
Informed search for plans

Some figures are derived from the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, available at

http://ai.berkeley.edu.

http://ai.berkeley.edu/

Goal information

The algorithms we discussed until now (depth first, breadth first, uniform cost search)
assumed that the only information we have about the goal is a binary function

that is, we will recognize the goal, when we found it.

Goal information (cont'd)

How do we go from Orlando to San Francisco?

It is to the west from us.

So we probably have to go mostly to west

But taking every action "to west" does not take you there

In practice, we might have more information about the goal

But this information can be vague, incomplete, uncertain, probabilistic or wrong

Challenge: how do we integrate additional information about the goal into our search

for a plan.

Heuristics

A function that estimates how far is a state from the goal

It is a way to encapsulate knowledge about the goal

We can assume that if then

Examples of heuristics

The "as-the-crow-flies" distance to San Francisco

The number of horcruxes remaining

The number of items remaining on the original side of the river

In general, we use the term heuristics when we are talking about a solution that is not
formal, but it relies on trial and error, or some kind of human knowledge or intuition. It is the

same greek root as Archimedes' heureka!

Greedy search

Strategy: expand the node with the lowest heuristic value
Make the fringe a priority queue ordered by

Where h(n) is the heuristic of the state marking the node

Pick the smallest

Sometimes also called as best-first search

How good it is? Depends on the quality of the heuristics:

If the heuristics gets the ordering right (not necessarily the values) - you go
straight to the solution!

If the heuristic is wrong, you can end up like in DFS, or worse

The quality of the heuristics reflects our understanding of the problem.

Properties of greedy search

Optimal: no, the heuristics might lead you on a non-optimal path or to the non-optimal
goal.

Space and time complexity: can range anything between BFS and DFS.
If the heuristics is provably good, it can be better than any of those.

Insight: DFS and BFS are heuristic search with a particular type of heuristic

Can you get stuck?
No, if you are following the standard tree search algorithm - you try best first, but

will explore the other ones later.

But you can end up endlessly deep, like in DFS.

A* search

Combines Uniform Cost Search and Greedy
Uniform cost orders by path cost aka backward cost

Greedy orders by estimated goal proximity aka estimated forward cost

A* orders by sum

When should A* terminate

Don't stop when we add the goal to the fringe!

The fringe is not FIFO - it is possible that the goal we added is not the one that
will come out first!

Only stop when we take out a node labeled with a goal from the fringe

Is A* optimal?

Not in this case!

The heuristic misled us!

But if we need a perfect heuristic,

why do we bother with A*

Turns out we don't need the
heuristic to be perfect, we only

need it to be optimistic

Admissible heuristics

Inadmissible (pessimistic) heuristics break optimality by trapping good plans far down
on the fringe

Admissible (optimistic) heuristics never overweigh true costs:

where is the true cost to a nearest goal.

A* properties

Uniform cost expands equally in all directions

Greedy expands sharply towards what it thinks is the goal

A* expands mainly towards the goal but also other directions

Creating admissible heuristics

The critical challenge in making A* work for you is to come up with a good admissible
heuristic

Trivial admissible heuristic:

Reverts A* to uniform cost search

Perfect heuristic

Go straight to the goal

There is a partial ordering between admissible heuristics (dominance)

The max of admissible heuristics is admissible

Admisible heuristics from relaxed problems

How do we get good admissible heuristics?

One way: try to solve a relaxed problem
A problem which is in some way easier than the original one

One easy way to create a relaxed problem: add new actions
Imagine that the agent is a superhero!!!

Eg. ability to fly - Euclidean distance

Eg. ability to pass through walls - Manhattan distance

Eg. ability to destroy horcruxes from distance - horcrux count

Extra work in tree search

Until now, all the algorithms were variations of tree search

You can have many plans in the tree labeled with the same node

Can lead to (exponentially more) extra work

Graph search

Idea: never expand a state twice

Augment the tree search algorithm with a closed set the set of expanded states

Before expanding a node, check if the state was expanded before

Yes: skip it

No: expand it and add it to the closed set

The closed set only used for membership check: implement as a hashset.

Graph search properties

Any tree search algorithms can be converted to graph search

Graph search obviously avoids some expansions

Does it change the properties?
Space complexity: increased, due to the closed set

Completeness: whatever states had been expanded before, they will be
expanded now as well, so the algorithm retains completeness

Optimality?

A* graph search
optimality

Admissible heuristic not sufficient

Heuristics also needs to be
consistent

Consistent heuristics

Admissibility: heuristic cost actual cost to goal
 actual cost from A to G

Consistence: heuristic "arc" cost actual cost for each arc
 cost(A to C)

Consequences of consistency:

The f value along a path never decreases

A* graph search is optimal

How do we find consistent heuristics?

Relaxed problems will be consistent!!!

Overall perspective on A*

A* is the perfect algorithm for combining systematic search with background

knowledge and intuition

Very extensive set of applications

Pathing, routing problems

Resource planning problems

Video games

Robot motion planning

Limits on A*

A* does not handle well:

Replanning
There several extensions that try to avoid recalculating from scratch

Planning in very large (or even infinite) state spaces

Probabilistic algorithms, such as Rapidly Exploring Random Trees - RRT

A* had also been previously also used for

Language analysis

Machine translation

Speech recognition

As of 2024, these problems are usually treated with different approaches.

State of the art in planning

Planning is a significant problem in business, manufacturing, transportation etc.

There is a significant subfield of computer science that deals with finding specialized

planning solutions.

Usually, it deals with a deeper analysis of the effect of actions (eg. pre-conditions,

post-conditions)

Research community centered on International Conference on Automated Planning
and Scheduling (ICAPS).

Hosts the International Planning Competitions, ongoing efforts to find the best
algorithms

