Problem 1 (30 pts)

A continuous integrator with initial condition x(0) = 1 is shown below.

Fill in the table below where $x(t_n)$ is the exact value of the integrator output at time t_n . Choose T = 0.05 for each integrator. Round all answers to 4 places after the decimal point.

n	$t_n = nT$	$x_{A}(n)$ Explicit Euler	x₄(n) Trapezoidal	<i>x</i> (<i>t</i> _n)
0				
1				
2				

EEL 4890

Exam 1 solution

Fall 2007

Problem 2 (35 pts)

A second order system is modeled by the differential equation

$$\frac{d^2w}{dt^2} + \frac{dw}{dt} + 2w = 3\frac{d^2u}{dt^2}.$$

The initial conditions $w(0) = \frac{dw}{dt}(0) = 0$.

- a) Draw a simulation diagram for the system.
- b) Find matrices A, B, C, D in the state variable model form

y

$$\underline{\dot{x}} = A\underline{x} + Bu$$

$$y = C\underline{x} + Du$$

The single output is y = w.

c) The input u(t) = t, $t \ge 0$. Use explicit Euler integration with step size T = 0.1 to find $y_A(1)$, $y_A(2)$ and $y_A(3)$. Round answers to 4 places after the decimal point.

Hint: First find
$$\begin{bmatrix} x_{1,A}(1) \\ x_{2,A}(1) \end{bmatrix}$$
, $\begin{bmatrix} x_{1,A}(2) \\ x_{2,A}(2) \end{bmatrix}$, $\begin{bmatrix} x_{1,A}(3) \\ x_{2,A}(3) \end{bmatrix}$.

EEL 4890 Exam 1 solution Fall 2007

Problem 3 (35 pts)

An exponential population growth model

$$\frac{dP}{dt} = -kP, \quad (k > 0)$$

is to be simulated in order to approximate the population P(t) for a period of time. The difference equation for $P_A(n)$ intended to approximate P(t) is

$$P_{\Delta}(n+1) + \alpha P_{\Delta}(n) = 0$$

- a) Find an expression for α in terms of k and the step size T using
 - i) Explicit Euler
 - ii) Implicit Euler
- b) Evaluate α for each integrator when k = 0.1 and T = 1 yr. Round answers to 4 places after the decimal point.
- c) Fill in the Table below when P(0) = 5 million. Round all answers in millions to 4 places after the decimal point.

n	$t_n = nT$	$P_{_{\!A}}(n)$, Explicit Euler	$P_A(n)$, Implicit Euler	$P(t_n)$
0	0	5.0000	5.0000	5.0000
1	1			
2	2			

d) The exact solution is given by $P(t) = P(0)e^{-kt}$, $t \ge 0$. Fill in the last column of the table.