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Review: LR(k) Shift-reduce Parsing 

Shift reduce parsers are easily built and easily understood 

A shift-reduce parser has just four actions 
•  Shift — next word is shifted onto the stack 
•  Reduce — right end of handle is at top of stack 

    Locate left end of handle within the stack 
    Pop handle off stack & push appropriate lhs 

•  Accept — stop parsing & report success 
•  Error  — call an error reporting/recovery routine 

Accept & Error are simple 
Shift is just a push and a call to the scanner 
Reduce takes |rhs| pops (or 2*|rhs| pops) & 1 push 
If handle-finding requires state, put it in the stack ⇒ 2x work 
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Review - LR(k) items 

The LR(1) table construction algorithm uses LR(1) items to  
represent valid configurations of an LR(1) parser 

An LR(k) item is a pair [P, δ], where 
P is a production A→β with a • at some position in the rhs 
δ is a lookahead string of length ≤ k                        (words or EOF) 

The • in an item indicates the position of the top of the stack 
 
LR(1):  
[A→•βγ,a] means that the input seen so far is consistent with the use 

of A →βγ immediately after the symbol on top of the stack 
[A →β•γ,a] means that the input seen so far is consistent with the use 

of A →βγ at this point in the parse, and that the parser has already 
recognized β. 

[A →βγ•,a] means that the parser has seen βγ, and that a lookahead 
symbol of a is consistent with reducing to A. 
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High-level overview 
1  Build the canonical collection of sets of LR(k) Items, I  

a  Begin in an appropriate state, s0 
♦ Assume: S’ →S, and S’  is unique start symbol  that does 

not occur on any RHS of a production (extended CFG - 
ECFG)  

♦  [S’ →•S,EOF], along with any equivalent items 
♦ Derive equivalent items as closure( s0 ) 

b  Repeatedly compute, for each sk, and each X, goto(sk,X) 
♦  If the set is not already in the collection, add it 
♦  Record all the transitions created by goto( ) 

     This eventually reaches a fixed point 

2  Fill in the table from the collection of sets of LR(1) items 
The canonical collection completely encodes the  

transition diagram for the handle-finding DFA 

Review – LR(1) Table Construction 
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Review - Computing Closures 

Closure(s)  adds all the items implied by items already in s 
•  Any item [A→β•Bδ,a] implies [B→•τ,x] for each production  

 with B on the lhs,  and each x ∈ FIRST(δa) – for LR(1) item 

The algorithm 

Closure( s ) 
  while ( s is still changing ) 
     ∀ items [A → β •Bδ,a] ∈ s 
        ∀ productions  B → τ ∈ P 
          ∀ b  ∈ FIRST(δa) // δ might be ε 
            if  [B → • τ,b] ∉ s 
                then add [B→ • τ,b] to s 

Ø  Classic fixed-point method 
Ø  Halts because s ⊂ ITEMS 

Closure “fills out” a state 
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Review - Computing Gotos 

Goto(s,x) computes the state that the parser would reach  
if it recognized an x  while in state s 
•  Goto( { [A→β•Xδ,a] }, X ) produces [A→βX•δ,a]       (easy part) 
•  Should also includes closure( [A→βX•δ,a] )   (fill out the state) 

The algorithm 

Goto( s, X ) 
    new ←Ø 
     ∀ items [A→β•Xδ,a] ∈ s 
        new ← new ∪ [A→βX•δ,a] 
     return closure(new) 

Ø  Not a fixed-point method! 
Ø  Straightforward computation 
Ø  Uses closure ( ) 

Goto() moves forward 
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Review - Building the Canonical Collection 

Start from s0 = closure( [S’→S,EOF ] ) 
Repeatedly construct new states, until all are found 

The algorithm 
cc0 ←  closure ( [S’→ •S, EOF] ) 
CC  ←  { cc0  } 
while ( new sets are still being added to CC) 
   for each unmarked set ccj ∈ CC 
       mark ccj as processed 
       for each x following a •  in an item in ccj  
            temp ←  goto(ccj, x) 
             if temp ∉  CC 
                 then CC ←  CC ∪  { temp } 
             record transitions from ccj to temp on x 

Ø  Fixed-point  
      computation   
      (worklist version) 
Ø  Loop adds to CC 
Ø  CC ⊆ 2ITEMS,  
    so CC is finite 
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Another Example – LR(1) states   

Simplified, right recursive expression grammar 

1: Goal → Expr 
2: Expr → Term – Expr 
3: Expr → Term 
4: Term → Factor * Term  
5: Term → Factor 
6: Factor → ident 

Symbol FIRST
Goal { ident }
Expr { ident }
Term { ident }

Factor { ident }
– { – }
* { * }

ident { ident }



cs415, spring 14 Lecture 14	

 17	



Another Example     (building the collection) 

Initialization Step 

s0 ← closure( { [Goal → •Expr , EOF] } ) =  
{ [Expr à • Term – Expr, EOF], [Expr à • Term, EOF],  
[Term à • Factor * Term, -], [Term à • Factor, -], [Term à • 

Factor * Term, EOF], [Term à • Factor, EOF],  
[Factor à •ident, *], [Factor à •ident, -], [Factor à •ident, EOF]} 

S ← {  S0 } 

1: Goal → Expr 
2: Expr → Term – Expr 
3: Expr → Term 
4: Term → Factor * Term  
5: Term → Factor 
6: Factor → ident 

Symbol FIRST
Goal { ident }
Expr { ident }
Term { ident }

Factor { ident }
– { – }
* { * }

ident { ident }
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Example    (building the collection) 

Iteration 1 
s1  ← goto(s0 , Expr) 
s2  ← goto(s0 , Term) 
s3 ← goto(s0 , Factor) 
s4  ← goto(s0 , ident ) 

s0 ← closure( { [Goal → •Expr , EOF] } ) 
{  [Goal →  • Expr , EOF], [Expr →  • Term – Expr , EOF],  
   [Expr →  • Term , EOF], [Term →  • Factor * Term , EOF],  
   [Term →  • Factor * Term , –], [Term →  • Factor , EOF],  
   [Term →  • Factor , –], [Factor →  • ident , EOF],    
   [Factor →  • ident , –], [Factor →  • ident , *]  } 
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Example    (building the collection) 

Iteration 1 
s1  ← goto(s0 , Expr) = { [Goal → Expr •, EOF] } 
s2  ← goto(s0 , Term) = { [Expr → Term • – Expr , EOF], [Expr → Term •, 

EOF] } 

      s3 ← goto(s0 , Factor) = { [Term → Factor • * Term , EOF],[Term →         

            Factor • * Term , –], [Term → Factor •, EOF], [Term → Factor •, –] } 

        s4  ← goto(s0 , ident ) = { [Factor → ident •, EOF],[Factor → ident •, –],  

            [Factor → ident •, *] } 

 

 

 
 
 
 
 

s0 ← closure( { [Goal → •Expr , EOF] } ) 
{  [Goal →  • Expr , EOF], [Expr →  • Term – Expr , EOF],  
   [Expr →  • Term , EOF], [Term →  • Factor * Term , EOF],  
   [Term →  • Factor * Term , –], [Term →  • Factor , EOF],  
   [Term →  • Factor , –], [Factor →  • ident , EOF],    
   [Factor →  • ident , –], [Factor →  • ident , *]  } 
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Iteration 1 
s1  ← goto(s0 , Expr) = { [Goal → Expr •, EOF] } 
s2  ← goto(s0 , Term) = { [Expr → Term • – Expr , EOF], [Expr → Term •, 

EOF] } 

      s3 ← goto(s0 , Factor) = { [Term → Factor • * Term , EOF],[Term →         

            Factor • * Term , –], [Term → Factor •, EOF], [Term → Factor •, –] } 

        s4  ← goto(s0 , ident ) = { [Factor → ident •, EOF],[Factor → ident •, –],  

            [Factor → ident •, *] } 

 

 

 
 
 
 
 

Iteration 2 
s5 ← goto(s2 , – ) 
s6 ← goto(s3 , * ) 

Example    (building the collection) 
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Iteration 1 
s1  ← goto(s0 , Expr) = { [Goal → Expr •, EOF] } 
s2  ← goto(s0 , Term) = { [Expr → Term • – Expr , EOF], [Expr → Term •, 

EOF] } 

      s3 ← goto(s0 , Factor) = { [Term → Factor • * Term , EOF],[Term →         

            Factor • * Term , –], [Term → Factor •, EOF], [Term → Factor •, –] } 

        s4  ← goto(s0 , ident ) = { [Factor → ident •, EOF],[Factor → ident •, –],  

            [Factor → ident •, *] } 

 

 

 
 
 
 
 

Iteration 2 

s5 ← goto(s2 , – ) = { [Expr → Term –  • Expr , EOF], [Expr  → • Term – Expr , EOF], [Expr 
→ • Term , EOF],  [Term → • Factor * Term , –], [Term  → • Factor , –], [Term  → • Factor 
* Term , EOF], [Term → • Factor , EOF], [Factor → • ident , *],  [Factor → • ident , –], 
[Factor → • ident , EOF] }   

s6 ← goto(s3 , * ) = … see next page 

Example    (building the collection) 
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Iteration 2   

 

 

s6 ← goto(s3 , * ) = { [Term → Factor * • Term , EOF], [Term → Factor * • 
Term , –], [Term →  • Factor * Term , EOF], [Term →  • Factor * Term , –], 
[Term →  • Factor , EOF], [Term →  • Factor , –], [Factor →  • ident , EOF], 
[Factor →  • ident , –], [Factor →  • ident , *] } 

 

Example    (building the collection) 

s5 ← goto(s2 , – ) = { [Expr → Term –  • Expr , EOF], [Expr  → • Term – 
Expr , EOF], [Expr → • Term , EOF], [Term → • Factor * Term , –], [Term  → 
• Factor * Term , EOF], [Term  → • Factor , –], [Term → • Factor , EOF], 
[Factor → • ident , *],  [Factor → • ident , –], [Factor → • ident , EOF] } 

Iteration 3 
s7 ← goto(s5 , Expr ) = { [Expr → Term – Expr •, EOF] } 
s8 ← goto(s6 , Term ) = { [Term → Factor * Term •, EOF], [Term → 

Factor * Term •, –] } 
goto(s5, Term) = S2, goto(s5, factor) = s3, goto(S5, ident) = s4 

goto(s6, Factor) = s3, goto(S6, ident) = s4 
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Example    (Summary) 

S0 : { [Goal  → • Expr , EOF], [Expr → • Term – Expr , EOF],  
         [Expr → • Term , EOF], [Term → • Factor * Term , EOF],  
         [Term → • Factor * Term , –], [Term → • Factor , EOF],  
         [Term → • Factor , –], [Factor → • ident , EOF],  
         [Factor  → • ident , –], [Factor→ • ident, *] } 
S1 : { [Goal → Expr •, EOF] } 
S2  : { [Expr → Term • – Expr , EOF], [Expr → Term •, EOF] } 

S3 : { [Term → Factor • * Term , EOF],[Term → Factor • * Term , –],  
        [Term → Factor •, EOF], [Term → Factor •, –] } 

S4 : { [Factor → ident •, EOF],[Factor → ident •, –], [Factor → ident •, *] } 

S5 : { [Expr → Term –  • Expr , EOF], [Expr  → • Term – Expr , EOF],  
         [Expr → • Term , EOF], [Term → • Factor * Term , –],  
         [Term  → • Factor , –], [Term  → • Factor * Term , EOF],  
         [Term → • Factor , EOF], [Factor → • ident , *],  
         [Factor → • ident , –], [Factor → • ident , EOF] } 
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Example   (Summary) 

S6 : { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –],  
    [Term →  • Factor * Term , EOF], [Term →  • Factor * Term , –],  
    [Term →  • Factor , EOF], [Term →  • Factor , –],  
    [Factor →  • ident , EOF], [Factor →  • ident , –], [Factor →  • ident , *] } 

S7: { [Expr → Term – Expr •, EOF] } 

S8 : { [Term → Factor * Term •, EOF], [Term → Factor * Term •, –] } 
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Example                                (DFA) 

s0 s4 s5 

s1 s2 s7 

s6 s3 

s8 

ident 

term 

factor 

- 

term 

expr 
ident 

factor 

expr 

* 

factor 
term 

ident 
State Expr Term Factor - * Ident

0 1 2 3 4

1

2 5

3 6

4

5 7 2 3 4

6 8 3 4

7

8

The State Transition Table 
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Filling in the ACTION and GOTO Tables 

The algorithm 
 

∀ set sx ∈ S  
    ∀ item i ∈ sx 
        if  i is [A→β •ad,b] and goto(sx,a) = sk, a ∈ T 
             then ACTION[x,a] ← “shift k” 
        else if  i is [S’→S •,EOF] 
             then ACTION[x , EOF] ← “accept” 
        else if  i is [A→β •,a] 
              then ACTION[x,a] ← “reduce A→β” 
    ∀ n ∈ NT 
        if  goto(sx ,n) = sk 
            then GOTO[x,n] ← k 

Many items 
generate no 
table entry 
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Wrap Up Syntax Analysis 
Context-Sensitive Analysis 
 
Read EaC: Chapters 3.4, 4.1 – 4.3  
 
 
 
 

Next class 


