Exam 1	Name
	SS #

EEL 5890 Fall 2001

Problem 1 (25 pts)

The flow out of the tank shown below is given by $F_0 = cH^{\frac{1}{2}}$. The cross-sectional area of the tank A = 50 ft² and the constant c = 2 ft³/min per ft^{1/2}. The initial level in the tank is H(0) = 16 ft.

- A) The flow in to the tank is $F_1(t) = \overline{F_1} = 10$ ft³ per min, $t \ge 0$. Find the steady-state height of liquid in the tank, $H(\infty)$.
- B) The flow in to the tank is $F_1(t) = 4 + \frac{t}{10}$, $t \ge 0$.

Use forward Euler integration with a step size T and find the equation for updating the state $H_A(n)$, i.e. the equation with $H_A(n+1)$ on the left hand side. Leave your answer in terms of c, A, and T.

C) Use the result from Part B) to find $H_A(1)$ and $H_A(2)$ when the step size T = 0.5 min. Express your answers to 4 places after the decimal point.

EEL 5890 Fall 2001 Exam 1

Name_____ SS #_____

Problem 2 (25 pts)

The population of a country P(t) is modeled by the differential equation $\frac{dP}{dt} = kP$.

- A) Find the equation for updating $P_A(n)$, the approximate population at the end of year nT, using trapezoidal integration with step size T. Leave your answer in terms of k and T.
- B) Suppose k = 0.01 people/year per person, the initial population is 1 million people and the step size T = 1 yr. Find $P_A(1)$ and $P_A(2)$ to the nearest person.
- C) Find the general solution for $P_A(n)$ and use it to find $P_A(100)$.
- D) Compare the result from Part C) to thee exact value P(100).

EEL 5890	Exam 1	Name
Fall 2001		SS #

Problem 3 (25 pts)

The input to the integrator shown below is the continuous signal $u(t) = \frac{1}{t+1}, t \ge 0$

- A) Find the equation for computing the state $x_A(n)$ recursively when backward Euler integration with a step size *T* is used.
- B) Find $x_A(1)$, $x_A(2)$ and $x_A(3)$ if T = 0.1.
- C) Compare your answer for $x_A(3)$ to the exact value x(3T).

Note:
$$\int_{0}^{t} \frac{1}{t'+1} dt' = \ln(1+t)$$