Imitation learning

1

Imitation learning vs. planning vs. reinforcement learning

- Planning:
 - $\circ\;$ We have a goal state s_n
 - $\,\circ\,$ We know the model T(s,a,s')
 - $\circ\,$ We create a plan of actions $a_1,a_2,a_3,\ldots a_n$
- Reinforcement learning:
 - $\circ~$ We can get samples of s,a,r,s' either from our own experience or observing somebody else
 - $\circ\,$ We are searching for a policy $\pi^*(s)$ that maximizes utility (roughly, rewards received)

Imitation learning vs. planning vs. reinforcement learning

- Imitation learning
 - We have **demonstrations** of the form:
 - $s_1, a_1, s_2, a_2, s_3, a_3 \dots$
 - $\circ~$ We don't have rewards. We don't necessarily know the goal state.
 - We vaguely assume that whomever did the demonstrations mostly knew what they were doing
 - But we do not assume that they were optimal.
 - $\circ\,$ We are searching for a policy $\pi^*(s)$ that has the same goals of the demonstrator.

NOTE: This is my (Lotzi's) definition.

What people believe about imitation learning

- Just replay $a_1, a_2, a_3 \dots$
- That is not learning, that is replay.
- Might be useful in high precision industrial robotics
 - e.g. paint all the cars the same way.
 - $\circ~$ it has nothing to do with AI
- The term "learning from demonstrations" might be more accurate, but it is used less often.
- The challenge: it is unlikely that you will see exactly the states in the demonstrations again. And even if you see them, the randomness in the transition function might land you in a different state afterwards!
 - Replay won't work!

Two approaches to imitation learning

• Behavior cloning

- $\circ\,$ Assume that the demos were done by an agent using an unknown policy $\pi_{demo}(s)$
- $\circ\,$ Learn a policy $\pipprox\pi_{demo}$ using the demonstrations as training data.

• Inverse reinforcement learning

- $^\circ\,$ Assume that the demos were done by an agent pursuing a certain set of unknown rewards $r_{demo}(s,a,s')$
- $\circ~$ Reverse engineer a $r(s,a,s')pprox r_{demo}(s,a,s')$
- $\circ~$ Use RL to find a π that maximizes the rewards in r

Behavior cloning

Behavior cloning

- Assume an underlying MDP $M = \{S, A, T, R, \gamma\}$. Unknown T and R.
- Let us assume that the expert has a (nearly) optimal policy π^*
- We will denote with d^{π} the *state visitation frequency* implied by a policy π
- Demonstrations are samples drawn from the state visitation frequency of the optimal policy

$$\mathcal{D}=(s^*_i,a^*_i)_{i=1}^M\sim d^{\pi^*}$$

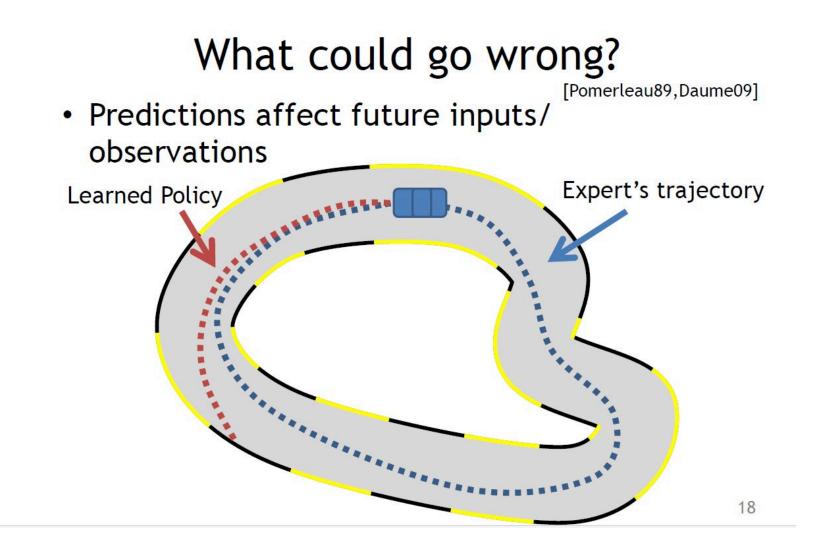
• Goal is to learn a policy π_{BC} that is as good as the expert π^*

Behavior cloning (cont'd)

- Let us assume that we are choosing our policies from a certain parameterized policy class $\pi_{BC}\in \Pi$
 - $\circ\,$ These days, this usually means that it is a neural network with weights ${f w}$
- Behavior cloning is essentially supervised learning

$$\hat{\pi} = arg\min_{\pi\in\Pi}\sum_{i=1}^M \mathcal{L}(\pi,s_i^*,a_i^*)$$

- There are many choices the loss function L can take:
 - $\circ~$ Negative log-likelihood $\mathcal{L}(\pi,s^*_i,a^*_i)=-ln~\pi(a^*|s^*)$
 - $\circ~$ Square loss (if a is a continuous signal like steering angle) $\mathcal{L}(\pi,s_i^*,a_i^*)=||~\pi(s)-a^*||_2^2$



Distribution shift

- Here is the general argument
 - $\,\circ\,$ Assume perfect demonstrations which tell you what to do in a set of states s
 - eg. keeping the car in the middle of the road
 - $\circ\,$ Some unexpected thing will happen, which gets you into a state s' from which you don't have information in demonstrations
 - eg. drifted from the middle of the road
 - $\circ~$ The farther you are from the demonstrations, the worse your policy
 - so, you will wear more and more off the road

Making behavior cloning work

- Many of these arguments turned out to have too many simplifying assumptions.
 - The problem of distribution shift was presented as a fundamental problem that dooms BC in general cases
- But people learn from demonstrations!
- Couple of ways forward:
 - Maybe the imitation happens in a favorable latent space
 - Maybe you also have imperfect demonstrations and demonstrations of self-correction
 - Maybe there is an underlying policy of getting back to known states

Inverse reinforcement learning

Inverse reinforcement learning

- Assume an underlying MDP $M = \{S, A, T, R, \gamma\}$. Unknown R. Usually, known T.
- Let us assume that the expert has a (nearly) optimal policy π^*
- Demonstrations are samples drawn from the state visitation frequency of the optimal policy

$$\mathcal{D}=(s^*_i,a^*_i)_{i=1}^M\sim d^{\pi^*}$$

• The setting is almost the same as behavior cloning.

Inverse RL

- We assume that the expert is optimizing some kind of reward ${m R}$
- Our goal is to reverse engineer the reward
- Then we can create a policy π_{IRL} by solving the MDP
- Possible benefits (over behavior cloning)
 - The rewards seem to better capture the meaning of the action (compared to cloning the behavior)
 - We can, possibly, transfer the reward structure to a completely different MDP, with different transitions etc.
 - We can perform better than the expert if we manage to optimize better for the same reward!

Inverse RL

- Challenge: the actions of an expert do not uniquely define the rewards it follows
 - Eg. scaling...
 - But those different reward functions might generate different policies...
- One possible solution: maximum entropy IRL
 - From all the reward functions that explain the observed behaviors, choose the one that maximizes the entropy over the distribution of possible behaviors
 - Assume an expert that is as random as possible given the observed data
 - The goal is to avoid introducing additional biases, or to overfit to the training data.

Video time:

- Autonomous Helicopters Teach Themselves to Fly Stunts
 - o https://www.youtube.com/watch?v=M-QUkgk3HyE
- Learning real manipulation tasks from virtual demonstrations using LSTM
 - o https://www.youtube.com/watch?v=9vYlIG2ozaM