Lecture 12: Discrete Logarithms, RSA, Diffie-Hellman Key Exchange

Calculating Modular Exponents

Before we move on, one quick note about computation. Let's consider the amount of work involved in exponentiation:

Consider calculating an-1 (mod n), for a large value of n, perhaps with about 100 bits.

An iterative algorithm where you successively multiply values of a to an accumulator variable won't suffice.

However, fast exponentiation, will work:

Power(base, exp, mod) {

 if (exp == 0) return 1;

 if (exp == 1) return base%mod;

 if (exp%2 == 0) {

 int temp = Power(base, exp/2, mod);

 return (temp*temp)%mod;

 }

 return (base*Power(base, exp-1, mod))%mod;

}

Basically, what we do here is cut our exponent down by half for each two iterations of this algorithm. That means that we will do the operation of multiplying and modding only about 200 times at most if n is 100 bits, as opposed to doing it 2100 times which is far worse.

For a quick analysis of the time complexity, multiplying two integers of n bits takes O(n2) and we will do this O(n) times in fast exponentiation for a total time of O(n3) in the number of bits of the numbers being multiplied. If n is the number itself, then the amount of time is O(log3n).

Discrete Logs

A normal logarithm is defined as follows:

logba = c is equivalent to the exponential statement bc=a.

Basically, if you are given a and b, you have to determine which power to raise b to in order to get the result a.

This is easy to do for real numbers, but difficult to do with integers in a field mod p.

Consider attempting to solve the following equation:

14m (12 (mod 19).

There doesn't seem to be a quick way to compute this except for successively multiplying 14 until you get 12.

This difficulty is part of why RSA and the Diffie-Hellman key exchange are so powerful!

Whenever gcd(a, n) =1, we have seen that there is always a solution to the equation

am (1 (mod n). Namely, m=((n). However, consider the smallest positive solution m. this value is known as:

1) the order of a (mod n)

2) the exponent to which a belongs (mod n)

3) the length of the period generated by a

The third is the most intuitive definition. We see that if am (1 (mod n), then if I made a listing of the powers of a mod n, they would repeat every m values, since

am+x (amax (1ax (ax (mod n).

Naturally, it follows that the maximum length of this period is ((n). If a particular value a does indeed produce this period, then a is known as a primitive root.

It is quite easy to show that a primitive root (mod n) will produce the set of reduced residue system mod n.

Consider a=3, n=7

	Power
	1
	2
	3
	4
	5
	6

	Value mod n
	3
	2
	6
	4
	5
	1

Thus, 3 is a primitive root (mod 7). Note that 2 is not since 23 (1 (mod 7).

We define the discrete logarithm using the term index. For example, given the statement

b (ai mod p, we equivalently say inda,p(b)=i.

In essence, we must raise a to the i power mod p to obtain b.

One cool thing we can do is utilize standard log rules:

inda,p(xy)= [inda,p(x)+ inda,p(y)] (mod p), and

inda,p(xr) = ((r)inda,p(x)) mod p.

Public Key cryptography

The basic idea is to do away with the necessity of a secure key exchange, which is necessary for all private key encryption schemes. The idea is as follows:

1) Bob creates two keys, a public key, E and a private key D.

2) Bob posts the public key in a location that anyone can access.

The important thing here is that the knowledge of E does not compromise the value of D in any way shape or form.

3) Now, anyone who wants to send a message to Bob encrypts it using the public key E.

4) Bob can now read the message using his private key D. However, since the value of E gives no information as to the value to D, all others can not read the message.

The idea seems easy enough, but the difficulty is in finding some mathematical function to use in this scheme such that the knowledge of E does not compromise the secrecy of D. Clearly in all the other schemes we have seen, knowledge of the encrypting key all but completely gives away the decrypting key.

RSA Encryption

Here is how RSA works:

1) Pick large primes p and q.

2) Compute n=pq and ((n)=(p-1)(q-1)

3) Pick a value e such that gcd(e, ((n)) = 1. (Note that this is fairly easy to do by randomly picking values e and testing them with Euclid’s algorithm until you find one that works.)

4) Compute d such that ed (1 (mod ((n)). You are guaranteed to be able to do this by the extended Euclidean algorithm.

5) Public keys : e, n

 Private key : d, (n is also necessary for decryption, but is clearly public...)

 Encryption function : En,e(x) = xe (mod n)

 Decryption function : Dn,d(y) = yd (mod n)

Now, we must verify that this is a valid encryption scheme:

Dn,d(En,e(x)) = Dn,d(xe) = (xe)d (mod n) = xed (mod n)

Now we will invoke the given information about the product ed:

ed (1 (mod ((n)), thus, we can find an integer k such that ed = k((n) + 1.

Now we have the following:

xed (mod n) = xk((n) + 1 (mod n)

 = xk((n)x1 (mod n)

 = (x((n))kx (mod n)

 = (1)kx (mod n), invoking Euler’s formula.

 = x (mod n), proving that the encryption scheme is valid, assuming that

 the gcd(x,n) = 1.

Since you are picking large primes the probability that gcd(x,n) =1 is quite high. (If you pick 20 digit primes for both p and q, the probability is roughly 1 – 10-20 that gcd(x,n) = 1.

If Bob has his own public and private RSA keys, why does it NOT make sense for Bob to send messages to others by encrypting them with d, and having them decrypt with e?

Diffie-Hellman Key Exchange

Public values: q(prime), and a(primitive root mod q)

Users A and B secretly pick XA and XB. Then calculate YA =
[image: image1.wmf]p

a

A

X

mod

and

YB =
[image: image2.wmf]p

a

B

X

mod

.

A sends to B YA .

B sends to A YB.

Now, each calculates as follows:

B calculates K =
[image: image3.wmf]p

Y

B

X

A

mod

.

A calculates K =
[image: image4.wmf]p

Y

A

X

B

mod

.

What's interesting here is that both A and B calculate the same K without either of them choosing it. This works since knowing YA and YB does not automatically compromise the values of XA and XB.

_1149513498.unknown

_1149513793.unknown

_1149513847.unknown

_1149513460.unknown

