2004 Summer COT 5907 Homework #2,3 Solutions

Question 1:

The first five prime numbers greater than 
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 are:

1000000000000000000000000000057

1000000000000000000000000000099

1000000000000000000000000000211

1000000000000000000000000000231

1000000000000000000000000000271

Code attached.

Question 2:
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Code attached.

Question 3:


12x ( 37 mod 91


5x ( 62 mod 72


11x ( 3 mod 25

=>


x ( 37*38 mod 91 ( 41 mod 91


x ( 62*29 mod 72 ( 70 mod 72


x ( 3*16 mod 25 ( 23 mod 25

Use the Chinese Remainder Threom: x = 102598 (mod 163800), thus all possible solutions are x ( {102598 + 163800n | n(Z}

Code attached.

Question 4:

Primitive roots and corresponding x:

Primitive root: 2;              x=108

Primitive root: 3;              x=66

Primitive root: 7;              x=102

Primitive root: 17;             x=162

Primitive root: 22;             x=96

Primitive root: 29;             x=132

Primitive root: 35;             x=198

Primitive root: 39;             x=114

Primitive root: 41;             x=204

Primitive root: 48;             x=114

Primitive root: 57;             x=24

Primitive root: 72;             x=72

Primitive root: 75;             x=144

Primitive root: 85;             x=138

Primitive root: 91;             x=36

Primitive root: 92;             x=96

Primitive root: 106;            x=102

Primitive root: 108;            x=198

Primitive root: 112;            x=36

Primitive root: 116;            x=18

Primitive root: 118;            x=6

Primitive root: 127;            x=12

Primitive root: 130;            x=174

Primitive root: 131;            x=78

Primitive root: 133;            x=186

Primitive root: 141;            x=144

Primitive root: 142;            x=192

Primitive root: 145;            x=78

Primitive root: 149;            x=48

Primitive root: 152;            x=204

Primitive root: 155;            x=54

Primitive root: 158;            x=156

Primitive root: 159;            x=18

Primitive root: 160;            x=174

Primitive root: 162;            x=156

Primitive root: 164;            x=72

Primitive root: 165;            x=24

Primitive root: 166;            x=66

Primitive root: 167;            x=162

Primitive root: 174;            x=186

Primitive root: 175;            x=6

Primitive root: 181;            x=108

Primitive root: 187;            x=48

Primitive root: 191;            x=192

Primitive root: 195;            x=132

Primitive root: 202;            x=138

Primitive root: 205;            x=12

Primitive root: 207;            x=54

Number of primitive roots found:        48

Code attached.

Question 5:

Let p be a prime with a primitive root g. Then any element y ( Zp* can be written as y=gi, where 0 ( i < p-1, in an unique way. Prove that


a) The order of y=gi, is 
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b) The number of primitive elements modulo p is ((p-1).

a) First we will show that 
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 Then we will show y raised to all positive values j with 
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for some integer k since by definition, gcd(p-1,i) | i and gp-1 = 1 mod p.

Now, we must show for j=1, 2, ..., 
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Note that yj = gij mod p. Since g is a primitive root, we know that this expression equals 1 mod p if and only if ij is a multiple of p-1. Now, by contradiction, we will show that (p-1) | ij is false.

Assume to the contrary that there exists a value of j in the range given that satisfies the equation

ij = c(p-1), for some integer c.

c = 
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Let m = gcd(p-1, i), then we can express p-1 = mx and i=my, where gcd(x,y)=1. (If x and y shared a common factor, then we could factor this out of both, contradicting the fact that m is the gcd(p-1,i).)

c = 
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Since gcd(x,y)=1, it follows that in order for there to be a solution for j, we must have that x | j since c is integral. But, we have that

p-1 = mx, so

x = 
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Thus, it is necessary for j to be a multiple of this. BUT, this is impossible since none of the possible values of j are multiples of this value, contradicting the assumption that there was a solution for j less than the value of x listed above.

b) This is much easier to show. We can list the set of elements of the set {1,2,3,...,p-1} as {gi mod p | 0 < i < p}. Now, the order of each of these values is 
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. Thus, we need to find the number of values of i for which this expression is equal to p-1. In order for this expression to equal p-1, the denominator has to equal 1. BUT, gcd(p-1,i) = 1 for precisely ((p-1) values by definition!!!
Question 6:

Proof:


First, since 
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Then we need to prove that for any b, 1<b<n, if gcd(b,n)=1, then 
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If gcd(b,n)=1, then 
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 where C is an integer.    
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The equation above means that
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 are k distinct prime numbers, we are safe to claim that 
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Since n is a composite number and for all b with gcd(b,n)=1, 
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(mod n), n is a Carmichael number.

Question 7:
Proof:


If gcd(x,n) > 1, then either p or q can be a factor of x, or both. 

If both p and q are factors of x, we have

x = 0 mod n


And
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Thus 
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If only p is a factor of x, let
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, both gcd(b,p) and gcd(b,q) are 1. This also implies b is relatively prime to n so 
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From this step, let's consider this quantity mod p and q separately:
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Using the Chinese Remainder Theorem, we can find an unique value mod n which satisfies the following two equations. This value can be verified by plugging into both of the equations above as being the only solution:
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If only q is a factor of x, we can use the same reasoning.

(Note: A simpler proof involves simply showing that the solution to y = xed mod p and y = xed mod q is still y = x mod n.)

Question 8:

Write down the known information as follows:

x3 = yA mod nA
x3 = yB mod nB
x3 = yC mod nC.
You can run gcd(nA, nB), gcd(nA, nC), and gcd(nB, nC), to show that all three public values are relatively prime to one another. If they aren't, then you've gotten the prime factorization of two of the three moduli. Assuming otherwise however, we can still Solve for K mod the product nAnBnC. in the following three equations:

K = yA mod nA
K = yB mod nB
K = yC mod nC.
Since we are assuming that x is less than nA, nB, and nC , it follows that its cube is less than the product of the three. Thus, we can simply take the cube root of K to obtain x. (Essentially, the CRT will tell us that K = d mod nAnBnC. This means that K = d+ nAnBnCm, for some integer m. BUT, since 0 < K <nAnBnC , we know for sure that m=0 in the equation above and can simply take the cube root of the calculated value K. Notice that this attack doesn't work if the common exponent is much larger than 3, since we couldn't guarantee that the corresponding value of m in the equation above would be 0.) Here's an example:

nA = 51

nB = 65

nC = 77

x = 37.

Then we have 

yA = 10

yB = 18

yC = 64

Now, solve the equations:

K = 10 mod 51

K = 18 mod 65

K = 64 mod 77

Using the CRT, you will obtain 50653 as the unique solution mod 255255. The real valued cube root  of this is 37, the original message.

Question 9:

Though I haven't figured out how to completely break this system quickly, I have figured out a way to reduce the search space for D so that we only have to check 
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values. Since it's been shown that RSA in general is vulnerable to attack with a small value of E less than 
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First, multiply the equation in step 4 by E:

ED = (P-1)(Q-1)(E-1) + 1

ED - 1 = (P-1)(Q-1)(E -1)
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It follows that the LHS of this equation must be an integer. A trivial solution is D=1. Since gcd(E,E-1)=1, it follows that all solutions of D are equivalent mod E-1. Thus, we must have D = 1+k(E-1).

Consider the following example:

E=17

P = 11, Q= 13, so N=143, (notice that 17 | ((11-1)(13-1)-1).)

Using the logic above, we must have D = 1 + 16k.

Thus, we can start searching for the proper value of D by trying 1, 17, 33, ..., 113, which is the correct value. This is less work than we would have done, had we not know how E was constructed.
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