1 Name

Com S 362
Spring 2002

Object-Oriented Analysis and Design

Final Exam: Elaboration and Design Patterns

This test has 4 questions and pages numbered 1 through 9.

Exam Process

Question 1 can be done at any time, and should be turned in at the end of the test along with all of the
front matter in the test.

Starting with question 2 on this exam, each question builds on the answer from the previous question.
To aid grading and to prevent you from getting too far off track, when you complete an answer for one
question, you will trade your answer to that question for our standard solution for that question. You should
then use our standard solution when answering the next question. For example, when you finish question 2,
you will trade your answer for that question in for our standard solution to question 2, and you will then use
that to solve question 3. For these questions, be sure to put your name on each page you hand in!

There is some material about the domain, a use case, and a system sequence diagram on the pages
following the first question.

Reminders

This test is open book and notes. However, it is to be done individually and you are not to exchange or
share materials with other students during the test. So if you have materials on your team project you wish
to refer to during the test, please make copies.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed. Therefore,
before you begin, please take a moment to look over the entire test so that you can budget your time.

For diagrams and programs, clarity is important; if your diagrams or programs are sloppy and hard to
read, you will lose points. Correct syntax also makes some difference.

1. (20 points) This is a problem about design patterns. For each part, write down the name of the design
pattern or principle that would be most useful for addressing the situation described.

a. You are building a persistence framework for the service layer of a system. In this layer, operations
such as changing or deleting objects have to be queued for later execution, and it is also necessary to
support the ability to rollback (undo) these operations. What pattern would best support this?

b. You are building a system that relics on a complex algorithm, and that algorithm may be changed
often due to marketing pressures. What pattern would best support this?

¢. You are building a system in which you want to separate the domain logic layer from the user
interface layer. In particular, you want to allow changes in the state of the domain logic layer objects
to be reflected in changes to one or more objects in the user interface layer. The domain logic layer
shouldn’t know about the objects in the user interface layer, or even how many there are. What
pattern would best support this?

d. You find in coding that vou have several classes, each of which implements the same interface, and
that there is a lot of duplicated code among these classes for a method, call it m. You would like to
avoid this code duplication and make it easier to add new, similar subclasses in the future that share
the common features of method m. What pattern would best support this?

A brief explanation of the domain for the following problems

The following is an example of a crossword puzzle. Note the two sets of clues, for words going across
and those going down. In each square that is not black, a letter can be placed, which must fit with both words

(one across and one down) that use that square.

Across

[
10

14,

15, On of in SUCCeSS0r

16,
17,

18,

Greatl scitware
proparty
Splotch
Surrounds Den-
nis's head

Fursl best

USENIX O3
Bad sysadrmin
property

God doesn't play
thasal

Appoar

. Encnust

Poinlied
Stray

. Bottar lnst
, Lipan

26, Cruich

45

. Telornera locale

Moray
Burn

. Deed

Lary

Geargia city
Rtribiuticon
Sinistar

Ralian desserts
Assistants

™

46. Wagers

BEEs

55,

Free TV enablers
Usierance
Taxis

. Slow b pointer

type
Incense home

&7

USENIX Crossword
Volume 1, Number 1

. The name of the

Wiy the stock
kil works
Fllicle folty
Plane downers
Dear
Manipulabes das-
honestly

Pillow places
Metwork servers

Down

13
18

24,
&5
. Pickling substance
28.

Poker action
Glue magnale
Mtk

5 H T

Cormode
Larnb plaa

. Way of being unit-
ad

Formar

. Busy ona

Liow Frequancy sig-
nal

Mot blockad

A stapla

Flrle s

Challasd

Greek goddess
that fostered crari
ness

Otiers

Pot

Corn unils

T i T T F I L L]
o i1 i
(L]
= T
2
a]
1 ‘]
T
I 1
b
T T
30 Hihan 40, Progenitons 58, Places
31, Replacemant for 43, Evadad 57, Front
o 45, Fu ender 58, Singing voice
32. Loses resilency 47. Encourage 60, Taxi
33. Remedy 43. Ocean routes 61, Fradnus ree
34, Stirring up 51. Faulty
35. Having one of 52. Bugs
these is not an art 53 Resource
35. Bulb Nower 54. Frolics

38. Cliche dad pre-

senls

55. Doors ane somae-

limies

Use Case for the following problems

Use Case : Layout Crossword Puzzle

Primary Actor: Author

Stakeholders and Interests:

- Author: wants non-tedious way to create crossword puzzles, automatic numbering, and spell checking.
Success Guarantee (Postconditions): A puzzle with clues is saved.

Main Success Scenario (or Basic Flow):

1. Author enters the number of rows and columns in the desired crossword puzzle.
2. Author enters a word for a particular direction (across or down) and starting square.

3. System places a black square at the end of the word (the next horizontal square in the same row if the
word goes across, or the next vertical square in the same column if the word goes down) if the word does
not end at the puzzle boundary.

4. Author enters the clue for that word.

Author repeats steps 2-4 until Author indicates done.
5. System places a black square in any remaining squares without letters.
6. Author saves the completed puzzle.
Extensions (or Alternative Flows):
*a. At any time
1. Author may request to save the current puzzle.
2. Author may abandon work on the current puzzle and start anew.
3. Author may change a word and its clue.
4. Author may delete a word and its clue.
5. Author can print the puzzle.
la. Invalid (0 or negative) number entered for row or columns
1. System signals an error.
2. Author enters corrected number of rows and columns.
2a. The letters of the word don’t match with one or more letters already assigned to the squares it crosses.
1. System signals an error, and indicates which letters did not match.
2. System rejects the word.
2b. The word goes beyond the boundary or across at least one black square
1. System signals an error, and indicates which letters are in error.
2. System rejects the word.
2¢. The word is misspelled
1. System suggests various corrections.
2. Author either accepts a correction or indicates that the word should be considered correctly spelled.

2d. The word would cause a black square to be placed (see step 3) where there are already letters assigned
for some other word. (I.¢., the word is too short.)

1. System signals an error, and indicates which squares need letters.
2. System rejects the word.

2e. The black square that the system would place at the end of the word (see step 3) would violate a design
rule.

1. System signals an error, and explains how the location violates the design rule.
2. System rejects the word.
4a. The clue is empty.
1. System signals an error.
2. Author enters a non-empty clue.

4b. A word in the clue is misspelled
1. System suggests various corrections.
2. System rejects the word.
6a. The puzzle cannot be saved.
1. System signals an error.
Special Requirements
- Display must support basic graphics.
- Interface with external spell checkers
Frequency of Occurrence: one time only per run of the program.
Open Issues:
- More flexible spelling correction.
- Design layout rules.
- Internationalization.

System Sequence Diagram

The following is a system sequence diagram for the above use case.

O
;t :System
:Author |
|
| setDimensions(rows, columns) »:
|
|
| enterWord(direction, startSquare, word) »;
:4_ ______ black squares i
| enterClue(direction, startSquare, clue) >|
| |
| *[more words] |
| |
endPuzzIeEntry()
| >
- — — — black squares

|
| savePuzzle(Puzzleld)
|
|

N A

6 Name

2. (25 points) In this problem you will write a domain model, i.e., a conceptual class diagram with
associations (and any attributes you feel are useful) for the application logic layer. Consider the entire
layout crossword puzzle use case. However, do not include conceptual classes for external systems or
for classes that would be expected to be in the programming language.

Hint: a crossword puzzle has two lists of clues, one for the words going across and one for the words
going down. You should think about how the conceptual classes allow one to represent all of the
information needed to deal with each of the parts of the use case, along with each of the alternative
scenarios.

7 Name

3. In this problem you will do the design for two of the system operations from the system sequence
diagram we have given you. Your design should be based on the standard solution for the previous
problem. Complete both parts (a) and (b) of this problem before turning in your solution for this problem.

Your designs are to be recorded using interaction diagrams. You may use either the UML sequence
diagram or collaboration diagram notation.

a. (10 points) Write an interaction diagram for the setDimensions system operation. (For this part of
the problem, you don ¢ have to say what design patterns or principles are used to assign
responsibilities.)

Name

b. (20 points) Write an interaction diagram, written either in the UML sequence diagram or
collaboration diagram notation, for the enterword system operation. (See the system sequence
diagram we have given you.) Your design should be based on the standard solution you received for
problem 2.

Use dog-cared commentary boxes to indicate the GRASP/GoF design pattern or principle that justifies
the assignment of responsibility where appropriate. This is to be done as in the homework.

9 Name

4. (25 points) Based on the standard solution for the previous problems, draw a UML design class diagram
for the implementation of the two system operations setDimensions and enterWord. (That is, you
don t have to include classes, attributes, or methods needed to implement other system operations. In
particular, you don’t have to deal with classes for entering clues.) Include types for all method arguments
and results (for methods that have results).

