Lecture 11: Phi function, Euler's formula, Probabilistic Primality Testing

Euler Phi Function

First, let’s define the Euler ((phi) function:

((n) = the number of integers in the set {1, 2, ..., n-1} that are relatively prime to n.

((p) = p –1 , for all prime numbers

((pq) = (p-1)(q-1), where p and q are distinct primes. Here is a derivation of that result:

We want to count all values in the set {1, 2, 3, ..., pq –1} that are relatively prime to pq.
Instead, we could count all value in the set NOT relatively prime to pq. We can list these values:

p, 2p, 3p, ... , (q-1)p

q, 2q, 3q, ... (p-1)q

Note that each of these values are distinct. To notice this, see that no number of the first row is divisible by q and no number on the second row is divisible by p. This ensures that there are no repeats on both rows. since p and q are relatively prime, in order for q to be a factor of a number on the first row, it would have to divide evenly into either 1, 2, 3, ... q-1. But clearly, it does not. The same argument will show that none of the values on the second row are divisible by p.

Finally, we can count the number of values on this list. It’s (q-1) + (p-1) = p + q – 2.

Now, in order to find ((pq), we must subtract this value from pq –1 . So, we find:

((pq) = (pq – 1) – (p + q – 2) = pq – p – q +1 = (p – 1)(q – 1).

Here is a different proof of the general formula for deriving ((n) given n’s prime factorization than the one shown in class. It is based upon the same ideas as the one given in class, but does so by proving the actual formula, instead of proving that ((mn) = ((m) ((n), if m and n are relatively prime. As you'll see, all the key steps in that proof are included below in the inductive step.

Now, we will look and prove the general formula for ((n) given n’s prime factorization.

Let n =
[image: image1.wmf]Õ

=

r

i

e

i

i

p

1

, where each pi is a distinct prime number.

Then, we have that ((n) =
[image: image2.wmf]Õ

=

-

-

r

i

e

i

e

i

i

i

p

p

1

1

With a little bit of algebra, we can rewrite this as ((n) = n
[image: image3.wmf]Õ

=

-

r

i

i

p

1

)

1

1

(

.

There are several ways to prove this. Here is one method:

We can use induction on r, the number of distinct prime factors of n.

Base case r =1. n = pe. The integers in the range [1, pe – 1] that are NOT relatively prime to n are p, 2p, 3p, ..., pe - p. There are pe-1 – 1 of these. Thus, we find that

((n) = (pe – 1) – (pe-1 – 1) = pe – pe-1, proving the base case.

Inductive hypothesis: Assume for an arbitrary value of r=k where

n =
[image: image4.wmf]Õ

=

k

i

e

i

i

p

1

 that ((n) =
[image: image5.wmf]Õ

=

-

-

k

i

e

i

e

i

i

i

p

p

1

1

)

(

Now, under this hypothesis, we must prove for r = k+1 the following:

for n’ =
[image: image6.wmf]Õ

+

=

1

1

k

i

e

i

i

p

that ((n’) =
[image: image7.wmf]Õ

+

=

-

-

1

1

1

)

(

k

i

e

i

e

i

i

i

p

p

((n’) = ((n*
[image: image8.wmf]1

1

+

+

k

e

k

p

).

In order to calculate this value, we could try to count the number of values in the set Zn’ = {1, 2, ... , n’ –1 } that are NOT relatively prime to n’. We could simplify this matter b counting the number of values in that set that are NOT relatively prime to n, and not relatively prime to pk+1.

1) # of values in Zn’ NOT relatively prime to n: (n - ((n)) *
[image: image9.wmf]1

1

+

+

k

e

k

p

.

2) # of values in Zn’ NOT relatively prime to pk+1: n*
[image: image10.wmf]1

1

1

-

+

+

k

e

k

p

The problem with subtracting the sum of these two from n’ is that some values may occur on BOTH lists above. Thus, we must subtract out the intersection of the two sets above. (Essentially, we must use the inclusion exclusion principle...)

 3) # of values in Zn’ NOT relatively prime to pk+1

AND not relatively prime to n: (n - ((n)) *
[image: image11.wmf]1

1

1

-

+

+

k

e

k

p

.

Before I go on with the calculation of ((n’), I need to justify each of the three values written above.

The justification for 2 is that one out of every pk+1 values in the range is divisible by pk+1.

The reasoning behind the other two results is slightly more difficult to see. Imagine writing out the numbers 1, 2, 3, ... n’ in a grid as follows:

1
2
3
...
n

n+1
n+2
n+3

2n

2n+1
2n+2
2n+3

3n

.

.

.

n’-n+1
n’-n+2

n’

The grid contains
[image: image12.wmf]1

1

+

+

k

e

k

p

 rows of n consecutive integers. Furthermore, each column contains values that are congruent (mod n). We know that in the first row, there are n - ((n) values not relatively prime to n. (This is because ((n) of these values ARE relatively prime to n.)

Now, here is the key observation: a value on the first ROW is relatively prime to n if and only if the rest of the values in the corresponding COLUMN are relatively prime to n. Thus, if 3 and n are relatively prime, then n+3, 2n+3, etc. are all also relatively prime to n. If however, 3 and n share a common factor, then n+3, 2n+3, etc. all also share that common factor with n. The proof of this fact is left to you.

Now, if we want to count the number of values in the grid above relatively prime to n, all we have to do is multiply are n - ((n) by the number of rows, which is
[image: image13.wmf]1

1

+

+

k

e

k

p

.

To arrive at the result for 3, notice that we may only consider values on the grid above that are divisible by pk+1. These are pk+1, 2 pk+1, ... n’. Of these values, we need to only consider those that are NOT relatively prime to n. Since gcd(n, pk+1) = 1, we can factor out pk+1 from each term in the list above and consider which of those values is not relatively prime to n. Doing so yields the list 1, 2, 3, 4, ... n’/ pk+1. We can also arrange these values in a grid like before:

1

2

3
...
n

n+1

n+2

n+3

2n

2n+1

2n+2

2n+3

3n

.

.

.

n’/pk+1-n+1
n/pk+1’-n+2

n’/ pk+1

Using the same logic as before, we can argue that the number of values on this grid not relatively prime to n is (n - ((n)) *
[image: image14.wmf]1

1

1

-

+

+

k

e

k

p

. (n - ((n) is the number of values on each row not relatively prime to n, and
[image: image15.wmf]1

1

1

-

+

+

k

e

k

p

 is the number of rows in the grid.

Now, finally, we can calculate ((n’).

((n’)
= n’ – [(n - ((n)) *
[image: image16.wmf]1

1

+

+

k

e

k

p

 + n*
[image: image17.wmf]1

1

1

-

+

+

k

e

k

p

 - (n - ((n)) *
[image: image18.wmf]1

1

1

-

+

+

k

e

k

p

]

= n’ – n*
[image: image19.wmf]1

1

+

+

k

e

k

p

 + ((n)*
[image: image20.wmf]1

1

+

+

k

e

k

p

– n*
[image: image21.wmf]1

1

1

-

+

+

k

e

k

p

 + n*
[image: image22.wmf]1

1

1

-

+

+

k

e

k

p

 – ((n)*
[image: image23.wmf]1

1

1

-

+

+

k

e

k

p

= n’ – n’ + ((n)*
[image: image24.wmf]1

1

+

+

k

e

k

p

– ((n)*
[image: image25.wmf]1

1

1

-

+

+

k

e

k

p

= ((n)*[
[image: image26.wmf]1

1

+

+

k

e

k

p

 –
[image: image27.wmf]1

1

1

-

+

+

k

e

k

p

]

=(
[image: image28.wmf]Õ

=

-

-

k

i

e

i

e

i

i

i

p

p

1

1

)

(

)(
[image: image29.wmf]1

1

+

+

k

e

k

p

 –
[image: image30.wmf]1

1

1

-

+

+

k

e

k

p

), using the inductive hypothesis.

=
[image: image31.wmf]Õ

+

=

-

-

1

1

1

)

(

k

i

e

i

e

i

i

i

p

p

, proving the assertion.

Proof of Euler's Theorem

Euler’s Theorem: If gcd(a,n) = 1, then a((n) (1 (mod n).

Definition of a reduced residue system modulo n: A set of ((n) numbers r1, r2, r3, ... r((n) such that ri (rj, for all 1 (i < j (((n) with gcd(ri, n) = 1 for all 1 (i (((n).

Theorem about reduced residue systems: If r1, r2, r3, ... r((n) is a reduced residue system modulo n, and gcd(a,n) = 1, then ar1, ar2, ar3, ... ar((n) is ALSO a reduced residue system modulo n.

Proof: We need to prove two things in order to verify the theorem above:

1) ari (arj, for all 1 (i < j (((n)

2) gcd(ari, n) = 1 for all 1 (i (((n)

Proof of 1:

Assume to the contrary that there exist distinct integers i and j such that ari (arj (mod n). We can deduce the following:

ari (arj (mod n)

(ari - arj) (0(mod n).

n | (a(ri – rj))

We know that gcd(a,n) = 1. Thus, based on a theorem proved earlier, it follows that

n | (ri – rj). But, this infers that ri (rj (mod n). This contradicts our premise that r1, r2, r3, ... r((n) is a reduced residue system modulo n. Thus, we can conclude that ari (arj, for all 1 (i < j (((n).

Proof of 2:

Since gcd(a,n)=1 and gcd(ri,n)=1, it follows that n shares no common factors with a or ri. Thus, it shares no common factors with their product and we can conclude that gcd(ari, n) = 1 for all 1 (i (((n).

Now, we will use this theorem to prove Euler’s theorem:

Let r1, r2, r3, ... r((n) be a reduced residue system modulo n, and gcd(a,n)=1. Then we have that ar1, ar2, ar3, ... ar((n) is a reduced residue system modulo n. Since both are reduced residue systems modulo n, we know that the their products are equivalent mod n:

[image: image32.wmf]Õ

=

)

(

1

n

i

i

ar

f

 (
[image: image33.wmf]Õ

=

)

(

1

n

i

i

r

f

(mod n)

[image: image34.wmf]Õ

=

)

(

1

n

i

i

ar

f

 -
[image: image35.wmf]Õ

=

)

(

1

n

i

i

r

f

(0 (mod n)

 a((n)
[image: image36.wmf]Õ

=

)

(

1

n

i

i

r

f

-
[image: image37.wmf]Õ

=

)

(

1

n

i

i

r

f

(0 (mod n)

(
[image: image38.wmf]Õ

=

)

(

1

n

i

i

r

f

)(a((n) – 1) (0 (mod n)

Thus, we have that n divides this product. But, we know that gcd(ri, n) = 1 for each value of i. Thus the first large product of ((n) terms is relatively prime to n. It follows that n divides the last factor:

n | (a((n) – 1)

a((n) (1 (mod n), proving Euler’s Theorem.

Primality Testing (Miller-Rabin Test)

Although a polynomial-time primality test now exists, it still isn't terribly practical or efficient compared to the probabilistic primality tests available such as the Miller-Rabin test. The test works essentially based on Euler's Theorem. In essence, if n is prime, for a randomly chosen a relatively prime to n, we must have that

an-1 (1 (mod n),

It turns out that for most composite numbers n, and random choices of a, this statement is false.

Thus, this leads to the idea of simply picking a random a, computing an-1 (mod n) and seeing if you get 1 or not. If you don't, you know n is composite beyond a shadow of a doubt.

It turns out that if you get 1 as the answer, there's at least a 75% chance that n is prime. Now that doesn't seem to be a very good chance, especially for something called an "algorithm"

But the beautiful thing is that you can try the test again with the same n and a different a. Thus, if you do the test 50 times, the probability it was wrong 50 times in a row is only (.25)50 which is incredibly low. Actually, in order to get this probability, you need to make the test slightly more complicated than it is described above.

The Miller-Rabin test uses the fact that if an-1 (1 (mod n), it is quite possible that smaller powers that are divisors of n-1 may also give an answer of 1. In particular, given n, you can factor out powers of 2 from n-1 until you are left with an odd number. In essence, rewrite

n-1 = 2kq, where q is odd.

Now, consider the following set of values (mod n):

[image: image39.wmf]q

q

q

q

q

k

k

a

a

a

a

a

2

2

4

2

,

,...,

,

,

1

-

If n is prime the last value in this list is definitely 1. It also turns out that if n is prime, one of the two following things is true:

1) aq is 1 (mod n)

2)
[image: image40.wmf]q

j

a

2

is 1 (mod n) for a value of j with 0 < j (k

If the first isn't true, then there exists a smallest value of j for which the second is true. Consider this j:

[image: image41.wmf])

(mod

1

2

n

a

q

j

º

[image: image42.wmf])

(mod

0

1

2

n

a

q

j

º

-

[image: image43.wmf])

(mod

0

)

1

)(

1

(

1

1

2

2

n

a

a

q

q

j

j

º

+

-

-

-

Since the difference between these two factors is 2, and they multiply to an odd number, it follows that they don't share any common factors. (The only one they could share is two, but since they are odd, they don't share that one either. Of course, we are assuming that n is odd.)

Thus, we have one of two conclusions:

[image: image44.wmf])

1

(

|

1

2

-

-

q

j

a

n

or
[image: image45.wmf])

1

(

|

1

2

+

-

q

j

a

n

The former can't be true since we said that j is the smallest value for which you get 1 when exponentiating, thus, it follows that the second is true. It follows that if

[image: image46.wmf])

(mod

1

2

n

a

q

j

º

, is the smallest j for which this is true, then

[image: image47.wmf])

(mod

1

1

2

n

a

q

j

-

º

-

Thus, we can alternately say for the second criteria, that if n is prime, then

2)
[image: image48.wmf]q

j

a

2

is -1 (mod n) for a value of j with 0 < j < k. (Notice the < k...)

Thus, one iteration of the algorithm works by taking writing n-1=2kq, where q is odd.

Then picking a random a and checking if aq = 1 mod n. If so, report "probably prime"

If not, then compute successive values on the list below:

[image: image49.wmf]q

q

q

q

k

a

a

a

a

1

2

4

2

,...,

,

,

-

If none of these are -1, then report "composite" If one of them is, then report "probably prime".

If algorithm reports composite, it is correct. If the algorithm reports "probably prime" on a single iteration, then it is correct with probability 75% at least.

Here are two examples of the algorithm:

Example.
n = 49

n – 1 = 48 = 24 * 3, so k =4 and m =3

Randomly pick a = 5

X = 53 mod 49 = 27, which is not n -1 (48) so continue

X = 272 = 56 mod 49 = 43

X = 432 = 512 mod 49 = 36

X = 362 = 524 mod 49 = 43

We have repeated k – 1 times (3) and all failed to equal n -1

49 is not prime

a46 ≡ 1 mod 47

a23 ≡ ±1 mod 47

-1 ≡ n – 1

(n – 1)2 ≡ 1 mod n

Example n = 73

n-1 = 72 = 23*9

Randomly pick a=3

39 (46 mod 73

318 (462 (-1 mod 73, thus, we report, "probably prime"

_1054569982.unknown

_1055148758.unknown

_1149507835.unknown

_1149507854.unknown

_1149508168.unknown

_1149508263.unknown

_1149508482.unknown

_1149508188.unknown

_1149507869.unknown

_1149507493.unknown

_1149507665.unknown

_1055148728.unknown

_1055148747.unknown

_1055148653.unknown

_1054556183.unknown

_1054569917.unknown

_1054569940.unknown

_1054569857.unknown

_1054556619.unknown

_1054556760.unknown

_1054556250.unknown

_1054556365.unknown

_1054555754.unknown

_1054555859.unknown

_1054555628.unknown

