
COP 3402 — Systems Software March 27, 2023

Homework 4:
Code Generation for Full PL/0

See Webcourses and the syllabus for due dates.

1 Purpose

In this homework your team [Collaborate] will implement a code generator for the full PL/0 language, in-
cluding nested procedures [UseConcepts] [Build]. The PL/0 language is defined in Section 6 below.

2 Directions

For this homework, we are providing several files in the hw4-tests.zip file in the course homeworks
directory. These files include our stack VM (which is similar but not identical to that used in homework
1), which is placed in a subdirectory called vm, along with the VM’s documentation. We are providing a
compiler front end (including a lexer and parser) and a static analysis (“middle end”) that produces en-
hanced ASTs as a kind of IR. We also provide a code module that defines a type code_seq that rep-
resents sequences of machine code instructions. Do not change any of these provided files (except for
gen_code.c, which is explained below), as many are used in our testing.

Your task in this homework is to generate code for PL/0 programs that works correctly on the pro-
vided VM. We are also providing a main program in the file compiler_main.c, which interfaces with
a gen_code module for code generation. We have provided the file gen_code.h and an outline of
gen_code.c for you to edit. In gen_code.c most of the functions are stubs for which you will need
to write implementations. When you see the body of a function that looks like the following

/ / Rep lace t h e f o l l o w i n g w i t h your i m p l e m e n t a t i o n
bail_with_error("... not implemented yet!");
return code_seq_empty();

that means that the function is a stub that you must write code for. You should not change the organiza-
tion of the gen_code.c file, and should only provide implementations by replacing code like the above
with code that works properly. We are also providing a code module (in the files code.h and code.c),
which can be used to help with code generation (as described in class).

For the implementation, your code must be written in 2017 ANSI standard C and must compile with
gcc and run correctly on Eustis, when compiled with the -std=c17 flag.1 We recommend using the gcc
flags -std=c17 -Wall and fixing all warnings before turning in this assignment.

Note that we will randomly ask questions of students in the team to ensure that all team members un-
derstand their solution; there will be penalty of up to 10 points (deducted from all team members’ scores
for that assignment) if some team member does not understand some part of the solution to an assignment.

For this homework, you are not allowed to submit code generated by automatic compiler generator
tools (such as LLVM).

In addition to your code, you must also submit the output of our provided tests named hw4-vmtest*.pl0,
which the provided Makefile places in similarly named files with a .myvo extension.

Grading will be done as follows
1See this course’s resources page for information on how to access Eustis.

http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutCollaborate
http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutUseConcepts
http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutBuild
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/vm-description-revised.pdf
http://www.cs.ucf.edu/~leavens/COP3402/resources.shtml#course

2

1. (25 points) Generating code for constant and variable declarations.

2. (75 points) Generating code for expressions and atomic statements (those without any contained state-
ments).

3. (50 points) Generating code for the remaining statements (begin, if-then-else, and while).

4. (25 points) Generating code for procedures and procedure calls (and returns).

5. (25 points) Generating code for procedures that includes nested procedures.

Note that the provided tests named hw4-vmtest*.pl0 are syntactically legal and should not have
parse errors (or declaration errors). They are arranged in sequence according to the rubric above, but it is
often helpful to write your own tests to facilitate debugging.

3 What to Turn In

Your team must submit on Webcourses a single zip file containing your code generator. (That is, you only
need to submit one zip file in total for this homework, not one for each part of the rubric above.) This zip
file must include:

1. A plain text file, called sources.txt, that names all the .c source files used to implement your
compiler. (The file names in sources.txt should be separated by either blanks or newlines.)
This should include all the provided .c files. For example, your sources.txt file might look
like the following:

ast.c code.c compiler_main.c file_location.c gen_code.c id_attrs.c
id_use.c instruction.c label.c lexer.c lexer_output.c lexical_address.c
parser.c proc_holder.c reserved.c scope.c scope_check.c symtab.c token.c
unparser.c utilities.c

(The order of these names should not matter if you include the header files in each .c file that de-
clare all the names used in that .c file.)

2. Each source file that is needed to compile both your compiler and VM with gcc -std=c17 on
Eustis, including all needed header files.

3. The output files that result from running our tests. These are the .myvo files created by the provided
Makefile.

You can use the Unix command

make submission.zip

on Eustis to create a zip file that has all these files in it, after you have created your sources.txt file
and run our tests (using the command make check-outputs) to create the .myvo files.

We will take points off for not passing the tests and some points off for: code that does not work prop-
erly, duplicated code, code with extra unnecessary cases, or code that is excessively hard to follow. Avoid
duplicating code by using helping functions, or library functions. It is a good idea to check your code for
these problems before submitting.

Don’t hesitate to contact the staff if you are stuck at some point. Your code should compile properly;
if it doesn’t, then you probably should keep working on it. Email the staff with your code file if you need
help getting it to compile or have trouble understanding error messages. If you don’t have time to get your
code to compile, at least tell us that you didn’t get it to compile in your submission.

3

4 OS Interface

The following subsections specify the interface between the Unix operating system (as on Eustis) and the
parser as a program.

4.1 Inputs

The compiler will be passed a single file name on the command line. This file name is the name of a file
that contains the input PL/0 program to be compiled. Note that this input program file is not necessarily
legal according to the semantics of PL/02; for example it might do a division by 0. For example, if the file
name argument is hw4-vmtest1.pl0 (and both the compiler executable, ./compiler, and the file
hw4-vmtest1.pl0 are in the current directory), then the following command line (given to the shell on
Eustis)

./compiler hw4-vmtest1.pl0 > hw4-vmtest1.myvi

will run your compiler on the program in hw4-vmtest1.pl0 and put the generated machine code into
the file hw4-vmtest1.myvi.

The same thing can also be accomplished using the make command on Unix:

make hw4-vmtest1.myvi

4.2 Running the VM

The output of the compiler can be used as input to the provided VM. You can pass the file hw4-vmtest1.myvi
to the VM, which is assumed to be named vm/vm, by running the Unix command, which both the VM’s
standard output and error output to hw4-vmtest1.myvo.

vm/vm hw4-vmtest1.myvi > hw4-vmtest1.myvo 2>&1

The same thing can also be accomplished using the make command on Unix:

make hw4-vmtest1.myvo

The output of the VM, which consists of a listing of the machine code program given to it and an exe-
cution trace, is placed in hw4-vmtest1.myvo by these commands.

(The make command can also make the .myvo file without you having to ask it to make the .myvi
file first, as it will chain these commands together.)

4.3 Outputs

All of the compiler’s error messages must be sent to standard error output (stderr).

4.4 Exit Code

When the compiler finishes without detecting any errors, it should exit with a zero error code; otherwise it
should exit with a non-zero exit code.

2The compiler’s front end and static analysis phases can also handle inputs that do not conform to the language, but our tests
should not have such problems.

4

5 What Must be Done

For this assignment you need to: implement the stubs in gen_code.c and any other code needed to
make code generation work correctly.

6 PL/0

The language you will be compiling for this homework is (full) PL/0, which includes procedures and the
call statement. Note that in (full) PL/0 the “procedure” and “call” are reserved words.

6.1 Syntax

The context-free grammar for (full) PL/0 is defined in Figure 1 and its lexical grammar is defined in Fig-
ure 2.

Note that the context-free grammar of PL/0 is essentially the same as in homework 3, with the addi-
tion of (nested) procedure declarations and the call statement. The lexical grammar is unchanged from
homework 2.

6.2 ASTs and Abstract Syntax

The type for abstract syntax trees (ASTs) is defined in the provided files ast.h, with helping functions in
ast.c.

The file ast.h declares a type named AST and a type AST_list. The type AST_list is a (linked)
list of ASTs.

The AST type is essentially the same as in homework 3, however, new ASTs have been added for pro-
cedure declarations and the call statement and the AST for programs (blocks) has a new field that holds
the list of procedure declaration ASTs. (Note that the AST type for programs is reused as the AST type for
blocks.)

The other major change to the ASTs is that uses of identifiers (in assignment statements, call state-
ments, read statements, and identifier expressions) are replaced by a new type of AST node (with the type
tag ident_ast) that contains the data subfield ident (of type ident_t). Where previously the AST
in such places contained just (a pointer to) the string giving the identifier’s name, the new AST that re-
places it contains both that string (name) and a (pointer to an) id_use struct of type id_use. The type
id_use is defined in the id_use module (files id_use.h and id_use.c). An id_use struct con-
tains the id_attrs for that identifier (as found during static analysis) and also the number of scopes out-
ward from the current scope that one needs to traverse to reach the scope where the name was declared.
This is sufficient to construct the lexical address of the identifier used.

The abstract syntax for PL/0, which may be useful in working with the ASTs is given in Figure 3.
A good example of how to write a tree walk over the ASTs is given in the provided file unparser.c.

5

⟨program⟩ ::= ⟨block⟩ .

⟨block⟩ ::= ⟨const-decls⟩ ⟨var-decls⟩ ⟨proc-decls⟩ ⟨stmt⟩

⟨const-decls⟩ ::= {⟨const-decl⟩}
⟨const-decl⟩ ::= const ⟨const-def⟩ {⟨comma-const-def⟩} ;
⟨const-def⟩ ::= ⟨ident⟩ = ⟨number⟩
⟨comma-const-def⟩ ::= , ⟨const-def⟩

⟨var-decls⟩ ::= {⟨var-decl⟩}
⟨var-decl⟩ ::= var ⟨idents⟩ ;
⟨idents⟩ ::= ⟨ident⟩ {⟨comma-ident⟩}
⟨comma-ident⟩ ::= , ⟨ident⟩

⟨proc-decls⟩ ::= {⟨proc-decl⟩}
⟨proc-decl⟩ ::= procedure ⟨ident⟩ ; ⟨block⟩ ;

⟨stmt⟩ ::= ⟨ident⟩ := ⟨expr⟩
| call ⟨ident⟩
| begin ⟨stmt⟩ {⟨semi-stmt⟩} end
| if ⟨condition⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨condition⟩ do ⟨stmt⟩
| read ⟨ident⟩
| write ⟨expr⟩
| skip

⟨semi-stmt⟩ ::= ; ⟨stmt⟩
⟨empty⟩ ::=

⟨condition⟩ ::= odd ⟨expr⟩
| ⟨expr⟩ ⟨rel-op⟩ ⟨expr⟩

⟨rel-op⟩ ::= = | <> | < | <= | > | >=

⟨expr⟩ ::= ⟨term⟩ {⟨add-sub-term⟩}
⟨add-sub-term⟩ ::= ⟨add-sub⟩ ⟨term⟩
⟨add-sub⟩ ::= ⟨plus⟩ | ⟨minus⟩
⟨term⟩ ::= ⟨factor⟩ {⟨mult-div-factor⟩}
⟨mult-div-factor⟩ ::= ⟨mult-div⟩ ⟨factor⟩
⟨mult-div⟩ ::= ⟨mult⟩ | ⟨div⟩
⟨factor⟩ ::= ⟨ident⟩ | ⟨sign⟩ ⟨number⟩ | (⟨expr⟩)
⟨sign⟩ ::= ⟨plus⟩ | ⟨minus⟩ | ⟨empty⟩

Figure 1: Context-free grammar for the concrete syntax of (full) PL/0. The grammar uses a terminal
font for terminal symbols, and a bold terminal font for reserved words. As in EBNF, curly
brackets {x} means an arbitrary number of (i.e., 0 or more) repetitions of x. Note that curly braces are not
terminal symbols in this grammar. Also note that an else clause is required in each if-statement.

6

⟨ident⟩ ::= ⟨letter⟩ {⟨letter-or-digit⟩}
⟨letter⟩ ::= a | b | . . . | y | z | A | B | . . . | Y | Z
⟨number⟩ ::= ⟨digit⟩ {⟨digit⟩}
⟨digit⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
⟨letter-or-digit⟩ ::= ⟨letter⟩ | ⟨digit⟩
⟨plus⟩ ::= +
⟨minus⟩ ::= -
⟨mult⟩ ::= *
⟨div⟩ ::= /

⟨ignored⟩ ::= ⟨blank⟩ | ⟨tab⟩ | ⟨vt⟩ | ⟨formfeed⟩ | ⟨eol⟩ | ⟨comment⟩
⟨blank⟩ ::= “A space character (ASCII 32)”
⟨tab⟩ ::= “A horizontal tab character (ASCII 9)”
⟨vt⟩ ::= “A vertical tab character (ASCII 11)”
⟨formfeed⟩ ::= “A formfeed character (ASCII 12)”
⟨newline⟩ ::= “A newline character (ASCII 10)”
⟨cr⟩ ::= “A carriage return character (ASCII 13)”
⟨eol⟩ ::= ⟨newline⟩ | ⟨cr⟩ ⟨newline⟩
⟨comment⟩ ::= ⟨pound-sign⟩ {⟨non-nl⟩} ⟨newline⟩
⟨pound-sign⟩ ::= #
⟨non-nl⟩ ::= “Any character except a newline”

Figure 2: Lexical grammar of PL/0. The grammar uses a terminal font for terminal symbols. Note
that all ASCII letters (a-z and A-Z) are included in the production for ⟨letter⟩. Again, curly brackets {x}
means an arbitrary number of (i.e., 0 or more) repetitions of x. Note that curly braces are not terminal
symbols in this grammar. Some character classes are described in English, these are described in a Ro-
man font between double quotation marks (“ and ”). Note that all characters matched by the nonterminal
⟨ignored⟩ are ignored by the lexer (except that each instance of ⟨eol⟩ ends a line).

7

⟨program⟩ ::= {⟨const-decl⟩} {⟨var-decl⟩} {⟨proc-decl⟩} ⟨stmt⟩
⟨const-decl⟩ ::= const ⟨name⟩ = ⟨number⟩
⟨var-decl⟩ ::= var ⟨name⟩
⟨proc-decl⟩ ::= procedure ⟨name⟩ ⟨program⟩
⟨stmt⟩ ::= ⟨ident⟩ := ⟨expr⟩

| call ⟨ident⟩
| begin ⟨stmt⟩ {⟨stmt⟩}
| if ⟨condition⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨condition⟩ do ⟨stmt⟩
| read ⟨ident⟩
| write ⟨expr⟩
| skip

⟨ident⟩ ::= ⟨name⟩ ⟨id-use⟩
⟨id-use⟩ ::= ⟨attrs⟩ ⟨levelsOutward⟩
⟨attrs⟩ ::= ⟨file-location⟩ ⟨kind⟩ ⟨loc-offset⟩ ⟨label⟩
⟨kind⟩ ::= constant | variable | procedure
⟨label⟩ ::= ⟨unset-label⟩ | ⟨set-label⟩
⟨unset-label⟩ ::= unset-label false
⟨set-label⟩ ::= set-label ⟨address⟩
⟨condition⟩ ::= odd ⟨expr⟩ | ⟨expr⟩ ⟨rel-op⟩ ⟨expr⟩
⟨rel-op⟩ ::= = | <> | < | <= | > | >=
⟨expr⟩ ::= ⟨expr⟩ ⟨bin-arith-op⟩ ⟨expr⟩ | ⟨ident⟩ | ⟨number⟩
⟨bin-arith-op⟩ ::= + | - | * | /

Figure 3: Enhanced Abstract Syntax for PL/0 that serves as a description of the enhanced ASTs (or IR).
Note that the abstract syntax of a ⟨program⟩ is also used as the abstract syntax of blocks (from the concrete
syntax). The nonterminal ⟨name⟩ is a string that represents a identifier that is being declared. However,
uses of identifiers are represented by ⟨ident⟩ in the abstract syntax, and contain more information. The
nonterminal ⟨levelsOutward⟩ is an unsigned integer. The nonterminal ⟨file-location⟩ consists of a file
name, and two unsigned integers (the line and column numbers). The nonterminal ⟨kind⟩ represents the
type id_kind defined in the id_attrs.h file. Labels are data structures that are either unset or set
and contain an address; the nonterminal ⟨address⟩ is an unsigned short integer representing an index in the
VM’s code array. Here the curly brackets, as in {x}, means a possibly empty list of x.

8

6.3 Semantics

This subsection describes the semantics of PL/0.
Nonterminals discussed in this subsection refer to the nonterminals in the context-free grammar of

PL/0’s concrete syntax, as defined in Figure 1.
A ⟨program⟩ consists of zero-or-more constant declarations (⟨const-decls⟩), zero-or-more variable dec-

larations (⟨var-decls⟩), and zero-or-more procedure declarations (⟨proc-decls⟩), followed by a statement.
In PL/0, all constants and variables denote (short) integers. The execution of a program declares the

named constants, variables, and procedures, and initializes the constants and variables. Then it runs the
statement.

A scope in PL/0 is an area of program text that extends from the beginning of a ⟨program⟩ or ⟨block⟩
to its end. In PL/0 there are nested scopes, as a program or block contains blocks for procedures declared
within it; any declarations of ⟨ident⟩s in a nested block that are also declared in a surrounding block cause
a hole in that identifier’s scope that is as big as the scope in which the inner declaration appears. However,
it is an error if an ⟨ident⟩ is declared more than once in the same scope, as either a constant, a variable, or a
procedure.

6.3.1 Constant Declarations

The nonterminal ⟨const-decls⟩ specifies zero or more constant declarations.
Each constant declaration, of the form ⟨ident⟩ = ⟨number⟩, declares that ⟨ident⟩ is a (short) integer

constant that is initialized to the value given by ⟨number⟩. The scope of such a constant declaration is the
area of the program’s text that follows the declaration.

It is an error for an ⟨ident⟩ to be declared as a constant more than once. It is an error for the program
to use the a declared constant’s ⟨ident⟩ on the left hand side of an assignment statement or in a read state-
ment.

6.3.2 Variable Declarations

The nonterminal ⟨var-decls⟩ specifies zero or more variable declarations.
Each variable declaration, of the form ⟨ident⟩, declares that ⟨ident⟩ is a (short) integer variable that is

initialized to the value 0.
It is an error for an ⟨ident⟩ to be declared as a variable if it has already been declared as a constant or

as a variable in the same scope.
Unlike constants, variable names may appear on the left hand side of an assignment statement or in a

read statement.

6.3.3 Procedure Declarations

The nonterminal ⟨proc-decls⟩ specifies zero or more procedure declarations.
Each procedure declaration, of the form procedure ⟨ident⟩ ; ⟨block⟩ ; declares that ⟨ident⟩ is a

procedure that when run executes the given ⟨block⟩; that is, it declares and initializes the constants and
variables declared in the ⟨block⟩ and declares the block’s procedures and then runs the statement in the
⟨block⟩. Therefore, a procedure executes as if it were a program, although it may use identifiers declared
in a surrounding scope.

It is an error for an ⟨ident⟩ to be declared as a procedure if it has already been declared as a constant,
variable, or procedure in the same scope.

Procedure names may not be used on the left hand side of an assignment statement nor may they be
used in a read statement.

9

6.3.4 Statements

A ⟨block⟩ contains a single statement (⟨stmt⟩) that is run when the block is executed. When a program is
run, its block is executed, and thus the statement in that block starts executing.

Assignment Statement An assignment statement has the form ⟨ident⟩ := ⟨expr⟩. It evaluates the ex-
pression ⟨expr⟩ to obtain a value and then it assigns it to the variable named by ⟨ident⟩. Thus, immediately
after the execution of this statement, the value of the variable ⟨ident⟩ is the value of ⟨expr⟩.

It is an error if the left hand side ⟨ident⟩ has not been declared as a variable. (Note that the evaluation
of the ⟨expr⟩ may produce runtime errors.)

Call Statement A call of the form call ⟨ident⟩ executes the ⟨block⟩ declared by the procedure named
⟨ident⟩. (Therefore, it allocates space for the constants and variables declared in that procedure’s ⟨block⟩,
initializes them, and then executes that ⟨block⟩’s statement.)

It is an error if the ⟨ident⟩ has not been declared as a procedure.
Since procedures in PL/0 do not have formal parameters and do not return results, one can only pass

arguments to a procedure and return results using variables that are global to that procedure.

Begin Statement A begin statement has the form begin S1;S2; . . . ;Sn end (where n ≥ 1) and is
executed by first executing statement S1, then if S1 finishes without encountering an error S2 is executed,
and so on, in sequence. Any run-time errors encountered cause the entire compound statement’s execution
to terminate with that error.

Conditional Statement A conditional statement has the form if C then S1 else S2 and is executed
by first evaluating the condition C. When C evaluates to true, then S1 is executed; otherwise, if C evalu-
ates to false (i.e., if it does not encounter an error), then S2 is executed.

Note that in the concrete syntax there are no parentheses around the condition.

While Statement A while statement has the form while C do S and is executed by first evaluating the
condition C. If C evaluates to false, then S is not executed and the while statement finishes its execution.
When C evaluates to true, then S is executed, followed by the execution of while C do S again. Note
that C is evaluated each time, not just once.

Again, in the concrete syntax there are no parentheses around the condition.

Read Statement A read statement of the form read x, where x is a declared variable identifier, reads a
single character from standard input and puts its ASCII value into the variable x. The value of x will be set
to -1 if an end-of-file or an error is encountered on standard input.

It is an error if x has not been previously declared as a variable.

Write Statement A write statement of the form write e, first evaluates the expression e, and if that
expression yields a value in the range 0 to 255, then it writes that value to standard output as an ASCII
character. Otherwise, if e yields a value outside the range 0 to 255 (i.e., a value less than 0 or greater than
255), then an error occurs.

Skip Statement A skip statement of the form skip does nothing and does not change the program’s
state.

10

6.3.5 Conditions

A ⟨condition⟩ is an expression that has a Boolean value: either true or false.

Odd Condition A ⟨condition⟩ of the form odd e first evaluates the expression e. If the value of e is an
odd integer (i.e., it is equal to 1 modulo 2), then the value of the condition is true. If the value of e is even,
then the value of the condition is false.

Relational Conditions A ⟨condition⟩ of the form e1 r e2 first evaluates e1 and then e2, obtaining inte-
ger values v1 and v2, respectively. (If either evaluation encounters an error, then the condition as a whole
encounters that error.) Then it compares v1 to v2 according to the relational operator r, as follows:

• if r is =, then the condition’s value is true when v1 is equal to v2, and false otherwise.

• if r is <>, then the condition’s value is true when v1 is not equal to v2, and false when they are equal.

• if r is <, then the condition’s value is true when v1 is strictly less than v2, and false otherwise.

• if r is <=, then the condition’s value is true when v1 is less than or equal to v2, and false when v1 >
v2.

• if r is >, then the condition’s value is true when v1 is strictly greater than v2, and false otherwise.

• if r is >=, then the condition’s value is true when v1 is greater than or equal to v2, and false when
v1 < v2.

6.4 Expressions

An ⟨expr⟩ of the form e1 o e2 first evaluates e1 and then e2, obtaining integer values v1 and v2, respec-
tively. (If either evaluation encounters an error, then the expression as a whole encounters that error.) Then
it combines v1 and v2 according to the operator o, as follows:

• An expression of the form e1+e2 (i.e., a binary operator expression where the operator o is +) yields
the value of v1 + v2, according to the semantics of the type short int in C.

• An expression of the form e1-e2 yields the value of v1 − v2, according to the semantics of the type
short int in C.

• An expression of the form e1*e2 yields the value of v1 × v2, according to the semantics of the type
short int in C.

• An expression of the form e1/e2 yields the value of v1/v2, according to the semantics of the type
short int in C. The expression encounters an error if v2 is zero.

There are also a few other cases of expressions that do not involve binary operators. These have the
following semantics:

• An identifier expression, of the form x, has as its value the value of the integer stored in the constant
or variable named x whose declaration is found in the closest syntactically surrounding scope.

It is an error if x has not been previously declared as a constant or variable.

11

• An expression of the form sn, where s is a ⟨sign⟩ and n is a ⟨number⟩ yields the value of the base 10
literal n if the sign s is + or ⟨empty⟩. However, if the sign s is -, then the value is the negated value
of the base 10 literal n according to the semantics of the type short int in C.

Note that there is no AST for negating a number, since the AST can hold the negation; thus the
negated value is simply stored as a number AST.

• An expression of the form (e) yields the value of the expression e.

6.5 Simple Example of Inputs and Outputs

Consider the following input in the file hw4-vmtest2.pl0, (note that the suffix is lowercase ‘P’, low-
ercase ‘L’, and the numeral zero, i.e., ‘0’) which is included in the hw4-tests.zip file in the course
homeworks directory.

$Id: hw4-vmtest2.pl0,v 1.1 2023/03/20 21:23:14 leavens Exp $
var x;
x := 5.

When this is compiled and the resulting output is used as input to the VM, this should produce the ex-
pected output found in the following file (hw4-vmtest2.vmo).

Addr OP M
0 INC 3
1 INC 1
2 PBP 0
3 LIT 5
4 STO 3
5 HLT 0
Tracing ...
PC: 0 BP: 0 SP: 0
stack:
==> addr: 0 INC 3
PC: 1 BP: 0 SP: 3
stack: S[0]: 0 S[1]: 0 S[2]: 0
==> addr: 1 INC 1
PC: 2 BP: 0 SP: 4
stack: S[0]: 0 S[1]: 0 S[2]: 0 S[3]: 0
==> addr: 2 PBP 0
PC: 3 BP: 0 SP: 5
stack: S[0]: 0 S[1]: 0 S[2]: 0 S[3]: 0 S[4]: 0
==> addr: 3 LIT 5
PC: 4 BP: 0 SP: 6
stack: S[0]: 0 S[1]: 0 S[2]: 0 S[3]: 0 S[4]: 0 S[5]: 5
==> addr: 4 STO 3
PC: 5 BP: 0 SP: 4
stack: S[0]: 0 S[1]: 0 S[2]: 0 S[3]: 5
==> addr: 5 HLT 0
PC: 6 BP: 0 SP: 4
stack: S[0]: 0 S[1]: 0 S[2]: 0 S[3]: 5

6.6 Checking Your Work

You can check your own compiler by running the tests using the following Unix shell command on Eustis,
which uses the Makefile from the hw4-tests.zip file in the course homeworks directory.

http://www.cs.ucf.edu/~leavens/COP3402/homeworks/
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/

12

make check-outputs

Running the above command will generate files with the suffixes .myvi and .myvo; for example the
compiler’s output from the test file hw4-vmtest3.pl0 will be put in hw4-vmtest3.myvi and the
output from running that through the VM will be put into hw4-errtest3.myvo.

A Hints

We will give more hints in the class’s lecture and lab sections.
We have often found it convenient to write our own PL/0 programs to test specific aspects of the com-

piler. The idea is to try to find what programs cause a problem and to isolate the cause of the problem; by
writing your own (simple) programs and tracing the compiler’s execution and outputs for those programs,
you can isolate problems to specific functions in your code generator (gen_code.c).

(As an aid to writing PL/0 programs, the compiler_main.c file is written to understand the options
-l or -u; these can be used before the file name on the command line. The -l option causes the compiler
to print a token listing from the file given, as in homework 2. The -u option causes the compiler to print
an unparsed version of the file given, provided that there were no syntax errors, as in homework 3.)

Recursion is your friend again and is assumed in the structure of gen_code.c. Write code trusting
that the functions called work properly and concentrate on understanding what each function is responsible
for doing.

Note that we are providing (in the hw4-tests.zip file in the course homeworks directory) both
a declaration of the relevant types involved in working with code (in the code module , found in files
code.h and code.c). The id_use module provides the type id_use and the id_attrs module
provides the type id_attrs and functions that work with those. The code module provides not only the
code type, but also the code_seq type. Also very useful is the ast module, which has several functions
to create and return (pointers to dynamically allocated) ASTs and lists of ASTs.

For a good example of how to do a tree walk on the ASTs (e.g., to build a symbol and check declara-
tions and identifier uses), see the provided files unparser.c and scope_check.c.

To find a name in lots of source code, from the Unix command line (or from the MacOS terminal app)
you can use the command grep, as in the following, which searches all of your files ending in .c for the
string kind:

grep 'kind' *.c

IDEs and the Windows explorer provide similar commands to search files. You can also use findstr in
Windows or Select-String in the Windows PowerShell.

http://www.cs.ucf.edu/~leavens/COP3402/homeworks/

