\qquad
SS \# \qquad

Problem 1 (25 pts)

The flow out of the tank shown below is given by $F_{0}=c H^{\frac{1}{2}}$. The cross-sectional area of the $\operatorname{tank} A=50 \mathrm{ft}^{2}$ and the constant $c=2 \mathrm{ft}^{3} / \mathrm{min}$ per $\mathrm{ft}^{1 / 2}$. The initial level in the tank is $H(0)=16 \mathrm{ft}$.

A) The flow in to the tank is $F_{1}(t)=\bar{F}_{1}=10 \mathrm{ft}^{3}$ per min, $t \geq 0$.

Find the steady-state height of liquid in the tank, $H(\infty)$.
B) The flow in to the tank is $F_{1}(t)=4+\frac{t}{10}, t \geq 0$.

Use forward Euler integration with a step size T and find the equation for updating the state $H_{\mathrm{A}}(n)$, i.e. the equation with $H_{\mathrm{A}}(n+1)$ on the left hand side. Leave your answer in terms of c, A, and T.
C) Use the result from Part B) to find $H_{\mathrm{A}}(1)$ and $H_{\mathrm{A}}(2)$ when the step size $T=0.5 \mathrm{~min}$. Express your answers to 4 places after the decimal point.
\qquad
SS \# \qquad

Problem 2 (25 pts)

The population of a country $P(t)$ is modeled by the differential equation $\frac{d P}{d t}=k P$.
A) Find the equation for updating $P_{\mathrm{A}}(n)$, the approximate population at the end of year $n T$, using trapezoidal integration with step size T. Leave your answer in terms of k and T.
B) Suppose $k=0.01$ people/year per person, the initial population is 1 million people and the step size $T=1 \mathrm{yr}$. Find $P_{\mathrm{A}}(1)$ and $P_{\mathrm{A}}(2)$ to the nearest person.
C) Find the general solution for $P_{\mathrm{A}}(n)$ and use it to find $P_{\mathrm{A}}(100)$.
D) Compare the result from Part C$)$ to thee exact value $P(100)$.
\qquad
\qquad

Problem 3 (25 pts)

The input to the integrator shown below is the continuous signal $u(t)=\frac{1}{t+1}, \quad t \geq 0$

A) Find the equation for computing the state $x_{\mathrm{A}}(n)$ recursively when backward Euler integration with a step size T is used.
B) Find $x_{\mathrm{A}}(1), x_{\mathrm{A}}(2)$ and $x_{\mathrm{A}}(3)$ if $T=0.1$.
C) Compare your answer for $x_{\mathrm{A}}(3)$ to the exact value $x(3 T)$.

Note: $\int_{0}^{t} \frac{1}{t^{\prime}+1} d t^{\prime}=\ln (1+t)$

