Exam 1
 SHOW ALL WORK!

Name \qquad

Problem 1 (25 pts)

The flow out of the tank shown below is given by $F_{0}=c H^{\frac{1}{2}}$. The cross-sectional area of the $\operatorname{tank} A=50 \mathrm{ft}^{2}$ and the constant $c=2 \mathrm{ft}^{3} / \mathrm{min}$ per $\mathrm{ft}^{1 / 2}$. The initial level in the tank is $H(0)=16 \mathrm{ft}$.

a) The flow into the tank is $F_{1}(t)=\bar{F}_{1}=10 \mathrm{ft}^{3}$ per min, $t \geq 0$.

Find the steady-state height of liquid in the tank, $H(\infty)$.
b) Use explicit Euler integration with a step size T and find the equation for updating the state $H_{A}(n)$, i.e. the equation with $H_{A}(n+1)$ only on the left hand side. Leave your answer in terms of c, A, and T.
C) Use the result from Part B) to find $H_{A}(1)$ and $H_{A}(2)$ when the step size $T=0.25 \mathrm{~min}$. Express your answers to 4 places after the decimal point.
\qquad
\qquad

Problem 2 (25 pts)

A first order system is modeled by the differential equation $\frac{d y}{d t}=k y$.
a) Find the equation for updating $y_{A}(n)$, the approximation to $y(n T)$, using trapezoidal integration with step size T. Leave your answer in terms of k and T.
b) Suppose $k=-0.4, y(0)=1$ and the step size $T=0.1$ Find $y_{A}(2)$.
\qquad
\qquad

Problem 3 (25 pts)

The input to the integrator shown below is the continuous signal $u(t)=1, \quad t \geq 0$

a) Find the equation for updating the state $x_{A}(n)$ recursively when the Improved Euler integrator with a step size T is used.
b) Find $x_{A}(1)$ if $x(0)=0$ and $T=0.5$.
c) Compare $x_{A}(1)$ to the exact value $x(T)$.
\qquad
\qquad

Problem 4 (25 pts)

For the first order system with input $u=u(t)$ and output $y=y(t)$ modeled by

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+3 y=6 \frac{d u}{d t}
$$

a) Draw a simulation diagram
b) Write the equations for the system in state variable form

$$
\begin{aligned}
& \underline{\dot{x}}=A \underline{x}+B u \\
& y=C \underline{x}+D u
\end{aligned}
$$

