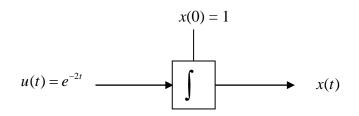
EEL 4890 Fall 2004


Exam 1

Name_____

SHOW ALL WORK!

Problem 1 (30 pts)

A continuous integrator with initial condition is shown below.

Fill in the table below. Choose T = 0.05 for each integrator. Round all answers to 4 places after the decimal point.

n	$x_A(n)$ Explicit Euler	$x_A(n)$ Trapezoidal
0		
1		
2		
3		

EEL 4890 Fall 2004 Exam 1

Name_____

SHOW ALL WORK!

Problem 2 (35 pts)

A second order system is modeled by the differential equation

$$\frac{d^2w}{dt^2} + \frac{dw}{dt} + 2w = \frac{d^2u}{dt^2}.$$

The initial conditions $w(0) = \frac{dw}{dt}(0) = 0.$

- a) Draw a simulation diagram for the system.
- b) Find matrices A, B, C, D in the state variable model form

$$\frac{\dot{x}}{x} = A\underline{x} + Bu$$
$$y = C\underline{x} + Du$$

The single output is y = w.

c) The input u(t) = t, $t \ge 0$. Use explicit Euler integration with step size T = 0.1 to find $y_A(1), y_A(2)$ and $y_A(3)$. Round answers to 4 places after the decimal point.

Hint: First find $\underline{x}_A(1)$, $\underline{x}_A(2)$ and $\underline{x}_A(3)$.

EEL 4890 Fall 2004 Exam 1

Name_____

SHOW ALL WORK!

Problem 3 (35 pts)

An exponential population growth model

 $\frac{dP}{dt} = -kP, \quad (k > 0)$

is to be simulated in order to approximate the population P(t) for a period of time. The difference equation for $P_A(n)$ intended to approximate P(t) is

$$P_A(n+1) + \alpha P_A(n) = 0$$

- a) Find an expression for α in terms of k and the step size T using
 - i) Implicit Euler
 - ii) Trapezoidal
 - iii) Improved Euler
- b) Evaluate α for each integrator and round answers to 6 places after decimal point.
- c) Fill in the Table comparing the three numerical integrators and the exact solution. P(0) = 5 million and T = 2 yr. Round all answers in millions to 6 places after the decimal point. For the exact, enter P(T) and P(2T).

	$P_A(0)$	$P_A(1)$	$P_A(2)$
Implicit Euler	5.000000		
Trapezoidal	5.000000		
Improved Euler	5.000000		
Exact	5.000000		