Lecture 10: Blowfish and Intro to Num Theory

Uses a key anywhere from 32 bits to 448 bits, in increments of 32 bits.

Let the key be n*32 bits, then the key can be split into n parts: K1, K2, ... Kn, where n is an int in between 1 and 14, inclusive.

Now, you'll have two main "arrays" to initialize, these are P and S. P has 18 32 bit entries, and S has the dimensions 4x255. You first initialize all of these with the digits of PI after the decimal in binary. The first few digits are 0010010000111111, in HEX this is 243F. To see that this works calculate 1/8+1/64+1/2048+...etc. and see how you progressively approach PI from below.

The order you do this initialization is P1, P2, ..., P18, S1,0, S1,1, ... S1,255, ... S4,255.

Next, change up the P array as follows: Pi = Pi ( K(i -1)modn+1
Now, you will go ahead and make changes to both P and S as follows, changing two entries at a time:

P1, P2 = EP,S[0]

P3, P4 = EP,S[P1, P2]

...

S1,0, S1,1 = EP,S[P17, P18]

S1,2, S1,3 = EP,S[S1,0, S1,1]

...

S4,254, S4,255 = EP,S[S4,252, S4,253]

Now, at this point, you use these newly formed P and S arrays to encrypt as follows:

Y = EP,S[X], for a plaintext 64 bit block X.

Here are the details of the function E, and F:

The input to E is 64 bits, split into 2 32 bit parts. The input to F is 32 bits, split into 4 8 bit parts.

EP,S[LE0, RE0,] {



F[a,b,c,d]= ((S1,a + S2,b) (S3,c)+S4,d,

     for i=1 to 16 {



addition is mod 232.

          REi = LEi-1 ( Pi

          LEi = F[REi] ( REi-1
     }

     LE17 = RE16 ( P18

     RE17 = LE16 ( P17

         output LE17, RE17 

}

Number Theory Stuff

All integers can be uniquely prime factorized and given
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, we find that

gcd(a,b) = 
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and lcm(a,b) = 
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and immediate consequence of this is that gcd(a,b)xlcm(a,b) = axb.

First, we will prove Fermat's theorem, which is a specific case of Euler's Theorem:

ap-1 ( 1 mod p

Consider the two sets of numbers, mod p:

{1, 2, 3, ..., p-1}

{a, 2a, 3a, ..., a(p-1)}, where gcd(a,p) = 1

Clearly, the first set contains each possible value from 1 to p-1 exactly once. We will prove this is true of the second set too.

The second set has exactly p-1 values. Since we are considering these mod p, there are only p possible values each one could be. None of these is 0. To see this, note that each product is of the form ia, where i ranges from 1 to p-1. For p to be a factor, since it's prime, p must either divide i or a, but it doesn't divide either of them. Thus, 0 is not in the second set. Now, we will prove that no value is duplicated in the second set, using proof by contradiction.

Imagine this were the case. Then we'd have 

ai ( aj mod p, for distinct i and j in between 1 and p-1 inclusive

ai - aj ( 0 mod p

a(i-j) ( 0 mod p

p | a(i-j)

Since p is prime we have either that p | a or p | (i-j).

We know p | (i-j) is false, since | i- j | > 0 and | i - j | < p.

But, the second must be false from the assumption that gcd(a,p) = 1.

This is our contradiction! Thus, it follows that all the values in the second set are distinct and none are 0, thus, they are 1, 2, 3, ..., p-1, but not necessarily in that order.

Now, for the proof of Fermat's theorem:

Using the fact we just proved, we have the following:
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Thus, since p is prime, we must have that p divides one of these two factors. It doesn't divide the second factor, since that is a product of values all relatively prime to p. Thus, we must have that

p | ap-1 - 1, or alternatively, written using mod, ap-1 ( 1 mod p

We'll continue with Euler's Theorem next time.

Now, let's look at the Chinese Remainder Theorem. This shows you how to solve equations of the following form:

A ( a1 mod m1

A ( a2 mod m2

A ( a3 mod m3

...

A ( ak mod mk
for an unique value A mod M, where M is the product 
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, and each pair of  mi's is relatively prime.

The idea is as follows:

1) For i=1 to k, calculate Mi = M/mi
2) For i=1 to k, calculate ci = Mix(Mi mod mi)

3) Then we have A=
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Consider the following example:

A ( 13 mod 17
A ( 22 mod 35
A ( 6 mod 47

So, we have a1=13, a2=22, a3=6, m1=17, m2=35, a3=47, and M=27965

Then we can determine that M1=1645, M2=799, M3=595,

Now compute

c1=1645x(1645-1 mod 17) =1645x 4,

c2=799x(799-1 mod 35) = 799x29,

c3=595x(595-1 mod 47) = 595x44.

A = 13x1645x4 + 22x799x29 + 6x595x44 mod 27965 

    = 752382 mod 27965 

    = 25292 mod 27965

Sure enough, we find that

25292 = 13 mod 17

25292 = 22 mod 35

25292 = 6 mod 47

So what's more important now is determining WHY this works!

The key is to consider the expression for A:
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Now, consider this value mod mi for each individual i.

The key is to notice that mi | Mj for each j ( i. Thus, all but one of the terms in the sum is equivalent to 0 mod mi. In fact, the ONLY term that doesn't drop out is aiMi(Mi-1 mod mi). But, if you carefully consider this term, mod mi you find that the product

Mi(Mi-1 mod mi) ( 1 mod m1
Thus, the entire sum evaluates to aiMi(Mi-1 mod mi) ( ai1 (mod mi) ( ai (mod mi),

Proving that A satisfies the given equations for each i!
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