(Taylor's Theorem)

Suppose $f \in C^n[a, b]$, that $f^{(n+1)}$ exists on [a, b], and $x_0 \in [a, b]$. For every $x \in [a, b]$, there exists a number $\xi(x)$ between x_0 and x with $f(x) = P_n(x) + R_n(x)$, where

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

and

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}.$$

Floating-point representation (Binary Floating Point Arithmetic Standard 754-1985):

1-bit sign s 11-bit characteristic c

52-bit mantissa *f*

The floating-point value formula:

$$(-1)^{s}2^{c-1023}(1+f).$$

Definition 1.18 Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence known to converge to zero, and $\{\alpha_n\}_{n=1}^{\infty}$ converges to a number α . If a positive constant K exists with

$$|\alpha_n - \alpha| \le K|\beta_n|$$
, for large n ,

then we say that $\{\alpha_n\}_{n=1}^{\infty}$ converges to α with **rate of convergence** $O(\beta_n)$ (this expression is read "big oh of β_n "). It is indicated by writing $\alpha_n = \alpha + O(\beta_n)$.

Bisection method: (1) $p_n = \frac{a_n + b_n}{2}$ where $a_n < b_n$ and $f(a_n) \cdot f(b_n) < 0$

(2) if
$$f(a_n) \cdot f(p_n) > 0$$
 then $a_{n+1} = p_n$; $b_{n+1} = b_n$ else $a_{n+1} = a_n$; $b_{n+1} = p_n$

Theorem 2.1:

Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n - p| \le \frac{b - a}{2^n}$$
, when $n \ge 1$.

Fixed-Point Iteration method: Given p_0 . For $n \ge 1$, $p_n = g(p_{n-1})$. **Theorem 2.2:**

- a. If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$, then g has a fixed point in [a, b].
- **b.** If, in addition, g'(x) exists on (a, b) and a positive constant k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$,

then the fixed point in [a, b] is unique. (See Figure 2.3.)

Theorem 2.3:

(Fixed-Point Theorem)

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$, for all x in [a, b]. Suppose, in addition, that g' exists on (a, b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$.

Then, for any number p_0 in [a, b], the sequence defined by

$$p_n = g(p_{n-1}), \quad n \ge 1,$$

converges to the unique fixed point p in [a, b].

Corollary 2.4:

If g satisfies the hypotheses of Theorem 2.3, then bounds for the error involved in using p_n to approximate p are given by

$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$$

and

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|$$
, for all $n \ge 1$.

Newton-Raphson method:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \text{ for } n \ge 1.$$

Secant method: Given p_0 and p_1 , for $n \ge 2$,

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}.$$

Method of False Position:

First choose initial approximations p_0 and p_1 with $f(p_0) \cdot f(p_1) < 0$. The approximation p_2 is chosen in the same manner as in the Secant method, as the x-intercept of the line joining $(p_0, f(p_0))$ and $(p_1, f(p_1))$. To decide which secant line to use to compute p_3 , we check $f(p_2) \cdot f(p_1)$. If this value is negative, then p_1 and p_2 bracket a root, and we choose p_3 as the x-intercept of the line joining $(p_1, f(p_1))$ and $(p_2, f(p_2))$. If not, we choose p_3 as the x-intercept of the line joining $(p_0, f(p_0))$ and $(p_2, f(p_2))$, and then interchange the indices on p_0 and p_1 .

Aiken's Δ^2 method:

Aitken's Δ^2 method is based on the assumption that the sequence $\{\hat{p}_n\}_{n=0}^{\infty}$, defined by

$$\hat{p}_n = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n},$$
(2.12)

converges more rapidly to p than does the original sequence $\{p_n\}_{n=0}^{\infty}$.

Steffensen's method:

$$p_0^{(0)}, \quad p_1^{(0)} = g(p_0^{(0)}), \quad p_2^{(0)} = g(p_1^{(0)}), \quad p_0^{(1)} = \{\Delta^2\}(p_0^{(0)}), \quad p_1^{(1)} = g(p_0^{(1)}), \dots$$

Horner's method:

INPUT degree
$$n$$
; coefficients a_0, a_1, \ldots, a_n ; x_0 .

OUTPUT $y = P(x_0)$; $z = P'(x_0)$.

Step 1 Set $y = a_n$; (Compute b_n for P .)

 $z = a_n$. (Compute b_{n-1} for Q .)

Step 2 For $j = n - 1, n - 2, \ldots, 1$

set $y = x_0 y + a_j$; (Compute b_j for P .)

 $z = x_0 z + y$. (Compute b_{j-1} for Q .)

Step 3 Set $y = x_0 y + a_0$. (Compute b_0 for P .)

Step 4 OUTPUT (y, z) ;

STOP.

Muller's method: Given a polynomial f(x) and three initial approximations p_0 , p_1 , and p_2 . For $n \ge 3$, first compute

$$c = f(p_2),$$

$$b = \frac{(p_0 - p_2)^2 [f(p_1) - f(p_2)] - (p_1 - p_2)^2 [f(p_0) - f(p_2)]}{(p_0 - p_2)(p_1 - p_2)(p_0 - p_1)},$$

$$a = \frac{(p_1 - p_2)[f(p_0) - f(p_2)] - (p_0 - p_2)[f(p_1) - f(p_2)]}{(p_0 - p_2)(p_1 - p_2)(p_0 - p_1)}.$$

Then, compute p_3 as follows:

$$p_3 = p_2 - \frac{2c}{b + \text{sgn}(b)\sqrt{b^2 - 4ac}},$$

Repeat the procedure using p_1 , p_2 , and p_3 as the three approximate roots.