RUTGERS

CS5415 Compilers
Syntax Analysis
Bottom-up Parsing

RUTGERS ~ Review: LR(k) Shift-reduce Parsing

Shift reduce parsers are easily built and easily understood

A shift-reduce parser has just four actions
* Shift — next word is shifted onto the stack

* Reduce — right end of handle is at top of stack
Locate left end of handle within the stack
Pop handle off stack & push appropriate /hs

* Accept — stop parsing & report success
* Error — call an error reporting/recovery routine

Accept & Error are simple

Shiftis just a push and a call to the scanner

Reduce takes |rhs| pops (or 2*|rhs| pops) & 1 push

If handle-finding requires state, put it in the stack = 2x work

cs415, spring 14 Lecture 14

RUTGERS Review - LR(k) items

The LR(1) table construction algorithm uses LR(1) items to
represent valid configurations of an LR(1) parser

An LR(k) item is a pair [P, 8], where

Pis a production A—p with a * at some position in the rhs

d is a lookahead string of length < k (words or EOF)
The + in an item indicates the position of the top of the stack

LR(1):
[A—+py,a] means that the input seen so far is consistent with the use
of A —fy immediately after the symbol on top of the stack

[A —p+y,a] means that the input seen so far is consistent with the use
of A —fy at this point in the parse, and that the parser has already
recognized f.

[A —py°.a] means that the parser has seen py, and that a lookahead
symbol of a is consistent with reducing to A.

cs415, spring 14 Lecture 14

RUTGERS Review - LR(1) Table Construction

High-level overview

1 Build the canonical collection of sets of LR(k) Items, I
a Begin in an appropriate state, s,

¢ Assume: S —S5,and S’ is unique start symbol that does
hot occur on any RHS of a production (extended CFG -
ECFG)

¢ [S’ —-SEOF], along with any equivalent items
¢ Derive equivalent items as closure(s,)
b Repeatedly compute, for each s,, and each X, goto(s,,X)
¢ If the set is not already in the collection, add it
¢ Record all the transitions created by goto(')
This eventually reaches a fixed point

2 Fill in the table from the collection of sets of LR(1) items

The canonical collection completely encodes the
transition diagram for the handle-finding DFA

cs415, spring 14 Lecture 14

RUTGERS Review - Computing Closures

Closure(s) adds all the items implied by items already in s

* Any item [A—f*Bd,a] implies [B—*t,x] for each production
with B on the /hs, and each x € FIRST(8a) - for LR(1) item

The algorithm

Closure('s)
while (s is still changing)
V items[A— p-Bda]lE s
Y productions B—t €€ P
V b € F1rsT(6a) // 6 might be ¢
if [B—+1tb]l€s
thenadd [B— -t b] to s

> Classic fixed-point method
> Halts because s C ITEMS
Closure “fills out” a state

cs415, spring 14 Lecture 14

RUTGERS ~ Review - Computing Gotos

Goto(s,x) computes the state that the parser would reach
if it recognized an x while in state s

* Goto({ [A—p*Xd,a]}, X)produces [A—pX*0,a] (easy part)
* Should also includes closure([A—pX*d,a]) (fill out the state)

The algorithm
Goto(s, X) > Not a fixed-point method!
new <& > Straightforward computation

V items [A—p-Xda]E s
new <— new U [A—pX*0,a]

return closure(new)

> Uses closure()

Goto() moves forward

cs415, spring 14

Lecture 14

RUTGERS Review - Building the Canonical Collection

Start from s, = closure([S'—S,EQF])

Repeatedly construct new states, until all are found

> Fixed-point
computation

The algorithm

2'2'0 i g/zi:;/f'}e([57=>=5, EOF]) (worklist version)

while (new sets are still being added to CC) > Loop adds 1o cC
for each unmarked set cc; € CC > CCC2TTEMS,

mark cc; as processed so CCis finite
for each x following a * in an item in cc;

temp < goto(cc;, x)

if temp & CC

then CC < CC U { temp }
record transitions from cc; to temp on x

cs415, spring 14 Lecture 14

RUTGERS One Example

Construct LR(0) States

SO
S'::= eS$ a
S = ea(A)(B)e|
B

cs415, spring 14

Lecture 14

B WO N =

1

(S)=a (A) (B) e
(A): —<A> bc
(A=

(B):=

RUTGERS One Example

Construct LR(0) States

S2
S ::=ae(A)(B)e
(A) ::= o(A)bc
(A) ::=eb
b

SO
S'::= eS$
S ::=ea(A)(B)e
B
S':=Se$
S1

cs415, spring 14

Lecture 14

B WO N =

1

(S)=a (A) (B) e
(A): —(A> bc
(A=

(B):=

RUTGERS One Example

Construct LR(0) States

SO

S'::= eS%

S ::=ea(A)(B)e

B

S':=Se$

S1

cs415, spring 14

1

1| (S)n=a(A) (B)e
2 | (A): —(A> b c
3| (A=
4| (B):=
52 S4
S ::=ae(A)(B)e |(A)| Si:=a(A) e (B)e ,‘i,,
(A) := o(A)bc —| (A)=(A)ebc -
(A) ::=eb (B) = od (B)
b [b
(A) = be
S3

Lecture 14

10

RUTGERS One Example

Construct LR(0) States

SO

S'::= eS%

S ::=ea(A)(B)e

B

S':=Se$

S1

cs415, spring 14

1

1| (S)n=a(A) (B)e
2 | (A): —(A> b c
3| (A=
4| (B):=
52 S4
S ::=ae(A)(B)e |(A)| Si:=a(A) e (B)e ,‘i,,
(A) := o(A)bc —| (A)=(A)ebc -
(A) ::=eb (B) = od (B)
b [b
(A) = be S5 | (A)=(A)bec
53 I c

Lecture 14

11

RUTGERS One Example

Construct LR(0) States

SO

S'::= eS%

S ::=ea(A)(B)e

B

S':=Se$

S1

cs415, spring 14

1

1| (S):=a(A) (B) e
2 | (A): —(A> b c
3| (A=
4] (B):=
52 S4
S ::=ae(A)(B)e |(A)| Si:=a(A) e (B)e ,‘i,,
(A) := o(A)bc —| (A)=(A)ebc -
(A) ::=eb (B) = od (B)
b [b
(A) = be S5 | (A)=(A)bec
S3 | C
(A)=(A)bce
S6

Lecture 14

12

RUTGERS One Example

Construct LR(0) States

SO

S'::= eS%

S ::=ea(A)(B)e

B

S':=Se$

S1

cs415, spring 14

1
2 | {(A):
3| (A=
4| (B):=
52 S4
S ::=ae(A)(B)e |(A)| Si:=a(A) e (B)e j//
(A) := o(A)bc —| (A)=(A)ebc -
(A) ::=eb (B) = od (B)
b [b
(A) = be S5 | (A)=(A)bec
S3 | C
(A)=(A)bce
S6

Lecture 14

1

(S):=a (A) (B) e

—(A) b c

(B)::=de

S9

13

RUTGERS One Example

Construct LR(0) States

SO

S'::= eS%

S ::=ea(A)(B)e

B

S':=Se$

S1

cs415, spring 14

1

1| (S):=a(A) (B) e
2 | (A): —(A> b c
3| (A)n=
4 | (B):=
S2 S4
S ::=ae(A)(B)e |(A)| Si:=a(A) e (B)e ’ij// (B)::=de | SQ
(A) := o(A)bc —| (A)=(A)ebc -
(A) ::=eb (B) = od (B) S::=a(A)(B)ee | S7
b [b
(A) = be S5 | (A)=(A)bec e
S3 L
(A)=(A)bce
S6

Lecture 14

14

RUTGERS

Construct LR(0) States

SO

S'::— eS$

S ::=ea(A)(B)e

B

S':=Se$

S1

cs415, spring 14

One Example - LR(O) states

1| (S):=a(A) (B) e
2 | (A): —(A> b c
3| (A)n=
4 | (B):=
S2 S4
S ::=ae(A)(B)e |(A)| Si:=a(A) e (B)e ’9// (B)::=de | SQ
(A) := o(A)bc —| (A)=(A)ebc -
(A) ::=eb (B) = od (B) S::=a(A)(B)ee | S7
b [b
(A) = be S5 | (A)=(A)bec e
>3 < S::=a(A)(B)ee
(A)=(A)bce
6 S8

Lecture 14

15

RUTGERS Another Example - LR(1) states

Simplified, right recursive expression grammar

1: Goal — Expr

2: Expr — Term - Expr
3: Expr — Term

4: Term — Factor * Term
5: Term — Factor

6: Factor — ident

cs415, spring 14

Lecture 14

Symbol | FIRST
Goal | { ident }
Expr | { ident }
Term | {ident}

Factor | { ident }

- {-}
* {*}
ident | {ident}

16

RUTGERSAnother Example

1: Goal — Expr

2: Expr — Term - Expr
3: Expr — Term

4: Term — Factor * Term
5: Term — Factor

6: Factor — ident

Initialization Step

Sy < closure({[6oal - -Expr , EOF]}) =

Symbol | FIRST
Goal | {ident}
Expr | {ident}
Term | {ident}

Factor | { ident }

- {-}
* {*}
ident | { ident}

{ [Expr > * Term - Expr, EOF], [Expr > ¢« Term, EOF],

[Term = ¢ Factor * Term, -], [Term = ¢ Factor, -], [Term > -

Factor * Term, EOF], [Term > ¢ Factor, EOF],

[Factor > c¢ident, *], [Factor = ¢ident, -], [Factor = ¢ident, EOF]}

S<{ 5}

cs415, spring 14

Lecture 14

(building the collection)

17

RUTGERS Example (building the collection)

Sy < closure({[6oal — - Expr , EOF]})
{ [Goal - - Expr , EOF], [Expr — - Term - Expr , EOF],
[Expr — - Term , EOF], [Term — - Factor * Term , EOF],
[Term — - Factor * Term , -], [Term — - Factor , EOF],
[Term — - Factor , -], [Factor — - ident , EOF],
[Factor — - ident , -], [Factor — - ident , *] }

Tteration 1
s; < goto(s,, Expr)
s, < goto(s,, Term)
s; < goto(s,, Factor)
Sy < goto(sy, ident)

cs415, spring 14 Lecture 14 18

RUTGERS Example (building the collection)

Sy < closure({[6oal — - Expr , EOF]})
{ [Goal - - Expr , EOF], [Expr — - Term - Expr , EOF],
[Expr — - Term , EOF], [Term — - Factor * Term , EOF],
[Term — - Factor * Term , -], [Term — - Factor , EOF],
[Term — - Factor , -], [Factor — - ident , EOF],
[Factor — - ident , -], [Factor — - ident , *] }

Iteration 1
s; < goto(s,, Expr) = { [Goal — Expr +, EOF] }

s, < goto(s,, Term) ={ [Expr — Term -+ - Expr , EOF], [Expr — Term -,
EOF] }

S3 < 901'0(5'0 , Facfor) ={[Term — Factor+ * Term , EOF],[Term —
Factor+ * Term , -], [Term — Factor +, EOF], [Term — Factor -, -]}

s, < goto(s,,ident) ={ [Factor — ident *, EOF],[Factor — ident -, -],
[Factor — ident +, *]}

cs415, spring 14 Lecture 14 19

RUTGERS Example (building the collection)

Iteration 1
s; < goto(s,, Expr) ={ [Goal — Expr +, EOF] }

s, < goto(s,, Term) ={ [Expr — Term + - Expr , EOF], [Expr — Term -,
EOF] }

S3 < gofo(.S'O , FaCTOI") ={[Term — Factor+ * Term , EOF],[Term —
Factor+ * Term ,-], [Term — Factor +, EOF], [Term — Factor -, -]}

s, < goto(s,,ident) ={ [Factor — ident +, EOF] [Factor — ident *, -],

[Factor — ident -, *]}

Iteration 2

S5 <= goto(s,, =)
Sg < goto(s;, *)

cs415, spring 14 20

Lecture 14

RUTGERS Example (building the collection)

Iteration 1
s; < goto(s,, Expr) = { [Goal — Expr +, EOF] }
s, < goto(s,, Term) ={ [Expr — Term + - Expr , EOF], [Expr — Term -,
EOF] }
S3 < 901'0(5'0 , Facfor) ={[Term — Factor+ * Term , EOF],[Term —
Factor+ * Term ,-], [Term — Factor +, EOF], [Term — Factor -, -]}

s, < goto(s,,ident) ={ [Factor — ident +, EOF] [Factor — ident *, -],

[Factor — ident -, *]}

Iteration 2

S5 <= goto(s,, =) = { [Expr — Term - - Expr , EOF], [Expr — + Term - Expr , EOF], [Expr
— + Term , EOF), [Term — « Factor * Term ,-],[Term — - Factor ,b-],[Term — ¢ Factor
* Term , EOF], [Term — - Factor , EOF], [Factor — - ident , *], [Factor — - ident , -],

[Factor — - ident , EOF] }

Ss < goto(s;, *) = .. see next page

cs415, spring 14 Lecture 14 21

RUTGERS Example (building the collection)

Iteration 2

S5 <= goto(s,, =) = { [Expr — Term - - Expr ,EOF], [Expr — + Term -
Expr , EOF), [Expr — * Term ,EOF], [Term — « Factor * Term ,-],[Term —
- Factor * Term , EOF], [Term — - Factor ,-], [Term — - Factor , EOF],
[Factor — - ident , *], [Factor — - ident , -], [Factor — - ident , EOF] }

Sg < gOTO(S_; , *) ={[Term — Factor * - Term , EOF], [Term — Factor * -
Term , -], [Term — - Factor * Term , EOF], [Term — - Factor * Term , -],
[Term — - Factor , EOF], [Term — - Factor , -], [Factor — -ident , EOF],
[Factor — -ident, -], [Factor — -ident,b *]}

Tteration 3
s, < goto(ss , Expr) = { [Expr — Term - Expr -, EOF] }

sg < goto(s,, Term) ={ [Term — Factor * Term -, EOF], [Term —
Factor * Term -, -]}

goto(ss, Term) = S,, goto(ss, factor) = s;, goto(Ss, ident) = s,
goto(s,, Factor) = s, goto(S,, ident) = s,

cs415, spring 14 Lecture 14 22

RUTGERS Example (Summary)

cs415

: { [6oal — < Expr ,EOF], [Expr — + Term - Expr , EOF],
[Expr — + Term , EOF], [Term — - Factor * Term , EOF],
[Term — - Factor * Term , -], [Term — - Factor , EOF],
[Term — - Factor , -], [Factor — - ident , EOF],
[Factor — -ident , -], [Factor— - ident, *]}

: { [6oal — Expr -, EOF] }
: { [Expr — Term + - Expr , EOF], [Expr — Term -, EOF] }

:{ [Term — Factor+ * Term , EOF],[Term — Factor+ * Term , -],
[Term — Factor «, EOF], [Term — Factor -, -]}

: { [Factor — ident +, EOF],[Factor — ident -, -], [Factor — ident -, *]}

: {[Expr — Term - - Expr , EOF], [Expr — + Term - Expr , EOF],
[Expr — + Term , EOF], [Term — - Factor * Term , -],
[Term — - Factor ,-],[Term — - Factor * Term , EOF],
[Term — - Factor , EOF], [Factor — - ident , *],
[Factor — - ident , -], [Factor — - ident , EOF] }

, spring 14 Lecture 14

23

RUTGERS Example (Summary)

Sy { [Term — Factor * - Term , EOF], [Term — Factor * - Term , -],
[Term — - Factor * Term , EOF], [Term — - Factor * Term , -],
[Term — - Factor , EOF], [Term — - Factor, -],
[Factor — - ident , EOF], [Factor — -ident , -], [Factor — -ident, *]}

S, { [Expr — Term - Expr *, EOF] }

Sg: { [Term — Factor * Term -, EOF], [Term — Factor * Term +,-]}

cs415, spring 14 24

Lecture 14

RUTGERS

. term
OO
term -

Example

S4

ident

expr
5, ident
ident actor
Sg J—=
term

cs415, spring 14

factor

S5

expr

The State Transition Table

State | Expr | Term | Factor | - | * | Ident
0 1 2 3 4
1
2 5
3 6
4
5 7 2 3 4
6 8 3 4
7
8
25

Lecture 14

RUTGERS Filling in the ACTION and 60TO Tables

The algorithm
Many items
V sefs, €5 generate ho
Vifemi€ s, table entry

if iis[A—p +ad,b] and goto(s,a)=s,ac T
then ACTION[x,a] < “shift k”
else if iis[S'—S ¢ EOF]
then ACTION[x , EOF] < “accept”
else if iis[A—p *,a]
then AcTION[x,a] < “reduce A—p”
VneNT
if goto(s, ,n) = s,
then GoTo[x,n] < k

cs415, spring 14 26

Lecture 14

RUTGERS Next class

Wrap Up Syntax Analysis
Context-Sensitive Analysis

Read EaC: Chapters 3.4,4.1-4.3

cs415, spring 14 27

Lecture 14

