COT 4500 Quiz #5 Solutions

Date: 3/23/2012

1) (25 pts) Find the solution to the following differential equation with the initial condition $y(\pi)=3\pi^2$:

$$y - \frac{x}{2}y' + x^3\cos(2x) = 0$$

Solution

$$y - \frac{x}{2}y' + x^3 \cos(2x) = 0, \text{ multiply through by } -\frac{2}{x}$$
$$-\frac{2}{x}y + y' - 2x^2 \cos(2x) = 0$$
$$y' - \frac{2}{x}y = 2x^2 \cos(2x), \text{ use integrating factor}$$

Integrating factor =
$$e^{\int \frac{-2}{x} dx} = e^{-2\ln|x|} = x^{-2}$$
.

$$\frac{y'}{x^2} - \frac{2y}{x^3} = 2\cos(2x)$$
, integrate both sides

$$\frac{y}{x^2} = \sin(2x) + C$$

$$y = x^2 \sin(2x) + Cx^2$$

Plugging in
$$x = \pi$$
, $y = 3\pi^2$, we get:

$$3\pi^2 = C\pi^2$$
, so C = 3.

The final solution is $y = x^2 \sin(2x) + 3x^2$.

2) (25 pts) Use Euler's method to approximate the solution to the following differential equation with the initial condition y(4) = 10 in the interval $4 \le t \le 8$ and n = 5:

$$y' = \frac{\sqrt{t}}{y}$$

Please show your approximation for y for each of the five values of t at which we evaluate y during the algorithm.

Solution

Using the following algorithm shown in class:

```
double w[N+1];

double a = 4, b = 8;
w[0] = 10;
double h = (b - a)/N;
int i;

for (i=1; i<=N; i++) {
    w[i] = w[i-1] + h*f(a+(i-1)*h, w[i-1]);
}</pre>
```

we get the following values for the approximation of the function:

i	t	W
0	4	10
1	4.8	10.16
2	5.6	10.332511
3	6.4	10.515733
4	7.2	10.708193
5	8.0	10.908659

3) (25 pts) Use the Runge-Kutta method of order 4 to approximate the solution to the differential equation from question number 2 in the same interval, but use n = 2. To get full credit, please list out the values of k_1 , k_2 , k_3 , and k_4 for both iterations of the algorithm as well as w_1 and w_2 .

Solution

Using the algorithm shown in class:

```
double w[N+1];
double a = 4, b = 8;
w[0] = 10;

double h = (b - a)/N;
int i;

for (i=0; i<N; i++) {
   double ti = a+i*h;
   double tnext = a+(i+1)*h;

   double k1 = h*f(ti, w[i]);
   double k2 = h*f(ti+h/2,w[i]+k1/2);
   double k3 = h*f(ti+h/2,w[i]+k2/2);
   double k4 = h*f(tnext, w[i]+k3);
   w[i+1] = w[i] + (k1+2*k2+2*k3+k4)/6;

   printf("%lf %lf %lf %lf %lf %lf\n",a+i*h,k1,k2,k3,k4,w[i+1]);
}</pre>
```

the output is as follows:

i	t	\mathbf{k}_1	\mathbf{k}_2	\mathbf{k}_3	k_4	W
1	6	.4	.438445	.437620	.469358	10.436915
2	8	.469390	.495849	.495235	.517451	10.931749

4) (25 pts) Find the solution to the following differential equation with the initial conditions y(0)=4, $y(1)=6e^5$.

$$y'' - 10y' + 25y = 0$$

Solution

The characteristic equation is:

$$m^2 - 10m + 25 = 0$$
$$(m - 5)^2 = 0$$

Thus, m = 5 is a repeated root. The general solution is:

$$y = (c_0 + c_1 x)e^{5x}$$
.

Now, plug in the initial conditions to get the following two equations:

$$4 = c_0
6e^5 = (c_0 + c_1)e^5$$

Divide the second equation by e⁵ to yield:

$$6 = c_0 + c_1$$

Since $c_0 = 4$, it follows that $c_1 = 2$. The final equation is:

$$y = (4 + 2x)e^{5x} = 2(x + 2)e^{5x}$$
.