
Page 1 of 5

Computer Science Foundation Exam

May 18, 2024

Section A

BASIC DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

PLEASE USE CAPITAL LETTERS IN WRITING YOUR NAME

Last Name: _______________________________

First Name: _______________________________

UCFID: ____________________________________

Question # Max Pts Category Score

1 5 ALG

2 10 DSN

3 10 DSN

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Summer 2024 Section A: Basic Data Structures

Page 2 of 5

1) (5 pts) ALG (Dynamic Memory Management in C)

Given the following C code.

int **arr1 = malloc(3 * sizeof(int *));

for(int i = 0; i < 3; ++i)

 arr1[i] = malloc(2 * sizeof(int));

int *arr2 = malloc(3 * 2 * sizeof(int));

Answer the following questions about the above lines of code.

a) Does arr1 and arr2 require the same number of total bytes allocated to be stored in the heap

space? Please write yes or no. No reason is needed.

b) Are all the addresses associated with arr1 (excluding arr1 itself on the stack space)

adjacent in memory? Please write yes or no only. No reason is needed.

c) Are all the addresses associated with arr2 (excluding arr2 itself on the stack space)

adjacent in memory? Please write yes or no only. No reason is needed.

d) Complete the following stack and heap space visual below showing how the memory state looks

for both arr1 and arr2 from the above lines of code (after all lines execute properly). For each

box you draw in the heap space, indicate what type of variable is stored in the box.

Stack Space Heap Space

Summer 2024 Section A: Basic Data Structures

Page 3 of 5

2) (10 pts) DSN (Linked Lists)

Given a singly integer linked list, complete the following user defined function definition

moveHeadNearTail. The user defined function moves the head node of some singly linked list that is

passed to the second last position of the list (the node that comes before the tail node itself). The following

figure shows a sample scenario. The function returns the head of the modified linked list. You may

assume the linked list pointed to by head has at least 3 elements in it.

typedef struct node_s {

 int data;

 struct node_s* next;

} node_t;

node_t * moveHeadNearTail(node_t * head) {

}

Summer 2024 Section A: Basic Data Structures

Page 4 of 5

3) (10 pts) DSN (Stacks)

You are playing a scoring game that uses a LIFO approach for keeping track of scores. Here are how the

scores are managed. You are given a character array (string) of moves where each index represents some

rule for managing the score. You must go through the array in index order to properly manage the score.

Here are the rules for managing the score:

• If the move is some character representing an integer (0-9 both inclusive), record the integer itself.

• If the move is the character ‘+’. You will need to retrieve the last 2 scores recorded and compute

the sum. After computing the sum, you will need to add this sum to the recorded list of scores.

Once all moves have been processed, you will need to compute the total sum of all the scores and return

this value. For example, if the string passed to the function is “25+3++1”, then after processing the first

plus sign the corresponding stack of values from bottom to top would be [2, 5, 7]. After processing the

second plus sign the corresponding stack of values from bottom to top would be [2, 5, 7, 3, 10]. After

processing the string completely, the stack would store [2, 5, 7, 3, 10, 13, 1]. The sum of these values, 41,

should be returned. Complete the following function definition that simulates this scoring game. You may

assume that the string header file is included. The provided functions and stack structure are here to assist

you with completing this function. Note: There exists a solution that doesn’t use the stack and this or

any such solution will get full credit, if correctly implemented. The parameter represents the character

array of moves, and is guaranteed to be valid. Namely, the string will consist solely of digits and plus

signs, and if the string has any plus signs, they will only appear in an index 2 or greater (meaning that

there will be two previous scores to add.)

This code is fairly long, so go ahead and write your code on the following page. The structs and functions

you may use are listed on this page, below:

typedef struct node_s {
 int data;

 struct node_s * next;

} node_t;

typedef struct {

 node_t * top;

} stack_t;

// Initializes a stack to be empty.

void init(stact_t* s);

// Pushes data onto the stack pointed to by s.

void push(stack_t* s, int data);

// Removes and returns the integer at the top of the stack pointed to by s.

int pop(stack_t* s);

// Returns 1 if and only if the stack pointed to by s is empty. Returns 0

// otherwise.

int empty(stack_t* s);

Summer 2024 Section A: Basic Data Structures

Page 5 of 5

int computeScore(char * moves) {

}

Page 1 of 4

Computer Science Foundation Exam

May 18, 2024

Section B

ADVANCED DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

PLEASE USE CAPITAL LETTERS IN WRITING YOUR NAME

Last Name: _______________________________

First Name: _______________________________

UCFID: ____________________________________

Question # Max Pts Category Score

1 5 ALG

2 10 DSN

3 10 DSN

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Summer 2024 Section B: Advanced Data Structures

Page 2 of 4

1) (5 pts) ALG (Binary Trees)

a) Draw a binary search tree of with 5 nodes (storing positive integers) that has the maximum

possible height. (1 pt)

b) Draw another binary search tree with 7 nodes (storing positive integers) that has the minimum

possible height. (1 pt)

c) Re-draw the following binary search tree after deleting the root node. (3 pts)

Summer 2024 Section B: Advanced Data Structures

Page 3 of 4

2) (10 pts) DSN (Heaps)

a) (6 pts) Consider the following struct that represents a binary minheap.

typedef struct heap {

 int* elements; //points to the array of heap elements

 int capacity; // total size of the array

 int size; // actual number of elements in the heap

} heapStruct;

Also, the following functions are available to you, and you are free to call them as needed:

- int removeMin(heapStruct *h);//removes the smallest item from the heap

pointed to by h.

- int size(heapStruct* h); // returns the number of elements in the heap

pointed to by h.

Write a function called heapsort that takes a pointer to a heap, and returns those values in a sorted

integer array. At the end of the function, the heap pointed to by h will be empty.

int* heapsort(heapStruct* h) { //complete this function

}

b) (4 pts) Specify the worst run-time when efficiently implemented for the following operations:

Operation Run-time

Building a binary heap from an unordered array of size n using heapify O(_______)

Inserting an item into a binary heap with n items. O(_______)

Deleting the minimum item from a binary heap with n items O(_______)

Heapsort of n items. O(_______)

Summer 2024 Section B: Advanced Data Structures

Page 4 of 4

3) (10 pts) DSN (Tries)

As an afficionado of Wordle, you’re curious how many five letter words there are in a dictionary stored

in a trie. Write a recursive function that takes in a pointer to a trie node and an integer k, representing the

depth of the node in the trie, and returns the number of five letter words stored within that subtrie. A

wrapper function is provided which makes the initial recursive call on the root node of the trie storing the

dictionary. Please use the struct shown below. Assume all necessary includes.

typedef struct trieNode {

 int isWord;

 struct trieNode* children[26];

} trieNode;

int num5LetterWrapper(trieNode* root) {

 return num5Rec(root, 0);

}

int num5Rec(trieNode* root, int k) {

}

Page 1 of 4

Computer Science Foundation Exam

 May 18, 2024

Section C

ALGORITHM ANALYSIS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

PLEASE USE CAPITAL LETTERS IN WRITING YOUR NAME

Last Name: _______________________________

First Name: _______________________________

UCFID: ____________________________________

Question # Max Pts Category Score

1 5 ANL

2 10 ANL

3 10 ANL

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Summer 2024 Section C: Algorithms Analysis

Page 2 of 4

1) (5 pts) ANL (Algorithm Analysis)

What is the worst-case Big O runtime for the following function, in terms of the input parameter, n? (You may

assume that the array pointed to by list is of length n.) In order to receive full credit, you must use words to

explain your reasoning AND arrive at the correct answer.

int mystery(int* list, int n) {

 int i = 0, j = 1;

 if (n < 2) return 0;

 while (j < n) {

 while (i < j && list[i] < list[j]) i++;

 j++;

 }

 return i;

}

REASON:

RUN-TIME: (____________)

Summer 2024 Section C: Algorithms Analysis

Page 3 of 4

2) (10 pts) ANL (Algorithm Analysis)

An algorithm that processes a list of size n takes 𝑂(√𝑛𝑙𝑔𝑛) time. On Shannon’s computer, when she

runs the algorithm on a list of size n = 216, her computer takes c milliseconds. (Shannon is very

secretive, so she hasn’t told you the value of c unfortunately!) In terms of c, how long, in milliseconds,

should we expect the algorithm to take on her computer when she is processing a list of size 220? (Your

answer should be of the form kc, where k is a positive real number.)

Summer 2024 Section C: Algorithms Analysis

Page 4 of 4

3) (10 pts) ANL (Recurrence Relations)

Using the iteration technique, determine the Big-Oh solution to the recurrence relation below, in terms

of n.

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑛3, for n > 1

𝑇(1) = 1

Page 1 of 4

Computer Science Foundation Exam

 May 18, 2024

Section D

ALGORITHMS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

PLEASE USE CAPITAL LETTERS IN WRITING YOUR NAME

Last Name: _______________________________

First Name: _______________________________

UCFID: ____________________________________

Question # Max Pts Category Score

1 10 DSN

2 10 ALG

3 5 ALG

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Summer 2024 Section D: Algorithms

Page 2 of 4

1) (10 pts) DSN (Recursive Coding)

Write a recursive function that determines if player X, who goes first, can win a game of tic-tac-toe

(played on a 3 by 3 int board). You can use the following helper functions. You don’t have to implement

any of the listed helper functions. Functions that do not use recursion will receive 0 points. Note:

board is a 3 by 3 array of integers, storing either EMPTY(0), X(1), or O(2). The three given functions

return the current state of the board, as it is, from player X’s perspective, not what “could happen” in the

future. myTurn is 1, when it’s X’s turn and 0 when it’s O’s turn. You will have to place and unplace X’s

and O’s in your solution. Finally, the intention here is that player ‘O’ plays pessimistic. Namely, if there

is ANY set of moves that players X and O could make from the current state of the board that result in X

winning, the function should return 1.

#define EMPTY 0

#define X 1

#define O 2

int XWin(int ** board); // returns 1 if I have won and 0 otherwise

int XLose(int ** board); // returns 1 if I have lost and 0 otherwise

int tied(int ** board); // returns 1 if the board is in a tied state

int canXWin(int ** board, int myTurn) {

}

Summer 2024 Section D: Algorithms

Page 3 of 4

2) (10 pts) ALG (Sorting)

(a) (1 pt) Which of the sorting algorithms (listed in part d) could encounter problems if an array can

contain duplicates? (Specifically, for four of the algorithms, whether or not there are duplicates in the

array don’t alter the run-time of the algorithm on individual cases, but one of the algorithms, in its

original form, is definitively affected.)

(b) (2 pts) What problem could be encountered?

(c) (2 pts) Pick one of the algorithms that aren’t affected by duplicates and explain why it runs similarly

with or without duplicates.

(d) (5 pts) What is the worst case runtime for the following sorting algorithms on an array with n distinct

values? Please list your answers with Big-Oh notation, using proper conventions.

Quick _______

Bubble _______

Insertion _______

Merge _______

Selection _______

Summer 2024 Section D: Algorithms

Page 4 of 4

3) (5 pts) ALG (Base Conversion)

Convert 277 in base 8 to base 16. Please show your work and put a box around your final answer.

	FE-May24.pdf
	SecB-May24
	SecC-May24
	SecD-May24

