} = \mathbf{0}$, then \mathbf{x} is an eigenvector, or characteristic vector, of A corresponding to the eigenvalue λ .

Definition 7.14 The spectral radius $\rho(A)$ of a matrix A is defined by

$$\rho(A) = \max |\lambda|$$
, where λ is an eigenvalue of A .

(Recall that for complex $\lambda = \alpha + \beta i$, we have $|\lambda| = (\alpha^2 + \beta^2)^{1/2}$.)

Theorem 7.15 If A is an $n \times n$ matrix, then

(i)
$$||A||_2 = [\rho(A^t A)]^{1/2}$$
,

(ii)
$$\rho(A) \leq ||A||$$
, for any natural norm $||\cdot||$.

Definition 7.16 We call an $n \times n$ matrix A convergent if

$$\lim_{k\to\infty} (A^k)_{ij} = 0$$
, for each $i = 1, 2, ..., n$ and $j = 1, 2, ..., n$.

Theorem 7.17 The following statements are equivalent.

- (i) A is a convergent matrix.
- (ii) $\lim_{n\to\infty} ||A^n|| = 0$, for some natural norm.
- (iii) $\lim_{n\to\infty} ||A^n|| = 0$, for all natural norms.
- (iv) $\rho(A) < 1$.
- (v) $\lim_{n\to\infty} A^n \mathbf{x} = \mathbf{0}$, for every \mathbf{x} .

The method of Example 1 is called the Jacobi iterative method. It consists of solving the *i*th equation in Ax = b for x_i to obtain (provide $(a_{ii} \neq 0)$)

$$x_i = \sum_{\substack{j=1\\j\neq i}}^n \left(-\frac{a_{ij}x_j}{a_{ii}} \right) + \underbrace{\frac{b_i}{a_{ii}}}, \quad \text{for } i = 1, 2, \dots, n$$

and generating each $x_i^{(k)}$ from components of $\mathbf{x}^{(k-1)}$ for $k \ge 1$ by

$$x_i^{(k)} = \frac{\sum_{\substack{j=1\\j\neq i}}^{n} \left(-a_{ij} x_j^{(k-1)}\right) + b_i}{a_{ii}}, \quad \text{for } i = 1, 2, \dots, n. \quad ; \quad (7.4)$$

A possible improvement in Algorithm 7.1 can be seen by reconsidering Eq. (7.4). The components of $\mathbf{x}^{(k-1)}$ are used to compute $x_i^{(k)}$. Since, for $i>1, x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are probably better approximations to the actual solutions x_1, \ldots, x_{i-1} than $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$, it seems more reasonable to compute $x_i^{(k)}$ using these most recently calculated values. That is, we can use

$$x_i^{(k)} = \frac{-\sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_j^{(k-1)}) + b_i}{a_{ii}},$$
(7.7)

for each i = 1, 2, ..., n, instead of Eq. (7.4). This modification is called the **Gauss–Seidel** iterative technique and is illustrated in the following example.

Lemma 7.18 If the spectral radius $\rho(T)$ satisfies $\rho(T) < 1$ then $(I - T)^{-1}$ exists, and

$$(I-T)^{-1} = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j.$$

Theorem 7.19 For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by

(Proof
$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}, \quad \text{for each } k \ge 1, \tag{7.10}$$

$$\text{converges to the unique solution of } \mathbf{x} = T\mathbf{x} + \mathbf{c} \text{ if and only if } \rho(T) < 1.$$

Corollary 7.20 If ||T|| < 1 for any natural matrix norm and c is a given vector, then the sequence $\{x^{(k)}\}_{k=0}^{\infty}$ defined by $x^{(k)} = Tx^{(k-1)} + c$ converges, for any $x^{(0)} \in \mathbb{R}^n$, to a vector $x \in \mathbb{R}^n$, and the following error bounds hold:

(i)
$$\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \|T\|^k \|\mathbf{x}^{(0)} - \mathbf{x}\|;$$

(ii) $\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \frac{\|T\|^k}{1 - \|T\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|.$