EEL 4890
Problem 1 (30 pts)
A continuous integrator with initial condition $x(0)=1$ is shown below.


Fill in the table below where $x\left(t_{n}\right)$ is the exact value of the integrator output at time $t_{n}$. Choose $T=0.05$ for each integrator. Round all answers to 4 places after the decimal point.

| $n$ | $t_{n}=n T$ | $x_{A}(n)$ <br> Explicit Euler | $x_{A}(n)$ <br> Trapezoidal | $x\left(t_{n}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  |
| 1 |  |  |  |  |
| 2 |  |  |  |  |

Problem 2 (35 pts)

A second order system is modeled by the differential equation

$$
\frac{d^{2} w}{d t^{2}}+\frac{d w}{d t}+2 w=3 \frac{d^{2} u}{d t^{2}}
$$

The initial conditions $w(0)=\frac{d w}{d t}(0)=0$.
a) Draw a simulation diagram for the system.
b) Find matrices $A, B, C, D$ in the state variable model form

$$
\begin{aligned}
& \underline{\dot{x}}=A \underline{x}+B u \\
& y=C \underline{x}+D u
\end{aligned}
$$

The single output is $y=w$.
c) The input $u(t)=t, t \geq 0$. Use explicit Euler integration with step size $T=0.1$ to find $y_{A}(1), y_{A}(2)$ and $y_{A}(3)$. Round answers to 4 places after the decimal point.

Hint: First find $\left[\begin{array}{l}x_{1, A}(1) \\ x_{2, A}(1)\end{array}\right],\left[\begin{array}{l}x_{1, A}(2) \\ x_{2, A}(2)\end{array}\right],\left[\begin{array}{l}x_{1, A}(3) \\ x_{2, A}(3)\end{array}\right]$.

Problem 3 (35 pts)

An exponential population growth model

$$
\frac{d P}{d t}=-k P, \quad(k>0)
$$

is to be simulated in order to approximate the population $P(t)$ for a period of time. The difference equation for $P_{A}(n)$ intended to approximate $P(t)$ is

$$
P_{A}(n+1)+\alpha P_{A}(n)=0
$$

a) Find an expression for $\alpha$ in terms of $k$ and the step size $T$ using
i) Explicit Euler
ii) Implicit Euler
b) Evaluate $\alpha$ for each integrator when $k=0.1$ and $T=1 \mathrm{yr}$. Round answers to 4 places after the decimal point.
c) Fill in the Table below when $P(0)=5$ million. Round all answers in millions to 4 places after the decimal point.

| $n$ | $t_{n}=n T$ | $P_{A}(n)$, Explicit Euler | $P_{A}(n)$, Implicit Euler | $P\left(t_{n}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 5.0000 | 5.0000 | 5.0000 |
| 1 | 1 |  |  |  |
| 2 | 2 |  |  |  |

d) The exact solution is given by $P(t)=P(0) e^{-k t}, t \geq 0$. Fill in the last column of the table.

