COP 3402 — Systems Software January 27, 2023

Homework 1: Stack Machine

See Webcourses and the syllabus for due dates.

Purpose

In this homework you will form a team [Collaborate] and implement a word-addressable stack-based vir-
tual machine [UseConcepts] [Build].

Directions

There are two parts to this homework:
1. (10 points) Email our TA, Mana Mostaani (mana.mostaani @ Knights.ucf.edu) with:

1. the email’s subject being "Our team for COP 3402".
2. alist of the full names of all the team members, of which there may be either 2 or 3 total,

3. the name of the person who will be the “team communicator”; this person will submit all assign-
ments and be responsible for responding to emails from the course staff, and

4. the name of a different person, who will be the “team facilitator”; this person will be responsible
for making sure that all team members understand everything about the solution.

Your team will jointly do all project implementations in the course.

All team members must all be registered for the same lecture section (0001 for Dr. Leavens), and it is
recommended that they all be in the same lab section as well.

We will randomly ask questions of students in the team to ensure that all team members understand
their solution; there will be penalty of up to 10 points (deducted from all team members’ scores for
that assignment) if some team member does not understand some part of the solution to an assign-
ment.

2. (100 points) Implement and submit your VM code as described in the rest of this document.

For the implementation, your code must be written in ANSI standard C and must compile with gcc
and run correctly on Eustis. (See http://newton.i2lab.ucf.edu/wiki/Help:Eustis| for information on how
to access Eustis.) We recommend using the gcc flag -Wal1l and fixing all warnings before turning in
this assignment.

What to Turn In
Your team must submit on Webcourses:

1. A plain text file named sources. txt that lists the names of all the . c files needed to compile
your program, all on one line separated by spaces. For example, if you have files named base. c,
instruction.c,and vm. c, then your file sources.txt would look contain (only) the follow-
ing line of text naming these files:

http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutCollaborate
http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutUseConcepts
http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutBuild
http://newton.i2lab.ucf.edu/wiki/Help:Eustis

base.c instruction.c vm.c
If there is only one file in your program, then put its name in your sources . txt file.

2. Each source file that is needed to compile your VM with gcc on Eustis, including all needed header
files (if there are any).

3. The output of a test program running in the virtual machine. Please provide a copy of the initial state
of the stack and the state of stack after the execution of each instruction. Please see the example in
Appendix B.

We will take some points off for: code that does not work properly, duplicated code, code with extra
unnecessary cases, or code that is excessively hard to follow. Avoid duplicating code by using helping
functions, or library functions. It is a good idea to check your code for these problems before submitting.
Don’t hesitate to contact the staff if you are stuck at some point. Your code should compile properly; if it
doesn’t, then you probably should keep working on it. Email the staff with your code file if you need help
getting it to compile or have trouble understanding error messages. If you don’t have time to get your code
to compile, at least tell us that you didn’t get it to compile in your submission.

What to Read

You should read Systems Software: Essential Concepts (by Montagne) in which we recommend reading
chapters 1-3.

Overview

In this assignment, you will implement a word-addressable stack-based virtual machine (VM).
The following subsections specify the interface between the Unix operating system (as on Eustis) and
the VM as a program.

Inputs

The VM is passed a single file name as its only command line argument; this file should be the name of a
(readable) text file containing the program that the VM should execute. For example, if the executable is
named vm and the program it should run is contained in the file named hwl-test1.txt (and both these
files are in the current directory), then the VM should execute the program in the file hwl-test1.txt
by executing the following command in the Unix shell (e.g., at the command prompt on Eustis):

./vmm hwl-testl.txt

When the program executes a CHI instruction to read a character, that character will be read from stan-
dard input (stdin). However, note that if you want the program to read a character, typing a single char-
acter (say c) into the terminal (i.e., to the shell) while the program is running will not send that character
immediately to the program, as standard input is buffered by default. To send characters to the program it
is best to use a pipe or file redirection in the Unix shell, for example, to send the two characters c and d to
the VM running the program progfile.txt one could use the following command at the Unix shell:

echo cd | ./vm progfile.txt

Another command that would accomplish the same thing is to put the characters to be input into a file
(using a text editor), say cd—input . txt and then to use the following Unix command.

./vm progfile.txt < cd-input.txt

Outputs

The VM prints its tracing output to standard output (st dout); furthermore, characters printed using the
CHO instruction are also printed to standard output.
All error messages (e.g., for division by zero) should be sent to standard error output (stderr).

Exit Code

When the machine halts normally, it should exit with a zero error code (which indicates success on Unix).
However, when the machine encounters an error it should halt and the program should stop with a non-
zero exit code (which indicates failure on Unix).

1 VM Architecture

The VM you are to implement is a stack machine that conceptually has two memory stores: the "stack,"
which is organized as a LIFO queue of C int values and contains the data to be used by instruction evalua-
tion, and the "code," which is organized as a list of instructions. The code list contains the instructions for
the VM in order of execution.

1.1 Registers

The VM has a few built-in register{] used for its execution: The registers are named:

* base pointer (BP),

* stack pointer (SP), which points to the next location in the stack to allocate (i.e., one above the cur-
rent top of the stack), and

¢ program counter (PC).

The use of these registers will be explained in detail below.

1.2 Instruction Format

The Instruction Set Architecture (ISA) of the VM has instructions that each have two components, which
are integers (i.e., they have the C type int) named as follows:

OP | is the operation code

M | depending on the operator it indicates: either:

(a) A number (when OP is LIT or INC), or

(b) A program address (when OP is JMP, JPC, or CAL).
The list of instructions and details on their execution appears in Appendix A.

"What we call “registers” in this document are simply important concepts that simulate what would be registers in a hardware
implementation of the virtual machine. In the VM as a C program, these would be implemented as variables.

1.3 VM Cycles

The VM instruction cycle conceptually does the following for each instruction:

1. Let IR be the instruction at the location that PC indicates. (Note that IR could be considered to be the
contents of a register.)

2. The PC is made to point to the next instruction in the code list.

3. The instruction IR is executed using the “stack” memory. (This does not mean that the instruction
is stored in the “stack.”) The OP component of this instruction (IR.OP) indicates the operation to be
executed. For example, if /R.OP encodes the instruction ADD, then the machine adds the top two
elements of the stack, popping them off the stack in the process, and stores the result in the top of
the stack (so in the end SP is one less than it was at the start). Note that arithmetic overflows and
underflows happen as in C int arithmetic.

1.4 VM Initial/Default Values

When the VM starts execution, BP, SP, and PC are all 0. This means that execution starts with the "code"
element 0. Similarly, the initial "stack" store values are all zero (0).

1.5 Size Limits

The following constants define the size limitations of the VM.

e MAX_STACK_HEIGHT is 2048

* MAX_CODE_LENGTH is 512

1.6 Invariants

The VM enforces the following invariants and will halt with an error message (written to stderr) if one of
them is violated:

*« 0<BP ABP<SP A0O<SP A SP < MAX STACK_ HEIGHT

e 0 <PC A PC < MAX_CODE_LENGTH

A Appendix A

In the following tables, italicized names (such as p) are meta-variables that refer to integers. If an instruc-
tion’s field is notated as —, then its value does not matter (we use 0 as a placeholder for such values in ex-
amples). Note that stack[SP — 1] is the top element of the stack.

A.1 Basic Instructions

OP | OP Comment
Code Num. | Mnemonic (Explanation)
1 | LIT Literal push: stack[SP] <— n; SP «— SP + 1
2 | RTN Returns from a subroutine and restores the caller’s AR:
PC « stack[SP — 1]; BP « stack[SP — 2]; SP + SP — 2
3 | CAL Call the procedure at code index p, generating a new activation record
and setting PC to p:
stack[SP] <— BP; // dynamic link
stack[|SP + 1] <— PC; // return address
BP < SP; SP «+~ SP + 2; PC « p;
4 | POP Pop the stack: SP < SP — 1;
5| PSI Push the element at address stack[SP — 1] on top of the stack:
stack|SP — 1] < stack|stack[SP — 1]]
6 | PRM Parameter at stack[BP — o] is pushed on the stack:
stack[SP] <« stack[BP — o]; SP <— SP + 1
7 | STO Store stack|SP — 2] into the stack at address stack[SP — 1] 4 o and pop
the stack twice:
stack[stack[SP — 1] + o] < stack[SP — 2]; SP <— SP — 2
8 | INC Allocate m locals on the stack: SP < SP +m
9 | IMP Jump to the address in stack[SP — 1] and pop:
PC « stack[SP — 1]; SP «+ SP — 1
10 | JPC Jump conditionally: if the value in stack[SP — 1] is not 0, then jump to
a and pop the stack:
if stack[SP — 1] # 0 then {PC < a} ; SP +~ SP — 1
11 | CHO Output of the value in stack[SP — 1] to standard output as a character
and pop:
putc(stack[SP — 1], stdout); SP <~ SP — 1
12 | CHI Read an integer, as character value, from standard input and push it in
the top of the stack, but on EOF or error, push -1:
stack[SP] < getc(stdin); SP < SP + 1
13 | HLT Halt the program’s execution
14 | NDB Stop printing debugging output

A.2 Arithmetic/Logical Instructions

For comparisons, note that 0 represents false and 1 represents true. That is, the result of a logical opera-
tion, such as A > B is defined as 1 if the condition was met and 0 otherwise. Arithmetic is interpreted as
int arithmetic as for C int values. Errors such as division by 0 (or modulo by 0) cause the VM to halt with
an appropriate error message printed on stderr.

OP | Number M | Comment (Explanation)
Codd | Mnemonic

15 | NEG — | Negate the value in the top of the stack:

stack[SP — 1] +— —stack[SP — 1]
16 | ADD — | Add the top two elements in the stack:

stack[SP — 2] < stack[SP — 1] 4 stack[SP — 2]; SP «<— SP — 1
17 | SUB — | Subtract the 2nd to top element from the top one:

stack[SP — 2] < stack[SP — 1] — stack[SP — 2]; SP <~ SP — 1
18 | MUL — | Multiply the top two elements in the stack:

stack[SP — 2] « stack[SP — 1] x stack[SP — 2]; SP < SP — 1
19 | DIV — | Divide the top element by the 2nd from top element:

stack[SP — 2] < stack[SP — 1]/stack[SP — 2]; SP < SP — 1
20 | MOD — | Modulo, result is the remainder of the top by the 2nd from top element

of the stack:
stack[SP — 2] « stack|SP — 1]modstack[SP — 2]; SP «— SP — 1

21 | EQL — | Are (the contents of) the top and 2nd from top element equal?
stack[SP — 2] < stack[SP — 1] = stack[SP — 2]; SP «<— SP — 1

22 | NEQ — | Are (the contents of) the top and 2nd from top element different?
stack[SP — 2] < stack[SP — 1] # stack[SP — 2]; SP <~ SP — 1

23 | LSS — | Is (the contents of) the top element strictly less than the 2nd from top
element?
stack[SP — 2] «— stack[SP — 1] < stack[SP — 2]; SP «<— SP — 1

24 | LEQ — | Is (the contents of) the top element no greater than the 2nd from top
element?
stack[SP — 2] < stack[SP — 1] < stack[SP — 2]; SP «<— SP — 1

25 | GTR — | Is (the contents of) the top element strictly greater than the 2nd from
top?
stack[SP — 2] < stack[SP — 1] > stack[SP — 2]; SP <— SP — 1

26 | GEQ — | Is (the contents of) the top element no less than the contents of the 2nd

from top element?

stack[SP — 2] < stack[SP — 1] > stack[SP — 2]; SP «<— SP — 1
27 | PSP — | Push SP (i.e., the address itself) on top of the stack:

stack[SP] <— SP; SP «+— SP + 1

A.3 Examples

As an example, consider the instruction ADD 0, which is input as the line 16 0, where SP is 10, so this
means to place in stack[8] the sum of the values in stack[8] and stack[9], and then setting SP to 9.

As another example: if we have instruction LIT 9, which is input as the line 1 9, then this means to
push the integer 9 on the top of the stack: stack[SP] < 9; SP <~ SP + 1.

B Appendix B: Examples

B.1 A Simple Example Showing Output Formatting

The following very simple example shows the expected formatting. Suppose the input is the following file
(hwl-test0.txt, the name of this file is passed to the VM on the Unix command line):

8 2
13 0

Running the VM with the above input produces the following output (written to stdout). Note that
there are two parts to the output: (1) a listing of the instructions in the program one per line, following
a header, with mnemonics for each instruction and (2) a trace of the program’s execution, following the
line Tracing ... (all on standard output). The trace of execution shows the state of the built-in regis-
ters (PC, BP, and SP) and the stack’s values at addresses between BP and SP — 1 (inclusive), and then
it shows the instruction being executed (following the text ==> addr:); this consists of: (a) the ad-
dress of the instruction being executed, then (b) the instruction with its mnemonic and M value, then after
showing the instruction being executed (and after the instruction’s execution by the VM) the state is again
shown. The output of the instruction and the resulting state are show after is each instruction executed.

Addr OP M

0 INC 2

1 HLT 0

Tracing .

PC: 0 BP: 0 SP: O
stack:

==> addr: O INC 2
PC: 1 BP: 0 SP: 2
stack: S[0]: O S[1]: O
==> addr: 1 HLT 0
PC: 2 BP: 0 SP: 2
stack: S[0]: O S[1]: O

B.2 A Slightly More Involved Example

The following example is a bit more involved and shows some of the details of the machine’s execution.

B.2.1 Input File

The following is the contents of the file hwl-testl.txt:

B.2.2 Output (To Stdout)

Running the VM with the above input produces the following output (written to stdout).

stack: SI[O
=> addr:
PC: 8 BP:
stack: S[O
==> addr:
PC: 9 BP:
stack: S[O
=> addr:

0 S[1]: O S[2]: O S[3]: 1 S[4]: 12 S[5]: 12
NEQ 0

SP: 5

0 S[1]: 0 S[2]: O S[3]: 1 S[4]: 0

JPC 11

SP: 4

0 S[1]: O S[2]: O S[3]: 1

HLT 0

Addr OP M
0 INC 2
1 LIT 0
2 LIT 1
3 LIT 5
4 LIT 7
5 ADD 0
6 LIT 12
7 NEQ 0
8 JPC 11
9 HLT 0
10 LIT 78
11 CHO 0
12 LIT 13
13 CHO 0
14 HLT 0
Tracing .
PC: 0 BP: 0 SP: O
stack:
=> addr: O INC 2
PC: 1 BP: 0 SP: 2
stack: S[0]: O S[1]: O
=> addr: 1 LIT 0
PC: 2 BP: 0 SP: 3
stack: S[0] 0 S[1]: 0 S[2]: O
=> addr: 2 LIT 1
PC: 3 BP: 0 SP: 4
stack: S[0]: O S[1]: O S[2]: 0 S[3]: 1
=> addr: 3 LIT 5
PC: 4 BP: 0 SP: 5
stack: S[0]: O S[1]: O S[2]: O S[3]: 1 S[4]: 5
=> addr: 4 LIT 7
PC: 5 BP: 0 SP: 6
stack: S[0]: O S[1]: O S[2]: O S[3]: 1 S[4]: 5 S[5]: 7
=> addr: 5 ADD 0
PC: 6 BP: 0 SP: 5
stack: S[0]: O S[1]: O S[2]: 0 S[3]: 1 S[4]: 12
=> addr: 6 LIT 12
PC: 7 BP: 0 SP: 6
]
7
0
]
8
0
1
9

PC: 10 BP: 0O SP: 4
stack: S[0]: O S[1]: O S[2]: O S[3]: 1

C Appendix C: Hints

Other sample programs are included in the homework directory, with file names ending in . t xt.

C.1 Recommended Struct for Instructions

We recommend using the following structure for instructions:

typedef struct ({
int op; /* opcode x/
int m; /+* M %/

} instruction;

