
 1

Chapter 8 Relational and Logical Operations

8.1 Relational Operators

Relational and logical operators are instrumental in program flow control. They
are used in MATLAB m-Files to test various conditions involving variables and
expressions. The relational operators are listed below.

Relational Operator Description

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

~= not equal to

Relational operators can be used to compare elements of a numerical array to a
scalar. The result is an identically sized array of 1's and 0's indicating the results of the
comparison. The resulting array is called a logical array.

Example 8.1.1

mu=10;
sigma=1; n=7;
x=mu+sigma*randn(1,n) % Generate array x of n Normally distributed
 % numbers with mean mu and std deviation sigma
high1=x>mu % Find components of x which exceed mu and store in logical
 % array high1

 x = 10.7119 11.2902 10.6686 11.1908 8.7975 9.9802 9.8433
high1= 1 1 1 1 0 0 0

x
low1=x<mu % Find components of x which are less than mu and store in
 % logical array low1

 x = 10.7119 11.2902 10.6686 11.1908 8.7975 9.9802 9.8433
low1 = 0 0 0 0 1 1 1

x
high2=x>mu+sigma % Find components of x which are greater than mu +
 % sigma and store in logical array high2

 x = 10.7119 11.2902 10.6686 11.1908 8.7975 9.9802 9.8433
high2= 0 1 0 1 0 0 0

x
low2=x<mu-sigma % Find components of x which are less than mu -
 % sigma and store in logical array low2

 2

 x = 10.7119 11.2902 10.6686 11.1908 8.7975 9.9802 9.8433
low2= 0 0 0 0 1 0 0

Example 8.1.2

first_name_1='Harold'; last_name_1='Klee';
first_name_2='Robert'; last_name_2='Pratt';
first_name_3='Harold'; lastd_name_3='Smith';
first_name_4='Michael'; last_name_4='Grant';

size_fn_1=size(first_name_1) % Get size of character string
 % first_name_1
size_fn_2=size(first_name_2) % Get size of character string
 % first_name_2
size_fn_1==size_fn_2 % Check if 1×× 2 arrays size_fn_1 and
 % size_fn_2 are equal
match_fn_12=first_name_1==first_name_2 % Check if characters in
 % first_name_1 and characters in first_name_2 are
 % equal and store results in logical array match_fn_12
last_name_2==last_name_4

size_fn_1 = 1 6
size_fn_2 = 1 6
ans = 1 1
match_fn_12 = 0 0 0 0 0 0
ans = 0 1 1 0 1

Be careful when checking if two character strings are equal. Remember character
strings are actually character string arrays and consequently must be the same size before
a comparison using the logical operator '==' can be performed. The following example
illustrates the result of trying to compare different size character strings.

Example 8.1.3

size(last_name_1) % Find size of character string last_name_1
size(last_name_2) % Find size of character string last_name_2
last_name_1==last_name_2 % Invalid operation because last_name_1 and
 % last_name_2 are character string arrays of different sizes

ans = 1 4
ans = 1 5

??? Error using ==> ==

Array dimensions must match for binary array op.

Example 8.1.4

A=[1 5 3; 9 2 5; 6 0 2]
B=eye(3) % Create 3×× 3 Identity matrix
AB=A==B % Check locations where A and B are equal and store 1's in
 % those locations of logical array AB and 0's elsewhere
C=2+3*ones(3)
AC=A~=C % Check locations where A and C are not equal and store 1's in
 % those locations of logical array AC and 0's elsewhere

 3

A = 1 5 3
 9 2 5
 6 0 2

B = 1 0 0
 0 1 0
 0 0 1

AB = 1 0 0
 0 0 0
 0 1 0

C = 5 5 5
 5 5 5
 5 5 5

AC = 1 0 1
 1 1 0
 1 1 1

 4

8.2 Logical Operators

Logical operators are used to negate or combine relational expressions. The truth
of falseness of compound expressions comprised of relational operators is possible with
the use of logical operators. The standard logical operators are available in MATLAB.

Logical Operator Description

& AND

| OR

~ NOT

Example 8.2.1

x=100*rand(1,100); % Generate an array of 100 random numbers between 0
 % and 100
y=100*rand(1,100); % Generate a second array of 100 random numbers
 % from 0 to 100
xmax=max(x) % Find maximum number in array x
ymax=max(y) % Find maximum number in array y
xave=mean(x) % Find mean of x
yave=mean(y) % Find mean of y
both=xmax>ymax & xave>yave % Check if xmax>ymax AND xave>yave are
 % both true (i.e. logical 1) and set
 % logical variable 'both' to 1 if so, else
 % to 0
either=xmax>ymax|xave>yave % Check if either xmax>ymax OR xave>yave OR
 % both are true and set logical variable
 % 'either' to 1 if so, else to 0
~(xmax>ymax) % If (xmax>ymax) is false, set 'ans' to 1

xmax = 99.9447
ymax = 96.2288
xave = 53.1197
yave = 51.4998
both = 1
either = 1
ans = 0

Logical operators make it easy to selectively remove components from an array
that fail to satisfy certain criteria. In essence, the original array is multiplied by a similar
size logical array of 1's and 0's to produce the final array.

Example 8.2.2

n=7;
mu=10; sigma=2;
x=mu+sigma*randn(1,n) % Generate n Normal deviates with mean mu and
 % std deviation sigma
x>mu-sigma % Create 1×× n logical array 'ans' with 1's wherever components
 % of x satisfy x>mu-sigma and 0's elsewhere

 5

x=(x>mu-sigma).*x % Zero out values in array x wherever components of
 % x do not satisfy x>mu-sigma

x = 6.7918 10.5146 7.8871 12.8303 8.3898 11.0575 10.4386
ans = 0 1 0 1 1 1 1
x = 0 10.5146 0 12.8303 8.3898 11.0575 10.4386

n=7;
mu=10; sigma=2;
x=mu+sigma*randn(1,n) % Generate n Normal deviates with mean mu and
 % std deviation sigma
(x>mu-sigma)&(x<mu+sigma) % Create 1×× n logical array 'ans' with 1's
 % wherever components of x satisfy x>mu-sigma
 % AND x<mu+sigma and zeros elsewhere
x=((x>mu-sigma)&(x<mu+sigma)).*x % Zero out values in array x wherever
 % components of x do not satisfy (x>mu-sigma) AND (x<mu+sigma)

x = 8.1562 5.6587 9.8816 7.9787 11.2289 11.0155 13.3849
ans= 1 0 1 0 1 1 0
x = 8.1562 0 9.8816 0 11.2289 11.0155 0

The same concept can be used to plot selected portions of a function over some
domain. The following example plots a sine function y = sin(x) whenever y is greater
than 0.25 and a cosine function z=cos(x) whenever z is less than zero.

Example 8.2.3

x=linspace(0,2*pi,500); % Generate array x of 250 values from 0 to 2*pi
y=sin(x); % Generate array y of sin(x) values
y=(y>=0.25).*y; % Zero out values in array y which are less than 0.25
plot(x,y) % Plot modified array y vs array x
axis([0 2*pi -1 1])
xlabel('x (rad)'), ylabel('y'), title('y=sin(x) vs x, y > 0.25')

0 1 2 3 4 5 6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x (rad)

y

y=sin(x) vs x, y > 0.25

 6

x=0:0.01:4*pi; % Generate array x of values from pi to 4*pi in
 % increments of 0.01
z=cos(x); % Generate array z of cos(x) values
z=(z<0).*z; % Zero out values in array z which are greater than 0
plot(x,z) % plot modified array z vs array x
axis([0 4*pi -1 1])
xlabel('x (rad)'), ylabel('z'), title('z=cos(x) vs x, z < 0')

0 2 4 6 8 1 0 1 2
-1

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

x (r a d)

z

z = c o s (x) v s x , z < 0

Finally, remember when used with logical operators, MATLAB treats all nonzero
numbers as True and only zero to be False.

Example 8.2.4

x=3; y=-10; z=0;
a=x&y % x and y are True, therefore logical variable a is True (1)
b=x&z % x is True and z is False, therefore logical variable b is
 % False (0)
c=x|y % x and y are True, therefore logical variable c is True (1)
d=y|z % y is True and z is False, therefore logical variable d is
 % True (1)
e=~x % x is True, NOT x is False, therefore e is False (0)
f=~z % z is False, NOT z is True, therefore f is True (1)

a = 1
b = 0
c = 1
d = 1
e = 0
f = 1

 7

8.3 Relational and Logical Functions

MATLAB provides several functions which return logical arrays based on their
argument(s) which can be either numerical or character string arrays. These relational
and logical functions are:

Function Description

xor(x,y)

Exclusive OR operation. Return True (1) for each element where either x or
y is nonzero (True). Return False(0) where both x and y are zero (False) or
both are nonzero.

any(x) Return True (1) if any element in vector x is nonzero. Return True (1) for
each column in a matrix x that has nonzero elements.

all(x) Rerturn True (1) if all elements in a vector x are nonzero. Return True (1)
for each column in a matrix that has all nonzero elements.

Example 8.3.1

x=0:10
y=-5:5
xor(x,y) % Perform exclusive OR on arrays x and y

x = 0 1 2 3 4 5 6 7 8 9 10
y = -5 -4 -3 -2 -1 0 1 2 3 4 5
ans = 1 0 0 0 0 1 0 0 0 0 0

Example 8.3.2

A=[1 2 3; 4 5 6; 7 8 9];
B=[1 2 3; 0 5 0; 0 8 9];
C=A-B
any(C) % Find columns in matrix C which are not all zeros and those
 % which are all zeros

C = 0 0 0
 4 0 6
 7 0 0

ans = 1 0 1

Example 8.3.3

x=0:0.25:1 % Define set of array x values
y1=x/2 % Create function values for y1
y2=(x-1).^2 % Create function values for y2
ydiff=y1-y2 % Create function values for ydiff
all(ydiff) % Return 1 if all elements in array 'ydiff' are non-zero

 8

x = 0 0.2500 0.5000 0.7500 1.0000
y1 = 0 0.1250 0.2500 0.3750 0.5000
y2 = 1.0000 0.5625 0.2500 0.0625 0
ydiff = -1.0000 -0.4375 0 0.3125 0.5000
ans = 0

There are other MATLAB functions that return either logical 0 or 1 (or a logical
array of 0's and 1's) depending on whether their arguments satisfy certain conditions.
Several are tabulated below followed by some examples.

Function Description

isfinite(x) True where elements of x are finite

isinf(x) True where elements of x are infinite

islogical(x) True if x is a logical array

isnumeric(x) True if x is a numeric array

Example 8.3.4

u=[0 1 1 1 0 1 0] % Create numeric array u
L1=islogical(u) % Check if u is a logical array by returning 1 in L1
 % and 0 if its not
L2=isnumeric(u) % Check if u is a numeric array by returning 1 in L2
 % and 0 if its not

u = 0 1 1 1 0 1 0
L1 = 0
L2 = 1

x=0:100:1000
format short g
y=exp(x)
L3=isfinite(y) % Check if elements of array y are finite and place
 % results in logical array L3
L4=isinf(y) % Check if elements of array y are infinite and place
 % results in logical array L4

x = 0 100 200 300 400 500
 600 700 800 900 1000

y = 1 2.6881e+043 7.226e+086 1.9424e+130 5.2215e+173 1.4036e+217
 3.773e+260 1.0142e+304 Inf Inf Inf

L3 = 1 1 1 1 1 1 1 1 0 0 0
L4 = 0 0 0 0 0 0 0 0 1 1 1

 9

Function Description

ischar(x) True if x is a character string array

isequal(x,y) True if arrays x and y are identical

isletter(x) True where elements of array x are letters

isspace(x) True where elements of x are blanks

Example 8.3.5

team=char('Tom', 'Mike', 'Robert', 'Paul', 'Mike', 'Anthony')
 % Create character string array team
size(team) % Get dimensions of character string array team
ischar(team) % Check if team is a string array, i.e. all characters
isletter(team) % Get elements of character array team which are
 % letters
isequal(team(1,:),team(2,:)) % Check if rows 1 and 2 of array team
 % are the same
isequal(team(2,:),team(5,:)) % Check if rows 2 and 5 of array team
 % are the same
isspace(team)

team = Tom
 Mike
 Robert
 Paul
 Mike
 Anthony

ans = 6 7
ans = 1

ans = 1 1 1 0 0 0 0
 1 1 1 1 0 0 0
 1 1 1 1 1 1 0
 1 1 1 1 0 0 0
 1 1 1 1 0 0 0
 1 1 1 1 1 1 1

ans = 0
ans = 1

ans = 0 0 0 1 1 1 1
 0 0 0 0 1 1 1
 0 0 0 0 0 0 1
 0 0 0 0 1 1 1
 0 0 0 0 1 1 1
 0 0 0 0 0 0 0

 10

8.4 NaNs and Empty Arrays

Certain mathematical operations produce non-numerical results, e.g. 0/0 or ∞/∞.
MATLAB recognizes when this occurs and produces a result called NaN, short for 'Not a
Number'. When this occurs, subsequent operations on NaN's can generate misleading
results. In particular, array comparisons where some elements are NaN's should be
avoided because the results are not what one would expect.

Example 8.4.1

x1=8; x2=5; x3=2; x4=4; x5=7;
y=(1-((x1-x2)/rem(x1,x2)))/(1-((x2-x3)/rem(x5,x4)))
z=(x1/(x4-2*x3))/(x5/(x1-2*x4))
u=[x1 2*y x2 x3] % Create array u
w=[2*x4 z+1 x5 x4-x3] % Create array w
u==w % Compare elements of arrays u and w

Warning: Divide by zero.
y = NaN

Warning: Divide by zero.
z = NaN

u = 8 NaN 5 2
w = 8 NaN 7 2
ans = 1 0 0 1

Note that y and z are NaN's as are expressions 2*y and z+1. However,
comparison of arrays u and w produces a False result for the second element despite the
fact that each is a NaN. As far as MATLAB is concerned, two NaN's are not equal.
Consequently, MATLAB provides a useful logical function called 'isnan(x) ' which
identifies elements of an array x which are NaN's.

Example 8.4.2

x1=8; x2=5; x3=2; x4=4; x5=7;
x=[x1 x2 x3 x4 x5]
isnan(x) % Check if elements of array x=[x1 x2 x3 x4 x5] are NaN's
y=(1-((x1-x2)/rem(x1,x2)))/(1-((x2-x3)/rem(x5,x4)))
isnan(y) % Check if the scalar y is a NaN
u=[x1 2*y x2 x3] % Create array u
isnan(u) % Check for NaN's in array u

x = 8 5 2 4 7
ans = 0 0 0 0 0

Warning: Divide by zero.
y = NaN
ans = 1

u = 8 NaN 5 2
ans = 0 1 0 0

 11

The indices of NaN's in an array are easily determined using the 'find' function.

Example 8.4.3

 u=[x1 2*y x2 x3] % Create array u
w=[2*x4 z+1 x5 x4-x3] % Create array w
A=[u;w] % Create array A
A_NaN_indices=find(isnan(A)) % Find indices of NaN elements in A
[i,j]=find(isnan(A)) % Find i,j indices of NaN elements in A

u = 8 NaN 5 2
w = 8 1 7 2

A = 8 NaN 5 2
 8 1 7 2

A_NaN_indices = 3

i = 1
j = 2

There may be ocassions where none of an array's elements satisfy a tested
condition. For example, a random sample from a Normal population with mean µ and
standard deviation σ will contain values ouside the interval µ + 3σ less than 1 % of the
time on average. The MATLAB 'find' function will return an empty array [] if the
logical array looking for those extreme values contains all zeros.

Example 8.4.4

mu=10; sigma=2; n=6;
A=mu+sigma*randn(n);% Generate n×× n array of N(µµ,σσ) Normal random numbers
L=abs(A)>mu+3*sigma % Find outliers and store in logical array L
x=find(L) % Find non-zero indices of elements in array L
size_x=size(x) % Find size of array containing indices of outliers

A = 8.9627 9.2511 9.9175 11.313 11.862 12.679
 10.655 7.6282 7.7433 7.6644 10.022 10.579
 10.468 7.8882 7.3014 9.0788 8.7097 12.958
 10.043 12.945 9.4778 9.4751 11.611 12.276
 7.9921 10.111 11.907 7.5737 10.463 8.6317
 8.1057 7.5654 10.257 7.3611 8.0205 7.4161

L = 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

x = []

size_x = 0 0

 12

Note, the dimensions returned from the 'size' function call when the argument is
an empty array, i.e. 0 by 0. It's possible to detect the existence of an empty array by
checking if its 'length' is zero; however the more direct approach is to use the logical
function 'isempty'.

Example 8.4.5

length_x=length(x) % Check length of array x
isempty(x) % Check if array x is empty

length_x = 0
ans = 1

