
CS415 Compilers
Syntax Analysis

Bottom-up Parsing

These slides are based on slides copyrighted by
Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

cs415, spring 14 Lecture 14	

Review: LR(k) Shift-reduce Parsing

Shift reduce parsers are easily built and easily understood

A shift-reduce parser has just four actions
•  Shift — next word is shifted onto the stack
•  Reduce — right end of handle is at top of stack

 Locate left end of handle within the stack
 Pop handle off stack & push appropriate lhs

•  Accept — stop parsing & report success
•  Error — call an error reporting/recovery routine

Accept & Error are simple
Shift is just a push and a call to the scanner
Reduce takes |rhs| pops (or 2*|rhs| pops) & 1 push
If handle-finding requires state, put it in the stack ⇒ 2x work

2	

cs415, spring 14 Lecture 14	

 3	

Review - LR(k) items

The LR(1) table construction algorithm uses LR(1) items to
represent valid configurations of an LR(1) parser

An LR(k) item is a pair [P, δ], where
P is a production A→β with a • at some position in the rhs
δ is a lookahead string of length ≤ k (words or EOF)

The • in an item indicates the position of the top of the stack

LR(1):
[A→•βγ,a] means that the input seen so far is consistent with the use

of A →βγ immediately after the symbol on top of the stack
[A →β•γ,a] means that the input seen so far is consistent with the use

of A →βγ at this point in the parse, and that the parser has already
recognized β.

[A →βγ•,a] means that the parser has seen βγ, and that a lookahead
symbol of a is consistent with reducing to A.

cs415, spring 14 Lecture 14	

 4	

High-level overview
1  Build the canonical collection of sets of LR(k) Items, I

a  Begin in an appropriate state, s0
♦ Assume: S’ →S, and S’ is unique start symbol that does

not occur on any RHS of a production (extended CFG -
ECFG)

♦  [S’ →•S,EOF], along with any equivalent items
♦ Derive equivalent items as closure(s0)

b  Repeatedly compute, for each sk, and each X, goto(sk,X)
♦  If the set is not already in the collection, add it
♦  Record all the transitions created by goto()

 This eventually reaches a fixed point

2  Fill in the table from the collection of sets of LR(1) items
The canonical collection completely encodes the

transition diagram for the handle-finding DFA

Review – LR(1) Table Construction

cs415, spring 14 Lecture 14	

 5	

Review - Computing Closures

Closure(s) adds all the items implied by items already in s
•  Any item [A→β•Bδ,a] implies [B→•τ,x] for each production

 with B on the lhs, and each x ∈ FIRST(δa) – for LR(1) item

The algorithm

Closure(s)
 while (s is still changing)
 ∀ items [A → β •Bδ,a] ∈ s
 ∀ productions B → τ ∈ P
 ∀ b ∈ FIRST(δa) // δ might be ε
 if [B → • τ,b] ∉ s
 then add [B→ • τ,b] to s

Ø  Classic fixed-point method
Ø  Halts because s ⊂ ITEMS

Closure “fills out” a state

cs415, spring 14 Lecture 14	

 6	

Review - Computing Gotos

Goto(s,x) computes the state that the parser would reach
if it recognized an x while in state s
•  Goto({ [A→β•Xδ,a] }, X) produces [A→βX•δ,a] (easy part)
•  Should also includes closure([A→βX•δ,a]) (fill out the state)

The algorithm

Goto(s, X)
 new ←Ø
 ∀ items [A→β•Xδ,a] ∈ s
 new ← new ∪ [A→βX•δ,a]
 return closure(new)

Ø  Not a fixed-point method!
Ø  Straightforward computation
Ø  Uses closure ()

Goto() moves forward

cs415, spring 14 Lecture 14	

 7	

Review - Building the Canonical Collection

Start from s0 = closure([S’→S,EOF])
Repeatedly construct new states, until all are found

The algorithm
cc0 ← closure ([S’→ •S, EOF])
CC ← { cc0 }
while (new sets are still being added to CC)
 for each unmarked set ccj ∈ CC
 mark ccj as processed
 for each x following a • in an item in ccj
 temp ← goto(ccj, x)
 if temp ∉ CC
 then CC ← CC ∪ { temp }
 record transitions from ccj to temp on x

Ø  Fixed-point
 computation
 (worklist version)
Ø  Loop adds to CC
Ø  CC ⊆ 2ITEMS,
 so CC is finite

cs415, spring 14

One Example

Lecture 14	

 8	

cs415, spring 14

One Example

Lecture 14	

 9	

cs415, spring 14

One Example

Lecture 14	

 10	

cs415, spring 14

One Example

Lecture 14	

 11	

cs415, spring 14

One Example

Lecture 14	

 12	

cs415, spring 14

One Example

Lecture 14	

 13	

cs415, spring 14

One Example

Lecture 14	

 14	

cs415, spring 14

One Example – LR(0) states

Lecture 14	

 15	

cs415, spring 14 Lecture 14	

 16	

Another Example – LR(1) states

Simplified, right recursive expression grammar

1: Goal → Expr
2: Expr → Term – Expr
3: Expr → Term
4: Term → Factor * Term
5: Term → Factor
6: Factor → ident

Symbol FIRST
Goal { ident }
Expr { ident }
Term { ident }

Factor { ident }
– { – }
* { * }

ident { ident }

cs415, spring 14 Lecture 14	

 17	

Another Example (building the collection)

Initialization Step

s0 ← closure({ [Goal → •Expr , EOF] }) =
{ [Expr à • Term – Expr, EOF], [Expr à • Term, EOF],
[Term à • Factor * Term, -], [Term à • Factor, -], [Term à •

Factor * Term, EOF], [Term à • Factor, EOF],
[Factor à •ident, *], [Factor à •ident, -], [Factor à •ident, EOF]}

S ← { S0 }

1: Goal → Expr
2: Expr → Term – Expr
3: Expr → Term
4: Term → Factor * Term
5: Term → Factor
6: Factor → ident

Symbol FIRST
Goal { ident }
Expr { ident }
Term { ident }

Factor { ident }
– { – }
* { * }

ident { ident }

cs415, spring 14 Lecture 14	

 18	

Example (building the collection)

Iteration 1
s1 ← goto(s0 , Expr)
s2 ← goto(s0 , Term)
s3 ← goto(s0 , Factor)
s4 ← goto(s0 , ident)

s0 ← closure({ [Goal → •Expr , EOF] })
{ [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor → • ident , *] }

cs415, spring 14 Lecture 14	

 19	

Example (building the collection)

Iteration 1
s1 ← goto(s0 , Expr) = { [Goal → Expr •, EOF] }
s2 ← goto(s0 , Term) = { [Expr → Term • – Expr , EOF], [Expr → Term •,

EOF] }

 s3 ← goto(s0 , Factor) = { [Term → Factor • * Term , EOF],[Term →

 Factor • * Term , –], [Term → Factor •, EOF], [Term → Factor •, –] }

 s4 ← goto(s0 , ident) = { [Factor → ident •, EOF],[Factor → ident •, –],

 [Factor → ident •, *] }

s0 ← closure({ [Goal → •Expr , EOF] })
{ [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor → • ident , *] }

cs415, spring 14 Lecture 14	

 20	

Iteration 1
s1 ← goto(s0 , Expr) = { [Goal → Expr •, EOF] }
s2 ← goto(s0 , Term) = { [Expr → Term • – Expr , EOF], [Expr → Term •,

EOF] }

 s3 ← goto(s0 , Factor) = { [Term → Factor • * Term , EOF],[Term →

 Factor • * Term , –], [Term → Factor •, EOF], [Term → Factor •, –] }

 s4 ← goto(s0 , ident) = { [Factor → ident •, EOF],[Factor → ident •, –],

 [Factor → ident •, *] }

Iteration 2
s5 ← goto(s2 , –)
s6 ← goto(s3 , *)

Example (building the collection)

cs415, spring 14 Lecture 14	

 21	

Iteration 1
s1 ← goto(s0 , Expr) = { [Goal → Expr •, EOF] }
s2 ← goto(s0 , Term) = { [Expr → Term • – Expr , EOF], [Expr → Term •,

EOF] }

 s3 ← goto(s0 , Factor) = { [Term → Factor • * Term , EOF],[Term →

 Factor • * Term , –], [Term → Factor •, EOF], [Term → Factor •, –] }

 s4 ← goto(s0 , ident) = { [Factor → ident •, EOF],[Factor → ident •, –],

 [Factor → ident •, *] }

Iteration 2

s5 ← goto(s2 , –) = { [Expr → Term – • Expr , EOF], [Expr → • Term – Expr , EOF], [Expr
→ • Term , EOF], [Term → • Factor * Term , –], [Term → • Factor , –], [Term → • Factor
* Term , EOF], [Term → • Factor , EOF], [Factor → • ident , *], [Factor → • ident , –],
[Factor → • ident , EOF] }

s6 ← goto(s3 , *) = … see next page

Example (building the collection)

cs415, spring 14 Lecture 14	

 22	

Iteration 2

s6 ← goto(s3 , *) = { [Term → Factor * • Term , EOF], [Term → Factor * •
Term , –], [Term → • Factor * Term , EOF], [Term → • Factor * Term , –],
[Term → • Factor , EOF], [Term → • Factor , –], [Factor → • ident , EOF],
[Factor → • ident , –], [Factor → • ident , *] }

Example (building the collection)

s5 ← goto(s2 , –) = { [Expr → Term – • Expr , EOF], [Expr → • Term –
Expr , EOF], [Expr → • Term , EOF], [Term → • Factor * Term , –], [Term →
• Factor * Term , EOF], [Term → • Factor , –], [Term → • Factor , EOF],
[Factor → • ident , *], [Factor → • ident , –], [Factor → • ident , EOF] }

Iteration 3
s7 ← goto(s5 , Expr) = { [Expr → Term – Expr •, EOF] }
s8 ← goto(s6 , Term) = { [Term → Factor * Term •, EOF], [Term →

Factor * Term •, –] }
goto(s5, Term) = S2, goto(s5, factor) = s3, goto(S5, ident) = s4

goto(s6, Factor) = s3, goto(S6, ident) = s4

cs415, spring 14 Lecture 14	

 23	

Example (Summary)

S0 : { [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor→ • ident, *] }
S1 : { [Goal → Expr •, EOF] }
S2 : { [Expr → Term • – Expr , EOF], [Expr → Term •, EOF] }

S3 : { [Term → Factor • * Term , EOF],[Term → Factor • * Term , –],
 [Term → Factor •, EOF], [Term → Factor •, –] }

S4 : { [Factor → ident •, EOF],[Factor → ident •, –], [Factor → ident •, *] }

S5 : { [Expr → Term – • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , –],
 [Term → • Factor , –], [Term → • Factor * Term , EOF],
 [Term → • Factor , EOF], [Factor → • ident , *],
 [Factor → • ident , –], [Factor → • ident , EOF] }

cs415, spring 14 Lecture 14	

 24	

Example (Summary)

S6 : { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –],
 [Term → • Factor * Term , EOF], [Term → • Factor * Term , –],
 [Term → • Factor , EOF], [Term → • Factor , –],
 [Factor → • ident , EOF], [Factor → • ident , –], [Factor → • ident , *] }

S7: { [Expr → Term – Expr •, EOF] }

S8 : { [Term → Factor * Term •, EOF], [Term → Factor * Term •, –] }

cs415, spring 14 Lecture 14	

 25	

Example (DFA)

s0 s4 s5

s1 s2 s7

s6 s3

s8

ident

term

factor

-

term

expr
ident

factor

expr

*

factor
term

ident
State Expr Term Factor - * Ident

0 1 2 3 4

1

2 5

3 6

4

5 7 2 3 4

6 8 3 4

7

8

The State Transition Table

cs415, spring 14 Lecture 14	

 26	

Filling in the ACTION and GOTO Tables

The algorithm

∀ set sx ∈ S
 ∀ item i ∈ sx
 if i is [A→β •ad,b] and goto(sx,a) = sk, a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x , EOF] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”
 ∀ n ∈ NT
 if goto(sx ,n) = sk
 then GOTO[x,n] ← k

Many items
generate no
table entry

cs415, spring 14 Lecture 14	

 27	

Wrap Up Syntax Analysis
Context-Sensitive Analysis

Read EaC: Chapters 3.4, 4.1 – 4.3

Next class

