Chapter 19 Interpolation

19.1 One-Dimensiond Interpolation

Empiricd data obtaned experimentdly often times conforms to a fixed
(determinigtic) but unkown functiona reaionship. When esimates of other points on
the function are required, procedures for obtaining those estimates fdls under the generd
category of Interpolation. The smplest case occurs when the data conssts of a set of
points eech made up of an independent variable and a sngle dependent variable
observation.

The MATLAB function 'i nterpl' default mode is desgned to linearly
interpolate, as in a Table Lookup, empiricd data to edimate the unknown function
corresponding to a set of independent varigble values.  For example, suppose a consumer
tesing megazine is interested in the repair codts for a particular luxury passenger vehicle
after its been in an accident. The test procedure cdls for head-on collisons of the vehicle
with a dationary object a various speeds. The cost of restoring the vehicle to its pre-
crash condition is determined. Tabulated results after saverd collisons are given below.

Speed (§  Damages (D)
mph $
5 4500
10 12150
20 23750
30 43500
40 61000

The firg example demongraies how to estimate the unknown function D = f(S),
which generated the tabulated data points, at other speeds between 5 and 40 mph.

Example 19.1.1

s=[5 10:10:40] ; % Speed data fromtable

d= [4500 16150 31750 43500 52000]; % Danmages data fromtable
plot(s,d,"*-k') % Plot raw data

hol d on

si=[15 25 35] % Speeds at which danage estinmates are required
d_est=interpl(s,d,si) % Esti mate damages at 15,25, 35 nph

plot([15 15],[0 d_est(1)], 'b:") % Plot vertical line to 1st estinate
plot([25 25],[0 d_est(2)],"'b:") %Plot vertical line to 2nd estinmate
plot([35 35],[0 d_est(3)], 'b:") %Plot vertical line to 3rd estinmate
x| abel (' Crash Speed, S (nph)")

yl abel (' Damages, D ($)')

title(' Damages Vs. Crash Speed')

| egend(' Experinmental Data')
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More accurate results are possble by specifying cubic spline interpolation, a
method which connects the given data points by 3rd order polynomias over each
intervd. The trangtion between adjacent splines (cubic polynomias) is guaranteed to be
smooth because their lower order derivatives are equa on ether dde of the data points.
Thefollowing exampleillustrates the use of cubic splines.

Example 19.1.2

A highway engineer must desgn a new road which will connect two existing
roads. In order to mantan safe clerances from a lake and severd dructures,
measurements were taken to determine severd points dong the centerline of the proposed
road. The geographical locations of these points, relative to some point of reference, are
given in the Table below. Cubic splines are to be used to specify the equations of the
centerlines for each road segment.



xi(miley vy (miled
0.0 1.0
0.2 1.0
0.6 12
1.0 1.1
1.4 0.6
16 05
18 05
2.0 05

The following MATLAB code plots the given centerline points, determines the
cubic splines, and plot the continuous centerline comprised of the splines. The results are
illusrated in the figure which shows the smooth centerline trgectory of the proposed
connector between the existing roads. (The additional graphics are not part of Example
19.1.2 and were added | ater)

Example 19.1.2

x=[0 0.2 0.6 1 1.4 1.6 1.8 2]; % Centerline
y=[11 1.2 1.1 0.6 0.5 0.5 0.5]; % Data Points
v=[0 2 0 1.6]; % Set scale for plotting
plot(x,y,'.") % Pl ot Centerline Data Points
xlabel ("x (mles)")

ylabel ("y (mles")

axi s(v)

hol d on

axi s manua

xi =l'i nspace(0, 2,250); % Create x vector for plotting

yi=interpl(x,y,xi,"spline'); %Evaluate yi at xi using cubic splines
pl ot (xi,yi,"'b")
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Suppose the length of the road found in Example 19.1.2 is needed. The length of
the road can be gpproximated by summing incremental steps, i.e

s> 803 = 409" +(on)Y

Example 19.1.3

x=[0 0.2 0.611.41.6 1.8 2];
y=[111.21.10.6 0.5 0.5 0.5];
n=1000; % Nunber of points. There are n-1 steps.
xi =l'i nspace(0, 2,n); % Create vector of x values of step endpoints
yi =interpl(x,y,xi," spline"); % Calculate y at step endpoints
dx=xi (2)-xi(1); % Calculate the fixed dx for each step
s=0; % Initialize |length cal cul ation
for i=1:n-1
dyi=yi (i +1)-yi(i); % Calculate y increnent
dsi =(dx*dx + dyi.*dyi).”~0.5; % Calclulate road | ength increnent

6 8
5 5

s=s+dsi ;
end
n,s
n = 100
s = 2.3597
n = 1000
s = 2.3599



19.2 Two-Dimensiond Interpolation

Two dimendond interpolation is Smilar to the one-dimendond case with the
obvious difference that there are now two independent variables and a single dependent
variable. The MATLAB function | nt er p2' in default mode is equivdent to a two way
table lookup with linear interpolation in both directions.

The table below represents measurements of a variable z a various x and y leves.
If an estimate d zwhen x=0.5 and y=32 is needed, only four data points are required if
the default linear interpolation is satisfactory.

x| 001 0.1 1 10 100
y
20 523 697 784 855 901
25 684 794 859 897 940
30 778 . 859 907 . 936 954
35 830 . 880 931 957 960
40 864 926 952 983 1002
45 881 932 964 999 1018

z=f(x,y)

Example 19.2.1

x1=0.1; x2=1.0; y1=30; y2=35
z11=859; z12=907; z21=880; z22=931,
x=[ x1 x2];

y=[yl y2];

z=[z11 z12; z21 z22];
z_est=interp2(x,y,z, 0.5, 32)

z_est = 889. 2667

Using cubic interpolation to estimate the same vaue requires the entire data set.

Example 19.2.2

x=| ogspace(-2,2,5); % Set x=[0.01 0.1 1 10 100]

y=20:5:45; % Set y=[20 25 30 35 40 45]

z=[ 523 697 784 855 901; 684 794 859 897 940; 778 859 907 936 954; 830
880 931 957 960; 864 926 952 983 1002; 881 932 964 999 1018];
z_est=interp2(x,y,z,0.5,32,"linear') % Two way |inear interpolation
z_est=interp2(x,y,z,0.5,32," ' cubic')

889. 2667
990. 9967

z_est
z_est



