
Euclid’s Algorithm 

 

The Greatest Common Divisor(GCD) of two integers is defined as follows: 

 

An integer c is called the GCD(a,b) (read as the greatest common divisor of integers a and b) if 

the following 2 conditions hold: 

 

1) c | a  c | b 

2) For any common divisor d of a and b, d | c. 

 

Rule 2 ensures that the divisor c is the greatest of all the common divisors of a and b. 

 

One way we could find the GCD of two integers is by trial and error. Another way is that we 

could prime factorize each integer, and from the prime factorization, see which factors are 

common between the two integers. However, both of these become very time consuming as soon 

as the integers are relatively large.  

 

However, Euclid devised a fairly simple and efficient algorithm to determine the GCD of two 

integers. The algorithm basically makes use of the division algorithm repeatedly. 

 

Let’s say you are trying to find the GCD(a,b), where a and b are integers with a  b > 0 

 

Euclid’s algorithm says to write out the following: 

 

a = q1b + r1,   where 0 < r < b 

b = q2r1 + r2,  where 0 < r2 < r1 

r1 = q3r2 + r3,  where 0 < r3 < r2 

. 

. 

ri = qi+2ri+1+ ri+2, where 0 < ri+2 < ri+1 

. 

. 

rk-1 = qk+1rk 

 

Euclid’s algorithm says that the GCD(a,b) = rk 

 

This might make more sense if we look at an example: 

 

Consider computing GCD(125, 87) 

 

125 = 1*87 + 38 

87 = 2*38 + 11 

38 = 3*11 + 5 

11   = 2*5   + 1 

5 = 5*1 

 



Thus, we find that GCD(125,87) = 1. 

 

Let’s look at one more quickly, GCD(125, 20) 

125 = 6*20 + 5 

20 = 4*5, 

 

thus, the GCD(125,20) = 5 

 

Proof That Euclid’s Algorithm Works 

 

Now, we should prove that this algorithm really does always give us the GCD of the two 

numbers “passed to it”. First I will show that the number the algorithm produces is indeed a 

divisor of a and b. 

 

a = q1b + r1,   where 0 < r < b 

b = q2r1 + r2,  where 0 < r2 < r1 

r1 = q3r2 + r3,  where 0 < r3 < r2 

. 

. 

ri = qi+2ri+1+ ri+2, where 0 < ri+2 < ri+1 

. 

. 

rk-1 = qk+1rk 

 

From the last equation, we know that rk | rk-1. So, we know that we can express rk-1 = crk, where c 

is an integer. Now consider the previous equation: 

 

rk-2 = qkrk-1+ rk = qkcrk, + rk = rk(qkc + 1) 

 

Thus, we have that rk | rk-2. 

 

In our equation previous to that one, we have: 

 

rk-3 = qk-1rk-2+ rk-1 

 

From here , since rk | rk-1 and rk | rk-2, using our rules of divisibility we have that rk | rk-3. As you 

can see, we can continue this process, considering each previous equation until we get to the last 

two, where we will find that rk | a and rk | b. Thus, we find that Euclid’s algorithm indeed gives 

us a common factor of a and b. 

 

Now, we have one more part to prove – and that is to show that the common divisor that Euclid’s 

algorithm produces is the largest possible. This proof is going to look similar to the previous one, 

but it is different in that we will start by assuming that a and b have a common factor d, and then 

show that d | rk. 

 



Consider an arbitrary common factor d of a and b. If d is a common factor, we can rewrite a and 

b as follows: 

 

a = da’ b = db’, where d, a’, b’ are all positive integers. 

 

Now, consider the first equation from Euclid’s algorithm: 

 

a = q1b + r1.  

r1 = da’ - q1db’ (Substitute for a and b, and solve for r1.) 

    = d(a’ - q1b’) 

 

Thus, we have that d | r1. 

 

Now, consider the second equation, and repeat the steps we did on the first, this time solving for 

r2. (Note: We will let r1=dr1’, where r1’ is an integer.) 

 

b = q2r1 + r2. 

 

r2 = db’ - q2dr1’ 

    = d(b’ - q2d) 

 

As you can see, we can continue this process through each of the equations until we hit the 

second to last one, where we will have: 

 

rk-2 = qkrk-1+ rk  

 

rk = drk-2’ - qkdrk-1’ = d(rk-2’ - qkrk-1’),  

 

thus, d | rk.  

 

But this says that any arbitrary common factor of a and b that we originally picked divides into 

rk, the value that Euclid’s algorithm produced. Since we know that rk IS a common factor to both 

a and b, this shows that is must be the largest possible common factor, or the GCD(a,b). 

 



Extended Euclidean Algorithm 

 

One of the consequences of the Euclidean Algorithm is as follows: 

 

Given integers a and b, there is always an integral solution to the equation 

 

ax + by = gcd(a,b). 

 

Furthermore, the Extended Euclidean Algorithm can be used to find values of x and y to satisfy 

the equation above. The algorithm will look similar to the proof in some manner. 

 

Consider writing down the steps of Euclid's algorithm: 

 

a = q1b + r1,   where 0 < r < b 

b = q2r1 + r2,  where 0 < r2 < r1 

r1 = q3r2 + r3,  where 0 < r3 < r2 

. 

. 

ri = qi+2ri+1+ ri+2, where 0 < ri+2 < ri+1 

. 

rk-2 = qkrk-1+ rk,  where 0 < rk < rk-1 

rk-1 = qk+1rk 

 

Consider solving the second to last equation for rk. You get 

 

rk = rk-2 - qkrk-1, or  

 

gcd(a,b) = rk-2 - qkrk-1 

 

Now, solve the previous equation for rk-1: 

 

rk-1 = rk-3 - qk-1rk-2, 

 

and substitute this value into the previous derived equation: 

 

gcd(a,b) = rk-2 - qk(rk-3 - qk-1rk-2) 

gcd(a,b) = (1 + qkqk-1)rk-2 - qkrk-3 

 

Notice that now we have expressed gcd(a,b) as a linear combination of rk-2  and rk-3. Next we can 

substitute for of rk-2  in terms of of rk-3  and  rk-4, so that the gcd(a,b) can be expressed as the linear 

combination of  of rk-3  and  rk-4. Eventually, by continuing this process, gcd(a,b) will be 

expressed as a linear combination of a and b as desired. 

 

This process will be much easier to see with examples: 

 

Find integers x and y such that 



 

135x + 50y = 5. 

 

Use Euclid's Algorithm to compute GCD(135, 50): 

 

135 = 2*50 + 35 

50   = 1*35 + 15 

35   = 2*15 + 5 

15   = 3*5 

 

Now, let's use the Extended Euclidean algorithm to solve the problem: 

 

5 = 35 - 2*15, from the second to last equation 35   = 2*15 + 5. 

 

But, we have that 

15 = 50 - 35, from the third to last equation 50   = 1*35 + 15. 

 

Now, substitute this value into the previously derived equation: 

 

5 = 35 - 2*(50 - 35) 

5 = 3*35 - 2*50 

 

Now, finally use the first equation to determine an expression for 35 as a linear combination of 

135 and 50: 

 

35 = 135 - 2*50. 

 

Plug this into our last equation: 

 

5 = 3*(135 - 2*50) - 2*50 

5 = 3*135 - 8*50 

 

So, a set of solutions to the equation is x=3, y=-8. 

 



Solving Equations of the form ax + by = c 

 

To find all integer solutions of an equation of the form ax+by = c where a, b and c are given 

integers, do the following: 

 

1) Check if gcd(a,b) | c. If not, there are no solutions. This is because if gcd(a,b) evenly divides 

into the left-hand side of the equation, but not the right, it’s impossible for the two sides to be 

equal. 

 

2) Otherwise, run the Extended Euclidean algorithm with a and b, multiplying the whole 

equation through if necessary. Consider the solving the following equation: 

 

135x + 50y = 35. 

 

From our previous work, we know that 

 

135(3) + 50(-8) = 5. Since 35 = 7x5, multiply the whole equation through by 7: 

 

135(3)(7) + 50(-8)(7) = 5(7) 

135(21) + 50(-56) = 35 

 

Thus, a solution for (x,y) is (21, -56). 

 

 

3) This will give you a base solution (x0, y0). Now, consider the following equation: 

 

ax + by = 0 

ax = -by 

 

Dividing both sides by gcd(a,b), we obtain: 
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Now, we can represent all solutions as follows: 
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The key idea here is that adding and subtracting the given offsets from the initial solution don't 

change the value of ax+by at all, thereby creating another valid solution. 

 



Problem: Determine all solutions to the equation 405x + 141y = 12. 

 

Here is the Euclidean Algorithm run on 405 and 141: 

 

405 = 2x141 + 123 

141 = 1x123 +   18 

123 =  6x18  +   15 

18   =  1x15  +   3 

15     =  5x3 

 

Now, run the Extended Euclidean Algorithm as follows: 

 

18 – 1x15 = 3 

18 – 1x(123 – 6x18) = 3 

18 – 1x123 + 6x18 = 3 

7x18 – 1x123 = 3 

7x(141 – 1x123) - 1x123 = 3 

7x141 – 7x123 – 1x123 = 3 

7x141 – 8x123 = 3 

7x141 – 8x(405 – 2x141) = 3 

7x141 – 8x405 + 16x141 = 3 

23x141 – 8x405 = 3, now, multiply this through by 4: 

92x141 – 32x405 = 12 

So, x0 =-32 and y0 = 92 is a solution to the original equation. 

 

Now, take 

 

405x + 141y = 0 

405x = -141y, now, just divide through by gcd(405, 141) 

135x = -47y 

So a solution is x=47, y=-135. 

 

Using this, we can a complete solution to our original equation: 

 

x = -32 + 47k, y = 92-135k, kZ. 

 



Using the Extended Euclidean Algorithm to Solve for Modular Inverses 

 

A modular inverse is defined as follows: 

 

a-1 mod n is the value (in between 1 and n-1) such that 

 

a(a-1) ≡ 1 mod n 

 

This only exists if gcd(a,n) = 1, which will be evident once we show the procedure for obtaining 

a-1 mod n. 

 

Consider the following example: 

 

Determine 14-1 mod 23 

 

This means we must find some integer such that 

 

14x ≡ 1 mod 23 

 

This is equivalent to finding integers x and y such that 

 

14x + 23y = 1. 

 

Clearly, this can only be done if 14 and 23 do NOT share any common factors. If they don’t then 

the previous algorithm shown can be used to solve for both x and y. (Of course, the only value 

we care about is x.) Here is the work: 

 

23 = 1x14 + 9 

14 = 1x9 + 5 

9 = 1x5 + 4 

5 = 1x4 + 1 

4 = 4x1 

 

5 – 1x4 = 1 

5 – (9 – 5) = 1 

2x5 – 9 = 1 

2(14 – 9) – 9 = 1 

2x14 – 3x9 = 1 

2x14 – 3(23 – 14) = 1 

5x14 – 3x23 = 1 

 

It follows that 14-1 ≡ 5 mod 23, since 14x5 ≡ 1 mod 23. 


