The population of a country was measured every ten years and the results are shown below.

t	<i>P_{obs}</i> , Population (in thousands)
0	9.6
10	18.3
20	29.0
30	47.2
40	71.1
50	119.1
60	174.6
70	257.3
80	350.7
90	441.0
100	513.3
110	559.7
120	594.8
130	629.4
140	640.8
150	651.1
160	655.9
170	659.6
180	661.8
190	663.7
200	665.0

A logistic growth model is to be fit to the data. The carrying capacity "M" is estimated to be 665 (in thousands).

a) Estimate the parameter "*b*" in the logistic growth model

$$\frac{dP}{dt} = g(P)P = b(M-P)P$$

where P = P(t) is the population at time "t" and g(P) is the population-dependent growth rate.

Hint: Use the analytical solution of the differential equation model,

$$P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{-bMt}}$$

and solve for the parameter "b" in terms of M, P_0 , and t. Generate a set of nineteen values of "b" by substituting $t = 10, 20, 30, \dots, 190$ into the expression for "b". Use the average of the nineteen "b" values as your estimate of "b".

- b) Using the estimated values of "*M*" and "*b*", simulate the logistic population growth for 200 years using forward Euler integration with step sizes of T = 10, 5, 1, 0.1 years. Use the Matlab "subplot" to produce 4 plots (2 by 2) in the same Figure Window. In addition to labeled axes and a title, each plot will include:
 - i) the observed population data (as black dots)
 - ii) the analytical solution (as a solid red curve)
 - iii) the simulated solution (as a dotted blue line thru the simulated points)
 - iv) the step size T
 - v) A legend with the text "obs", "sim", and "anal" to distinguish the observed data points, analytical solution and simulated solution

Comment briefly on the results.

c) Perform a sensitivity analysis of the analytical logistic population growth with respect to changes in the estimated parameter "b". In other words, do a multi-run with "b" varying by 50% in either direction.

Plot the analytical population vs. time corresponding to five equally spaced values of "*b*" ranging from $0.5 \times$ "estimate of *b*" up to $1.5 \times$ "estimate of *b*". In addition to labeled axes and a title, the graph should include the minimum and maximum values of "*b*" displayed near the corresponding curves.

Comment briefly on the significance of the parameter "*b*".

- d) Using the original estimate of "*b*", plot the growth rate g(p) vs *P* over the range of values $0 \le P \le 2M$. In addition to labeled axes and a title, the graph should include
 - i) the points on the growth rate $g(P) \lor P$ corresponding to the times t = 0,40,80,120,160. Show the points as red dots.
 - ii) the point on the growth rate $g(P) \lor P$ corresponding to ZPG (zero population growth). Show the point as a black dot.

e) Prepare a Simulink diagram for simulating the logistic growth model. Choose the Euler integrator (ode1), step size T = 0.1 yr and simulate the population growth for 200 years. Include Simulink blocks for computing the analytical solution P(t). In addition, include a "From Workspace" block from the "Sources" sublibrary and set the "Data" parameter equal to the array "t_Pobs".

The Matlab script file must include the following statements:

t=0:10:200;

Pobs=[9.6 18.3 29.0 47.2 71.1 119.1 174.6 257.3 350.7 441.0 513.3 559.7 594.8 629.4 640.8 651.1 655.9 659.6 661.8 663.7 665.0];

t_Pobs=[t; Pobs]';

sim('Logistic_growth')

Configure a scope for 3 inputs and feed it (from top to bottom) Pobs, Psim and Panal.

Run the script file, open the scope and paste the scope with the 3 signals into your report. Comment on the results.