Lecture 14: Factoring Algorithms

(Taken from Stinson section 4.8 and Elementary Number Theory, Rosen) 
Fermat Factorization

Note that if n (odd) 

n  = ab, then we can rewrite n = s2 - t2, for some value of s and t, since n = (s-t)(s+t), where s = (a+b)/2 and t=(a-b)/2. Both s and t are integers since a and b must both be odd.

Now, to use the Fermat factorization, let n = s2 - t2, then we have that t2 = s2 - n. 

Simply start plugging in successive values for s starting with the minimal s for which s2 > n, until you find a solution for t.

Example: n=6077, start s=78.

782 - 6077 = 7

792 - 6077 = 164

802 - 6077 = 323

812 - 6077 = 484 = 222, so

6077 = 812 - 222 = (81 - 22)(81 + 22) = 59x103

Pollard Rho Method

Given that n=pq, the basic idea behind this method is to find to integers x and y such that p | (x - y) but n does NOT divide into x - y. Once you find these integers, computing gcd(n, x-y) will yield a non-trivial factor of n.

The manner in which the Pollard Rho Method suggests finding x and y is as follows:

x0 = 2 (or any random value mod n)

xk+1 ( f(xk) mod n

f should be a polynomial that produces a large set of numbers before it repeats. A function that works well in practice is f(x) = x2 + 1.

Even when we produce this sequence of values, it would seem as if we should check the difference between each pair of numbers produced. This is O(m2) GCD calls if m values are produced. We can reduce the number of GCD calls to O(m), as follows:

Simply calculate gcd(n, x2k - xk) for successive values of k. The idea behind this is as follows:

We hope that the period of the sequence produced is large mod n, but small mod p, for some p that is a factor of n. If this is the case, and the period of the sequence mod p is k, then it follows that p | x2k - xk as desired.

Let n=8051, then x0 = 2, x1 = 5, x2 = 26, x3 = 677, x4 = 7474, x5 = 2839, and x6 = 871.

If we consider these mod 97, a prime factor of 8051, then we get the following results:

x0 = 2, x1 = 5, x2 = 26, x3 = 95, x4 = 5, x5 = 26, and x6 = 95.

Notice that the repeating structure may take a bit to begin, but once it does, it does in fact, repeat. Notice how we would not have caught this case had we attempted to calculate gcd(n, xk - x0).

Running the algorithm, we have:

gcd(x2 - x1) = gcd(26- 5, 8051) = 1

gcd(x4 - x2) = gcd(7474-26, 8051) = 1

gcd(x6 - x3) = gcd(871-677, 8051) = 97

So, 8051 = 83x97.

Pollard p-1 Method

Algorithm:

Input: n and B

1. a = 2

2. for j = 2 to B do


a = aj mod n

3. d = gcd(a-1, n);

4. if 1 < d < n


d is a factor of n

    else



no factor is found

n is the integer to be factor, B is the "bound" to check to.

Here is what is occurring:

Let p be a prime divisor of n. If it turns out that all prime divisors q of p-1 are less than or equal to B, then it may be the case that (p-1) | B! provided that B is "big enough"

If the previous is true, then we find that

a ( 2B! ( 2(p-1)k (mod p) for some integer k.

2(p-1)k ( 1k (  1 (mod p) by Fermat's Theorem

So, p | (2B! - 1) AND p | n.

Then it follows that p | gcd(2B! - 1, n), the value that is calculated in step 3.

Example:

n = 15770708441

B = 180 ( randomly set)

a = 11620221425 in step 3

d = 135979, and is a factor of n

n = 135979 x 115979

The test succeeded since 135978 = 2 x 3 x 131 x 173 and would have passed for any B > 172.

The running time of this is O(BlogB(log n)2 + (log n)3), which is polynomial if B ~ (log n)k.

Drawback: It's relatively easy to create RSA keys n=pq, where p-1 doesn't have all small prime factors.

Way to do it: Pick primes p1 and q1 such that p = 2p1 + 1 and q = 2q1 + 1 are also prime. Then, both p1 and q1 are large prime factors or either p-1 or q-1, respectively.

An elliptic curve method analogous to this is more successful (Lenstra) and hinges on the fact that it's more likely at an integer "close to p" has only small prime factors.

Dixon's Algorithm and the Quadratic Sieve

This is based on the following fact:

if we can find x ( ( y (mod n) such that x2 ( y2 (mod n), then gcd(x-y, n) is a non-trivial factor of n.

To see this, note the following:

x2 ( y2 (mod n)

x2 - y2 ( 0 (mod n)

(x - y)(x + y) ( 0 (mod n)

n | (x-y)(x+y)

We know that n can not divide evenly into x-y, since x ( y mod n and we also know that n can not divide evenly into x+y, since x ( -y mod n.

If follows that a non-trivial divisor of n must be a factor of both x-y and x+y. 

The basic idea of this method uses a factor base which is a set of small primes. We will first get several integers x such that all the prime factors of x2 mod n occur in the factor base. Then we will take the product of several of these x's so that each prime is raised to an even power and an equation of the form x2 ( y2 (mod n) can be obtained.

Let n = 15770708441 again

B = {2, 3, 5, 7, 11, 13}

Use the congruences

83409341562 ( 3x7 (mod n)

120449429442 ( 2x7x13 (mod n)

27737000112 ( 2x3x13 (mod n)

Multiply the three congruences together to yield

95034357852 ( (2x3x7x13)2 mod n

95034357852 ( 5462 mod n

gcd(n, 9503435785) = 115759 and gcd(n, 9503436331) = 135979

Of course, the difficult part in this algorithm is coming up with the three congruences we used to begin with!!!

The quadratic sieve is necessary to find equations of that form. Once you have several of the equations, it's a matter of mixing and matching until you find the right equations to pair up to get a perfect square. (Basically, you keep an odd/even count for each exponent to each base in your set of prime bases. You adjust this count for each equation you add in to the product, or delete out of the product.)

