Instructions: There are 4 pages, 8 questions, and 100 total points. Formula sheets are provided for the test. Show your work and write your answer in the space provided.

- 1. (15 pts.) Use the data from the following table and the formulas for Lagrange interpolating polynomials to
 - (a) construct the Lagrange interpolating polynomials $L_{1,0}(x)$ and $L_{1,1}(x)$; and
 - (b) estimate the error using appropriate error bound if the Lagrange interpolating polynomial of degree one is used to approximate f(0.1) if $f(x) = 2 \cos x 1$.

X	f(x)
0.0	1.00
0.2	0.96

2. (10 pts.) Suppose a natural cubic spine function S(x) is used to approximate the function $f(x) = \sin x$ over the interval [0, 3] using the data points (0, $\sin 0$), (1, $\sin 1$), (2, $\sin 2$), and (3, $\sin 3$). The three spline functions are labeled $S_j(x)$, j = 0, 1, and 2, respectively, where $S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$. Set up the equations (using the matrix form or equations) for solving the unknowns c_0 , c_1 , c_2 , and c_3 (but **do not** solve the equations).

X	$\sin x$
0.0	$\sin 0 = 0.0000$
1.0	$\sin 1 = 0.8414$
2.0	$\sin 2 = 0.9092$
3.0	$\sin 3 = 0.1411$

- 3. (15 pts.) Suppose $f(x) = 2 \sin x x$.
 - (a) Use appropriate formula to approximate the value f''(1.2) (i.e., the second derivative of f evaluated at 1.2) using the data values given in the following table; and
 - (b) Estimate the error of the approximation of Part (a) using appropriate error formula.

X	f(x)
1.1	0.6824
1.2	0.6640
1.3	0.6271

- 4. (15 pts.) Consider the integral $\int_{0}^{2} x \cos x \, dx$.
 - (a) Use the composite trapezoidal rule with n = 2 to approximate the integral.

(b) Estimate the error for the approximation in Part (a) using appropriate error formula.

5. (10 pts.) Suppose Romberg's method is used to approximate the integral $\int_{0}^{2} x \cos x \, dx$. Compute the approximation $R_{3,3}$.

6. (10 pts.) Use the open Newton-Cotes formula with n = 1 to approximate the integral $\int_{0}^{2} x \cos x \, dx$.

7. (15 pts.) Use Gaussian quadrature with n = 2 to approximate the integral $\int_{0}^{2} x \cos x \, dx$.

8. (10 pts.) Describe **two** approaches that can be used to verify that the degree of precision is one for the mid-point rule in integration, i.e.,

$$\int_{a}^{b} f(x) dx = 2hf(x_0) + \frac{h^3}{3} f^{(2)}(\xi) \text{ where } h = \frac{b-a}{2}, x_0 = \frac{a+b}{2}, a < \xi < b.$$