
Page 1 of 4

Computer Science Foundation Exam

January 11, 2025

Section A

BASIC DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Score

1 10 DSN

2 10 DSN

3 5 ALG

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2025 Section A: Basic Data Structures

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

Consider the following typedef struct definition that represents a book.

//struct representing a book with content

typedef struct {

 char ** sentences; // actual sentences

 int numSentences; // total number of sentences

 char * title; // book title

 char * author ; // book author

} book_t;

Complete the following user defined function definition that properly deallocates all memory associated

with the heap space of the struct type book_t. The parameters of the function contains the reference to

heap space of where the array of book_t is stored along with the total number of elements as numBooks.

Note that within each type book_t, sentences is an array of numSentences strings, where each

string was dynamically allocated, as were the strings title and author.

void cleanUp(book_t * lib, int numBooks){

 for(int x = 0; x < numBooks; x++) // 1 pt

 {

 for(int y = 0; y < lib[x].numSentences; y++) // 2 pts

 free(lib[x].sentences[y]); // 2 pts

 free(lib[x].sentences); // 1 pt

 free(lib[x].title); // 1 pt

 free(lib[x].author); // 1 pt

 }

 free(lib); // 1 pt

 // 1 pt for correctly using . all the time, so just 1 pt

 // off total if -> was used at all.

}

Spring 2025 Section A: Basic Data Structures

Page 3 of 4

2) (10 pts) DSN (Linked Lists)

The function below is given two sorted, singly linked lists, where each node contains a 2D coordinate (x,

y). The lists are sorted by the x-coordinate (increasing order) first and then by the y-coordinate (increasing

order). Complete the following user defined function merge2DCoordinates so that it merges the two

sorted linked lists into one sorted linked list, preserving the order of the coordinates. In particular, your

code should NOT allocate or free any memory. Instead, your code should simply change where some of

the existing pointers (next) are pointing and return a pointer to the front of the updated list. For full

credit, write your code recursively. (Note: The recursive solution is also shorter to write.)

typedef struct node_s {

 int x;

 int y;

 struct node_s* next;

} node_t;

node_t * merge2DCoordinates (node_t* ptr1, node_t* ptr2) {

 if (ptr1 == NULL && ptr2 == NULL) return NULL; // 1 pt

 if (ptr1 == NULL) return ptr2; // 1 pt

 if (ptr2 == NULL) return ptr1; // 1 pt

 // 3 pts if statement condition to split into 2 cases.

 if (ptr1->x < ptr2->x || (ptr1->x == ptr2->x && ptr1->y < ptr2->y)) {

 // 2 pts for call, connect and return.

 ptr1->next = merge2DCoordinates(ptr1->next, ptr2);

 return ptr1;

 }

 // 2 pts for call, connect and return.

 ptr2->next = merge2DCoordinates(ptr1, ptr2->next);

 return ptr2;

}

Spring 2025 Section A: Basic Data Structures

Page 4 of 4

3) (5 pts) ALG (Stack)

Consider the following C code that represents a stack that holds a list of values. Show the contents of the

stack right after each indicated point commented (A, B, and C), under the assumption that the

followStack function is called with a pointer to a stack_t that is empty.

typedef struct node_s{

 int data;

 struct node_s * next;

}node_t;

typedef struct{

 node_t * top;

}stack_t;

void push(stack_t * s, int data);

int pop(stack_t * s);

void followStack(stack_t * myStack){

int x;

push(myStack, 12);

push(myStack, 5);

push(myStack, -8);

x = pop(myStack);

x = pop(myStack);

push(myStack, 23); //A

x = pop(myStack);

push(myStack, 17);

push(myStack, -3);

x = pop(myStack);

x = pop(myStack);

push(myStack, 9);

push(myStack, 6); //B

push(myStack, -14);

x = pop(myStack);

x = pop(myStack);

x = pop(myStack);

push(myStack, 34);

x = pop(myStack); //C

}

 6

 23 9

Bottom 12 Bottom 12 Bottom 12

 A B C

Grading: 1 pt first stack, 2 pts second stack, 2 pts last stack, can only award partial credit for

stacks B and C (1 pt if it’s close).

Page 1 of 4

Computer Science Foundation Exam

January 11, 2025

Section B

ADVANCED DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Score

1 10 DSN

2 10 DSN

3 5 ALG

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2025 Section B: Advanced Data Structures

Page 2 of 4

1) (10 pts) DSN (Binary Trees)

Write a recursive function named sumAtDepth that takes a pointer to the root of a binary tree, root,

and non-negative integer, depth, and returns the sum of all the values in the nodes that are at a level

depth below the root. For example, if you pass the root of the following binary tree and depth = 2, the

function should return 61 (= 3 + 8 + 20 + 30) since the each of the nodes storing 3, 8, 20 and 30 are 2

levels below the root node of the tree. You may assume that depth is a non-negative integer.

You must write your solution in a single function. You cannot write any helper functions.

The function signature and node struct are given below.

typedef struct node

{

 int data;

 struct node *left;

 struct node *right;

} node;

int sumAtDepth(node *root, int depth) {

 if (root == NULL) // 1 pt

 return 0; // 1 pt

 if (depth == 0) // 1 pt

 return root->data; // 1 pt

 // 1 pt return, 2 pts each recursive call, 1 pt adding

 return sumAtDepth(root->left, depth-1) + sumAtDepth(root->right, depth-1);

}

Spring 2025 Section B: Advanced Data Structures

Page 3 of 4

2) (10 pts) DSN (Heaps)

You are given an array, arr, of size integers. Write a non-recursive function that takes in this array

and its size as input and returns 1 if the array represents a min-heap, and 0 otherwise. Recall that in an

array implementation of a heap, index 0 isn’t used and the root is stored at index 1. Since index 0 is unused,

the function is checking if the array stores a valid heap in indexes 1 through size-1, inclusive, thus the

number of nodes in the tree represented is size-1. You may assume size >= 2.

int isMinHeap(int arr[], int size) {

 for (int i = 1; 2*i < size; i++) { // 2 pts

 if (arr[i] > arr[2 * i]) // 2 pts

 return 0; // 1 pt

 if (2*i+1 < size && arr[i] > arr[2*i+1]) // 3 pts

 return 0; // 1 pt

 }

 return 1; // 1 pt

}

Grading note: if 1 is returned pre-maturely, take off 4 points (so max score of 6 in this case).

Spring 2025 Section B: Advanced Data Structures

Page 4 of 4

3) (5 pts) ALG (AVL Trees)

Insert the following integers into an AVL tree in the given order. Whenever an insertion causes the tree to

become unbalanced, rebalance it immediately before proceeding with the next insertion. Continue this

process, rebalancing as needed, until all elements have been added. Put a box around the state of the tree

after each of the bolded-underlined elements are inserted. (Each of these pictures will be worth 1 point.)

50, 80, 70, 99, 85, 100, 95 and 84

After 70 is inserted and rebalanced, tree is 70

 / \

 50 80

After 85 is inserted and rebalanced, tree is 70

 / \

 50 85

 / \

 80 99

After 100 is inserted and rebalanced, tree is 85

 / \

 70 99

 / \ \

 50 80 100

Here is the tree after 95 is inserted: 85

 / \

 70 99

 / \ / \

 50 80 95 100

Here is the tree after 84 is inserted: 85

 / \

 70 99

 / \ / \

 50 80 95 100

 \

 84

Grading: 1 pt for each of the trees shown above. Tree has to be perfectly correct to get the point.

Page 1 of 4

Computer Science Foundation Exam

 January 11, 2025

Section C

ALGORITHM ANALYSIS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Score

1 5 ANL

2 10 ANL

3 10 ANL

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib.h, stdio.h, math.h,

string.h) for that particular question have been made.

Spring 2025 Section C: Algorithms Analysis

Page 2 of 4

1) (5 pts) ANL (Algorithm Analysis)

Consider an implementation of a queue with two stacks, A and B. If the last operation was an enqueue,

all elements will be in stack A and the top of the stack represents the back of the queue. If the last

operation was a dequeue, then all of the elements will be on stack B and the top of the stack will

represent the front of the queue. For example, if we start with an empty queue and enqueue the items 6,

8, 2 and 4 in succession, the picture on the left is what both stacks look like. If we follow that up with a

dequeue, we first must pop off each item from stack A and push each item onto stack B, and then

remove the top element of the stack

 4

 2 8

 8 → 2

 6 4

 --------- --------- --------- ---------

 Stack A Stack B Stack A Stack B

(a) (2 pts) What would be the total run-time, in terms of n, of n enqueue operations, followed by n

dequeue operations, using this implementation. (Assume both stacks are implemented efficiently.)

Please give your answer as a simplified Big-Oh answer.

As each enqueue operation adds to the top of Stack A, each of these will run in O(1) time, because they

are in succession and we don’t touch Stack B at all. There are n of these operations. The first dequeue

will take O(n) time because all items are popped off of stack A and subsequently pushed onto stack B.

Finally, each of the following n – 1 dequeue operations will each take O(1) time. Adding this all up we

get nO(1) + O(n) + (n-1)O(1) = O(n).

O(n) Grading: 2 pts all or nothing, no reasoning necessary.

(b) (3 pts) What would be the total run-time, in terms of n, of n enqueue operations, followed by n more

alternating enqueue and dequeue operations? Please give your answer as a simplified Big-Oh answer.

The first n+1 enqueue operations take O(n) time total, as described above. If dequeues and enqueues are

then alternated, each with a queue size of either n+1 or n, then every single one of these operations will

take O(n) time because they will involve either transferring n+1 items from Stack A to Stack B, or

transferring n items from Stack B to Stack A. Since there are n of these operations, our total time is O(n)

+ nO(n) = O(n2).

O(n2) Grading: 3 pts all or nothing, no reasoning necessary.

Spring 2025 Section C: Algorithms Analysis

Page 3 of 4

2) (10 pts) ANL (Algorithm Analysis)

An algorithm that processes a grid of R rows and C columns runs in O(RlgC) time. It turns out that for

any R by C grid, we can transpose the grid so that it has C rows and R columns instead and solve the

problem on that grid to get the same answer. Fred ran the code with R = 106 and C = 102 and it took 3

hours to run. Shanille transposed the grid and reran the code with R = 102 and C = 106 to prove to Fred

how inefficient his technique was. How long, in seconds, would be expect Shanille’s execution of the

code to take? Please answer as a decimal to two places.

Let T(R, C) = kRlgC be the run-time of the algorithm on a grid with R rows and C columns, where k is a

constant.

𝑇(106, 102) = 𝑘106 lg(102) = 3 ℎ𝑜𝑢𝑟𝑠

𝑘(2 × 106) lg(10) = 3 ℎ𝑜𝑢𝑟𝑠 → 𝑘 =
3 ℎ𝑜𝑢𝑟𝑠

2×106lg (10)

Now, we must solve for 𝑇(102, 106):

𝑇(102, 106) = (
3 ℎ𝑜𝑢𝑟𝑠

2 × 106lg (10)
)102 lg(106)

 = (
3 ℎ𝑜𝑢𝑟𝑠

2 × 106 lg(10)
)102(6) lg 10

 = (
18 ℎ𝑜𝑢𝑟𝑠

2 × 104
) ×

60 𝑚𝑖𝑛

1 ℎ𝑜𝑢𝑟
×

60 𝑠𝑒𝑐

1 𝑚𝑖𝑛

 = (
9 ℎ𝑜𝑢𝑟𝑠

104
) × 3600𝑠𝑒𝑐/ℎ𝑟

 = (9)(.3600)𝑠𝑒𝑐

 = 𝟑. 𝟐𝟒 𝒔𝒆𝒄𝒐𝒏𝒅𝒔

Grading: 1 pt setting up equation for k

 2 pts solving for k no simplification

 2 pts setting up equation for Shanille

 2 pts correctly converting from hours to seconds

 1 pt log simplification

 2 pts rest of the simplification to the correct final form

Spring 2025 Section C: Algorithms Analysis

Page 4 of 4

3) (10 pts) ANL (Recurrence Relations)

Use the iteration technique to find an exact closed-form solution to the recurrence relation defined

below for all positive integers n:

𝑇(1) = 1

𝑇(𝑛) = 2𝑇(𝑛 − 1) + 5, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑛 ≥ 2

Please explicitly show the work for the first three iterations before attempting to find the form for an

arbitrary iteration, followed by arriving at the closed form. Hint: Your answer should be of the form

𝑇(𝑛) = 𝑎(𝑏𝑛) + 𝑐, where a, b, and c are all integers.

Here are the first three iterations:

𝑇(𝑛) = 2𝑇(𝑛 − 1) + 5 // Iteration #1 Grading: 1 pt

𝑇(𝑛) = 2(2𝑇(𝑛 − 2) + 5) + 5

𝑇(𝑛) = 4𝑇(𝑛 − 2) + (10 + 5)

𝑇(𝑛) = 4𝑇(𝑛 − 2) + 15 // Iteration #2 Grading: 1 pt

𝑇(𝑛) = 4(2𝑇(𝑛 − 3) + 5) + 15

𝑇(𝑛) = 8𝑇(𝑛 − 3) + (20 + 15)

𝑇(𝑛) = 8𝑇(𝑛 − 3) + 35 // Iteration #3 Grading: 2 pts

After k iterations, we have:

 𝑇(𝑛) = 2𝑘𝑇(𝑛 − 𝑘) + 5(2𝑘 − 1) Grading: 2 pts

Since we know T(1), plug in k = n – 1 into this formula: Grading: 1 pt

 𝑇(𝑛) = 2𝑛−1𝑇(𝑛 − (𝑛 − 1)) + 5(2(𝑛−1) − 1)

 = 2𝑛−1𝑇(1) + 5(2𝑛−1) − 5 Grading: 1 pt

 = 2𝑛−1 + 5(2𝑛−1) − 5

 = 6(2𝑛−1) − 5 Grading: 1 pt

 = (3)(2)(2𝑛−1) − 5

 = 3(2𝑛) − 5 Grading: 1 pt

Note: 1 pt is allocated to factor out the 2 from the 6 and include it in the exponent.

Page 1 of 4

Computer Science Foundation Exam

 January 11, 2025

Section D

ALGORITHMS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Score

1 10 DSN

2 10 ALG

3 5 ALG

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2025 Section D: Algorithms

Page 2 of 4

1) (10 pts) DSN (Recursive Coding)

A regular odometer of 6 digits counts from 000000 to 999999. A lucky odometer setting is one that

contains the digit 7 at least twice. Complete the recursive function below so that the code below prints

out each lucky odometer setting of n = 6 digits. In the recursive function, k represents the number of

digits of the odometer already filled in.

#include <stdio.h>

#include <stdlib.h>

int numd(int* odometer, int n, int d);

void printlucky(int n);

void printluckyrec(int* odometer, int k, int n);

void print(int* odometer, int n);

int main() {

 printlucky(6);

 return 0;

}

void printlucky(int n) {

 int* odom = malloc(n*sizeof(int));

 printluckyrec(odom, 0, n);

 free(odom);

}

void printluckyrec(int* odometer, int k, int n) {

 if (k == n){ // 1 pt

 if (numd(odometer, n, 7) >= 2) // 2 pts

 print(odometer, n); // 1 pt

 return; // 1 pt (or an else...)

 }

 for (int i=0; i<10; i++) { // 1 pt

 odometer[k] = i; // 1 pt

 printluckyrec(odometer, k+1, n); // 3 pts

 }

}

int numd(int* odometer, int n, int d) {

 int res = 0;

 for (int i=0; i<n; i++)

 res += (odometer[i] == d);

 return res;

}

void print(int* odometer, int n) {

 for (int i=0; i<n; i++)

 printf("%d ", odometer[i]);

 printf("\n");

}

Spring 2025 Section D: Algorithms

Page 3 of 4

2) (10 pts) ALG (Sorting)

Consider tracing through a Merge Sort of the array below. In the process of the code running, 10 merge

operations occur. Assume that when a subarray of odd size gets split into two arrays for recursive calls,

the left array is smaller than the right. (So, when the very first recursive call occurs, it will call the

subarray storing the five leftmost elements.) Show the contents of the whole array RIGHT AFTER

each of the 10 merge operations occurs. Please show your result in the order that the Merge operations

occur. Note: Please think carefully about the actual order each Merge operation occurs. PLEASE FILL

IN ALL SLOTS EVEN IF THEY DON’T CHANGE BETWEEN ITERATIONS!!! (1 pt is awarded

for every row that is 100% perfect, plus one bonus point for getting all of the rows.)

Index 0 1 2 3 4 5 6 7 8 9 10

Orig 13 18 19 11 2 7 4 15 6 12 1

1st Merge 13 18 19 11 2 7 4 15 6 12 1

2nd Merge 13 18 19 2 11 7 4 15 6 12 1

3rd Merge 13 18 2 11 19 7 4 15 6 12 1

4th Merge 2 11 13 18 19 7 4 15 6 12 1

5th Merge 2 11 13 18 19 7 4 15 6 12 1

6th Merge 2 11 13 18 19 4 7 15 6 12 1

7th Merge 2 11 13 18 19 4 7 15 6 1 12

8th Merge 2 11 13 18 19 4 7 15 1 6 12

9th Merge 2 11 13 18 19 1 4 6 7 12 15

10th Merge 1 2 4 6 7 11 12 13 15 18 19

Grading: 1 pt per row, row has to be completely correct to get the point. Give the last (10th) point

if all 9 rows are correct. (Possible scores are 0,1,2,3,4,5,6,7,8 and 10.)

Spring 2025 Section D: Algorithms

Page 4 of 4

3) (5 pts) ALG (Base Conversion)

Convert 3245610 to base 16, using A = 10, B = 11, C = 12, D = 13, E = 14 and F = 15. Put a box around

your final answer.

16 | 32456

16 | 2028 R 8

16 | 126 R 12

16 | 7 R 14

16 | 0 R 7

Reading the remainders in reverse order and replacing with letters as needed, we get:

3245610 = 7EC816

Grading: 0 pts if incorrect process is used.

 Take 1 pt off per arithmetic error, capping at 5 errors.

	SecA-Jan25-Sol.pdf
	SecB-Jan25 -Sol.pdf
	SecC-Jan25-Sol.pdf
	SecD-Jan25-Sol.pdf

