
Deep reinforcement learning
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Approximate Q-learning to Deep RL
Feature based approximation requires us to engineer features

This is not the way we are doing AI in the mid 2020s!
We want to learn the features

So we just replace the feature based approximation with a neural network, and we
are done.
...

It is not that simple!
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Some challenges and our first solutions
Size of the Q-table

our solution was Q-function approximation

Slow convergence due to sparse rewards
our solution was bootstrapping, like in TD-learning

we update the V/Q values not directly in function of rewards but from
previous V/Q values (rather than waiting for final outcomes)

The challenge of getting data without already having the policy
our solution was off-policy learning

Unfortunately, the solutions create a new problem
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The deadly triad
Richard Sutton and Andrew Barto in "Reinforcement Learning: An Introduction."
introduced three components, which, when combined, can lead to instability and
divergence during learning.

1. Function Approximation: to estimate value functions or policies.
It introduces approximation errors that propagate through the learning
process
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The deadly triad (cont'd)

2. Bootstrapping:

Any error in the estimated values is propagated forward in the learning
process. Inaccurate bootstrapped estimates can create a feedback loop of
errors, especially when combined with function approximation.

3. Off-Policy Learning: Learning about one policy (the target policy) while following a
different policy (the behavior policy), as seen in algorithms like Q-learning.

However, off-policy learning is sensitive to discrepancies between the behavior
and target policies, and when combined with function approximation and
bootstrapping, it becomes harder to converge to stable solutions.
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Why the Deadly Triad Causes Instability
When these three components are combined, they create a situation where errors can
accumulate and amplify, often leading to unstable or divergent learning:

Error Propagation: Errors in function approximation get propagated through
bootstrapping, causing inaccurate estimates to further distort learning.

Divergence: In off-policy learning, the difference between the behavior and target
policy introduces additional variance. When this variance combines with
approximation errors and bootstrapped updates, it can push the value estimates
away from convergence.

Overestimation Bias: In Q-learning, errors in the approximation often lead to
overestimation of Q-values. This bias, especially in complex environments with
function approximation, can compound over time.

6



Solutions and Mitigations
Several techniques have been developed to mitigate the effects of the deadly triad:

1. Experience Replay: Stores past experiences and samples them randomly to break
the correlation between sequential data, stabilizing learning in off-policy methods.

2. Target Networks: In DQN, a separate target network is used to provide stable
target values during learning, reducing oscillations caused by bootstrapping with
function approximation.

3. Double Q-learning: Uses two Q-value estimates to reduce overestimation bias and
mitigate issues caused by bootstrapping.

4. Actor-Critic Methods: In actor-critic approaches, the actor (policy) and critic (value
function) are separate, reducing the need for off-policy bootstrapping in some
cases.
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Q-learning with deep neural network function
approx.

Represent the Q value by a Q-network with weights 

Optimal Q-values should verify the Bellman equation:

Treat the right hand as a target, and try to minimize the mean squared error loss
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Q-learning with deep neural network function
approx.

Ok, so minimize the MSE loss  and we are done!

It converges to  when using table lookup representation

But diverges when using neural networks due to
Correlations between samples

Non-stationary targets

9



DQN
DQN is an algorithm that solves both problems!

Famous paper shows superhuman performance on a number of Atari games

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... &
Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529-533. DOI:10.1038/nature14236 (32000+ citations)

https://www.youtube.com/watch?v=V1eYniJ0Rnk
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DQN experience replay
DQN uses experience replay and fixed Q-targets

Store transition  in replay memory 

Sample a random mini-batch of transitions  from 

Compute Q-learning targets with respect to old, fixed parameters 

Optimize the mean squared error between the Q-network and Q-learning targets

Use stochastic gradient descent
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How was this applied for Atari
Input observation is stack of raw pixels from the last 4 frames

Output is  for 18 joystick / button positions
Reward is change of score for that step
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Thoughts about the
performance

Superhuman performance on
many of the games.

Number of updates is usually in
the range of 10s of millions

Much less efficient learning
than humans!

And what is going on with
Montezuma's revenge?
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Montezuma's revenge
You need to get the key before
you open the door!
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Challenges in Montezuma's revenge
Challenging exploration:

Epsilon greedy or random exploration is unhelpful: it is unlikely that you will
pick up the key and then go to the door through random movement

Long distance between action and reward
A key picked up might only be used several rooms later

Costly negative rewards
Falling or touching an enemy lead to loss of life and starting over.
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Deep RL developments
Many new algorithms had been developed to try to improve on DQN

Double Q-learning for fighting maximization bias

Prioritized experience replay
Dueling Q-networks

Stochastic nets for exploration instead of -greedy
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Q-maximization bias
In general, Q-learning tends to overestimate the Q-values, even if ultimately
converges to the right value

Consider a state for which the correct Q value for all actions is Q(s,a)=0
Our estimates are uncertain, some are negative and some are positive

In standard Q-learning, the update rule is as follows:

The use of  introduces a bias because it's more likely to pick a Q-

value that has been overestimated. This overestimation can accumulate over time,
leading to suboptimal policies.
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Double Q-learning
Reduces the overestimation bias

Maintaining two separate Q-value estimates, referred to as  and .
The algorithm alternates between updating  and  as follows:

When updating :
The action  that maximizes  in the next state  is chosen:

.

However, the target value is calculated using  instead of :

When updating , do the reverse.
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Benefits of Double Q-learning
Reduced Overestimation Bias: By decoupling the action selection and evaluation
processes, Double Q-learning leads to more accurate Q-value estimates.

Improved Stability and Convergence: Reducing overestimation makes learning
more stable, especially in environments with noisy rewards or complex state-action
spaces.

Better Performance in Practice: Double Q-learning has been shown to perform
better than traditional Q-learning in many settings, especially when combined with
function approximators (like neural networks) in environments with high variance.
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Double Q-learning in Deep Reinforcement Learning
(Double DQN)
In deep reinforcement learning, Double Q-learning is applied in Double Deep Q-
Networks (Double DQN). Here, two neural networks are maintained:

1. A main Q-network for action selection.

2. A target Q-network for action evaluation.

Double DQN addresses overestimation bias in the same way as Double Q-learning but
adapts it for use with deep neural networks, significantly improving stability and
performance.
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Deep RL summary
There are more things to discuss that we cannot cover in this class.

Policy gradients (eg. Proximal Policy Optimization PPO)
Used in reinforcement learning from human feedback, one of the algorithms
used in LLM alignment

Actor-critic algorithms (eg. Soft Actor Critic SAC)
Used for continuous control tasks in robotics. Significant successes in
simulation.

Many research challenges remain.
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