

SAVCBS 2003
Specification and Verification of

Component-Based Systems

ESEC/FSE 2003
9th European Software Engineering Conference

and
11th ACM SIGSOFT Symposium on the
Foundations of Software Engineering

Helsinki, Finland
September 1-5, 2003

Technical Report #03-11, Department of Computer Science, Iowa State University

SAVCBS 2003
PROCEEDINGS

Specification and Verification of Component-

Based Systems

http://www.cs.iastate.edu/ SAVCBS/

September 1-2, 2003
Helsinki, Finland

Workshop at ESEC/FSE 2003
9th European Software Engineering Conference

and
11th ACM SIGSOFT Symposium on the

Foundations of Software Engineering

v

SAVCBS 2003
TABLE OF CONTENTS

ORGANIZING COMMITTEE vii

WORKSHOP INTRODUCTION ix

INVITED PRESENTATIONS 1

Invited Presentation 2
 Manfred Broy (Technical University Munich)

Supporting Model-driven Development of Component-based Embedded Systems with
Cadena 3
 Matthew B. Dwyer (Kansas State University)

PAPERS 5

SESSION 1
Failure-free Coordinator Synthesis for Correct Components Assembly 6

Paola Inverardi and Massimo Tivoli (University of L'Aquila)

Proof Rules for Automated Compositional Verification through Learning 14
Howard Barringer (University of Manchester), Dimitra Giannakopoulou (RIACS/USRA),
 and Corina S. Păsăreanu (Kestrel Technology LLC)

SESSION 2
Behavioral Substitutability in Component Frameworks: A Formal Approach 22

Sabine Moisan, Annie Ressouche (INRIA Sophia Antipolis), and
Jean-Paul Rigault (I3S Laboratory)

An Assertion Checking Wrapper Design for Java 29

Roy Patrick Tan and Stephen H. Edwards (Virginia Tech)

SESSION 3
An Approach to Model and Validate Publish/Subscribe Architectures 35

Luca Zanolin, Carlo Ghezzi, and Luciano Baresi (Politecnico di Milano)

vi

Timed Probabilistic Reasoning on UML Specialization for Fault Tolerant
Component Based Architectures 42

Jane Jayaputera, Iman Poernomo, and Heinz Schmidt (Monash University)

SESSION 4
Modelling a Framework for Plugins 49

Robert Chatley, Susan Eisenbach, and Jeff Magee (Imperial College London)

Form-Based Software Composition 58
Markus Lumpe (Iowa State University) and
Jean-Guy Schneider (Swinburne University of Technology)

SESSION 5
Algorithmic Game Semantics and Component-Based Verification 66

Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, and C.-H. Luke Ong
(Oxford University)

POSTERS 74
Bridging the Gap between Acme and UML 2.0 for CBD 75

Miguel Goulão and Fernando Brito e Abreu (Faculdade de Ciências e Tecnologia—UNL)

Abstract OO Big O 80
Joan Krone (Denison University) and W. F. Ogden (The Ohio State University)

Ontology-based Description and Reasoning for Component-based Development
on the Web 84

Claus Pahl (Dublin City University)

Modeling Multiple Aspects of Software Components 88
Roshanak Roshandel and Nenad Medvidovic
(University of Southern California, Los Angeles)

Reasoning About Parameterized Components with Dynamic Binding 92

Nigamanth Sridhar and Bruce W. Weide (The Ohio State University)

DEMONSTRATIONS 96

Specifications in the Development Process: An AsmL Demonstration 97
Mike Barnett (Microsoft Research)

Mae: An Architectural Evolution Environment 99

Roshanak Roshandel (University of Southern California, Los Angeles)

Runtime Assertion Checking Using JML 101
Roy Patrick Tan (Virginia Tech)

vii

SAVCBS 2003
ORGANIZING COMMITTEE

Mike Barnett (Microsoft Research, USA)
Mike Barnett is a Research Software Design Engineer in the Foundations of Software
Engineering group at Microsoft Research. His research interests include software
specification and verification, especially the interplay of static and dynamic verification.
He received his Ph.D. in computer science from the University of Texas at Austin in
1992.

Stephen H. Edwards (Dept. of Computer Science, Virginia Tech, USA)
Stephen Edwards is an assistant professor in the Department of Computer Science at
Virginia Tech. His research interests are in component-based software engineering,
automated testing, software reuse, and computer science education. He received his
Ph.D. in computer and information science from the Ohio State University in 1995.

Dimitra Giannakopoulou (RIACS/NASA Ames Research Center, USA)
Dimitra Giannakopoulou is a RIACS research scientist at the NASA Ames Research
Center. Her research focuses on scalable specification and verification techniques for
NASA systems. In particular, she is interested in incremental and compositional
model checking based on software components and architectures. She received
her Ph.D. in 1999 from the Imperial College, University of London.

Gary T. Leavens (Dept. of Computer Science, Iowa State University, USA)
Gary T. Leavens is a professor of Computer Science at Iowa State University. His
research interests include programming and specification language design and semantics,
program verification, and formal methods, with an emphasis on the object-oriented and
aspect-oriented paradigms. He received his Ph.D. from MIT in 1989.

viii

Program Committee:
Luca de Alfaro (University of California, Santa Cruz)
Mike Barnett (Microsoft Research)
Edmund M. Clarke (Carnegie Mellon University)
Matthew Dwyer (Kansas State University)
Stephen H. Edwards (Virginia Tech)
Dimitra Giannakopoulou (RIACS /NASA Ames Research Center)
Gary T. Leavens (Iowa State University)
K. Rustan M. Leino (Microsoft Research)
Jeff Magee (Imperial College, London)
Heinz Schmidt (Monash University)
Wolfram Schulte (Microsoft Research)
Natalia Sharygina (Carnegie Mellon University)
Murali Sitaraman (Clemson University)
Kurt C. Wallnau (CMU Software Engineering Institute)
Bruce Weide (Ohio State University)

Sponsors:

ix

SAVCBS 2003
WORKSHOP INTRODUCTION

This workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to
establish a suitable foundation for the specification and verification of component-based systems.
Component-based systems are a growing concern for the software engineering community. Specification
and reasoning techniques are urgently needed to permit composition of systems from components.
Component-based specification and verification is also vital for scaling advanced verification techniques
such as extended static analysis and model checking to the size of real systems. The workshop will
consider formalization of both functional and non-functional behavior, such as performance or
reliability.

This workshop brings together researchers and practitioners in the areas of component-based software
and formal methods to address the open problems in modular specification and verification of systems
composed from components. We are interested in bridging the gap between principles and practice. The
intent of bringing participants together at the workshop is to help form a community-oriented
understanding of the relevant research problems and help steer formal methods research in a direction
that will address the problems of component-based systems. For example, researchers in formal methods
have only recently begun to study principles of object-oriented software specification and verification,
but do not yet have a good handle on how inheritance can be exploited in specification and verification.
Other issues are also important in the practice of component-based systems, such as concurrency,
mechanization and scalability, performance (time and space), reusability, and understandability. The aim
is to brainstorm about these and related topics to understand both the problems involved and how formal
techniques may be useful in solving them.

The goals of the workshop are to produce:

1. An outline of collaborative research topics,
2. A list of areas for further exploration,
3. An initial taxonomy of the different dimensions along which research in the area can be

categorized. For instance, static/dynamic verification, modular/whole program analysis,
partial/complete specification, soundness/completeness of the analysis, are all continuums along
which particular techniques can be placed,

4. A web site that will be maintained after the workshop to act as a central clearinghouse for
research in this area, and

5. A special issue of the journal Formal Aspects of Computing (published by Springer Verlag). The
journal issue will invite revised and expanded versions of selected papers from this and the
previous SAVCBS workshop.

x

SAVCBS 2003
INVITED PRESENTATIONS

1

Invited Presentation

Manfred Broy
Technical University Munich

2

Supporting Model-driven Development of
Component-based Embedded Systems with Cadena

Adam Childs, Xianghua Deng, Matthew B. Dwyer, Jesse Greenwald, John Hatcliff,
Prashant Kumar, Georg Jung, Venkatesh Ranganath, Robby, Gurdip Singh

Department of CIS
Kansas State University

dwyer@cis.ksu.edu

ABSTRACT
Developers of modern distributed, real-time embedded sys-
tems are increasingly employing component-based middle-
ware frameworks to cope with the ever increasing size and
complexity of mission requirements. Frameworks, such as
CORBA and its component model (CCM), raise the level
of abstraction at which systems are programmed by directly
supporting certain essential non-functional requirements of
these applications, such as distribution, and through add-on
capabilities, such as services that provide event-driven exe-
cution. We describe how such frameworks can be used as a
foundation for providing even higher-levels of abstraction in
system development that can be leveraged throughout the
entire software development process. Specifically, we outline
the key goals and capabilities of Cadena, an integrated en-
vironment that supports the model-driven development of
CORBA-based real-time embedded systems.

1. MODERN EMBEDDED SOFTWARE
As the processing power available in embedded platforms

continues to increase, so too does the demand for increas-
ingly capable software to meet challenging mission require-
ments. Functionality that once was ”off loaded“ to non-
embedded computing nodes is now routinely being deployed
in embedded devices. The problems of developing systems
that reliably meet stringent timing requirements were hard
enough, but now embedded systems developers are con-
fronting the same problems of scale, complexity and dis-
tribution that trouble developers in more mainstream ap-
plication domains. Consequently embedded system devel-
opers are adopting standardized component-based develop-
ment frameworks, such as CORBA, to meet those challenges
and adapting them to address timeliness requirements (e.g.,
[1]). We believe that such frameworks can be enhanced
to provide more effective support for the development of
highly-reliable embedded software.

To make our discussion more concrete, consider the “push”

Specification and Verification of Component-based Systems, Sept. 2003

model of computation used in the BoldStroke middleware [4]
which is an adaptation of CORBA. In such a model, a com-
ponent subscribes to events that signal the availability of
data that comprise its inputs, when triggered a component
access that data (either from the event payload or via com-
ponent method calls), it then perform internal calculations
and if new values result publishes an event indicating their
availability.

For such systems, it is often convenient to divide devel-
opment into component development, where generic and ap-
plication specific functionality is implemented and packaged
with CCM Interface Definition Language (IDL) defined in-
terfaces, and component integration, where potentially large
numbers of components are instantiated and assembled to
fulfill the overall system requirements. This division has the
advantage that component development can be reduced, in
the best case, to implementation of small simple sequen-
tial blocks of code. Unfortunately, component integration
remains extremely difficult.

CCM IDL and CCM-compliant middleware, such as OpenCCM
[2], provide only a limited form of modeling (i.e., defining
the input/output structure of component types), yet they
are attractive since they automate significant amounts of
platform specific coding. To develop a complete working
system, however, additional details must be provided as
code, such as, component instantiation, event subscription,
and component method synchronization. These tasks fall
to the component integrator who requires an understanding
of global system behavior to define those details. Unfortu-
nately, despite the component nature of middleware frame-
works, global reasoning requires consideration of assemblies
of component instances; modular reasoning is not well sup-
ported. Perhaps surprisingly in event-driven systems, such
as the push model described above, even simple control flow
relationships, that are syntactically apparent in many sys-
tem descriptions, are obfuscated by the inversion of control
provided by the middleware. This makes it very difficult
to to determine the functional properties of a system much
less properties related to real-time, data-coherence, correct
synchronization, etc. Automated analysis of global proper-
ties of component assemblies must be available early in the
development process for effective component integration.

It is sometimes necessary to compromise natural compo-
nent and framework abstractions in order to achieve essen-
tial system correctness properties or desired levels of per-
formance. For example, when a system contains some in-
stances of a component type that require synchronization

3

and others that do not, this non-functional aspect forces de-
velopers to define variants of the common functional com-
ponent interface. Fast-path middleware optimizations can
often be performed when knowledge about component as-
sembly (e.g., component co-location) is available. Current
approaches that delay optimization to run-time miss oppor-
tunities for even greater performance that could be achieved
by static exploitation of information about component as-
semblies that is not available in existing IDL. Component
and system modeling notations must be enriched to include
additional semantics to enable effective analysis and to in-
crease the scope and quality of system synthesis.

In this context, we have developed Cadena an integrated
environment intended to support the definition, validation
and synthesis of component-based, distributed, real-time,
embedded software from high-level structural and behavioral
models [3].

2. CADENA GOALS AND CAPABILITIES
The primary goal of Cadena is to address the problems

encountered during component integration by (i) providing
developers with feedback on system correctness properties
early in the development process, (ii) enriching the existing
synthesis technologies in middleware frameworks to gener-
ate more of the application code-base, and (iii) exploiting
information about component assemblies to drive automatic
performance optimization.

Our strategy is to exploit existing IDL as a basis for lay-
ering additional light-weight specification forms. The in-
tent is to provide a means of balancing developer investment
with accrued benefit to help address the high entry-barrier
of using formal notations that typically stifles their adop-
tion. Specifically, we have developed a suite of specification
forms that describe component instantiation (i.e., naming
and parameterization of component types), assembly (i.e.,
defining instance event subscriptions), rate (i.e., defining in-
stance execution priority), distribution (i.e., defining an in-
stance’s location within the system), dependences (i.e., defin-
ing dependencies between component inputs and outputs),
states and transitions (i.e., defining component attributes
that persist across method executions and transitions of at-
tributes achieved by execution of component methods and
event handlers), and synchronization (i.e., defining synchro-
nization policies for component methods) Our approach al-
lows related specifications to be viewed as refinements, for
example, one transition system description may refine an-
other or it may refine a dependence specification. Using
these forms, a developer may start with IDL and then selec-
tively add focused semantic information to enable specific
kinds of analysis and synthesis.

Associated with each of these specification forms is an
analysis capability including: event dependence checking (i.e.,
using dependence and state transition forms to answer queries
based on forward/backward slicing/chopping, and to detect
anomalous event sequences such as cycles and published
events without subscribers), design advice (i.e., heuristic-
driven algorithms that use structural properties of compo-
nent assemblies to generate candidate assignments for in-
stance rate and location assignments), and state-space search
(i.e., an abstract parameterizable semantic model of mid-
dleware and environment behavior is combined with state
transition forms to answer queries about the sequencing of
program actions and reachable component states). As more

forms are layered onto a system description the analyses con-
sider their composition, for example, state-space search will
exploit specified or generated component rate information
to eliminate searching infeasible system schedules. When a
form is absent the analyses make safe assumptions about
the unspecified behavior (e.g., that a component may run
at any rate). Additional forms of analysis, such as timing
and schedulability analysis, are being integrated into Ca-
dena through external tool APIs.

The goal of these analyses is two-fold: to provide inte-
grators with feedback about system properties and to drive
high-quality system synthesis. Cadena is currently capable
of synthesizing system configuration code that encodes event
subscription, rate and distribution information for Bold-
Stroke middleware. Ongoing work is enriching these ca-
pabilities to add synthesis of component code from state
transition and synchronization policy specifications. This
holds the promise of further simplifying component devel-
opment by reducing it to straight-line sequential code with
calls to well-understood library routines to achieve appli-
cation specific data transformation. Future work includes
the definition of customization APIs in middleware frame-
works that enable model-driven optimization of execution
paths within the middleware. While individual examples of
such optimizations, for example replacing publish-subscribe
mechanisms with method calls for co-located components,
have proven to be very effective, we are working towards
more general support for middleware customization.

3. CURRENT STATUS AND ONGOING WORK
Cadena is under active development, but we are making

binary releases available to community at http://cadena.

projects.cis.ksu.edu. Releases include a tutorial and a
variety of example system models. A wide variety of system
description and visualization forms are currently supported
as are a suite of analyses. Support for system generation is
via integration with OpenCCM.

Work on Cadena is supported by the U.S. Army Research
Office (DAAD190110564) and by DARPA/IXO’s PCES pro-
gram (AFRL Contract F33615-00-C-3044). As part of these
efforts, we are applying Cadena to model, analyze and gen-
erate systems that are representative of actual mission com-
puting systems for fighter aircraft in terms of both their size
(more than six hundred components) and complexity (thou-
sands of event publications per scheduling period).

4. REFERENCES
[1] B. Doerr and D. Sharp. Freeing product line

architectures from execution dependencies. In
Proceedings of the Software Technology Conference,
May 1999.

[2] GOAL. The OpenCCM platform.
http://corbaweb.lifl.fr/OpenCCM/, 2002.

[3] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and
V. Prasad. Cadena: An integrated development,
analysis, and verification environment for
component-based systems. In Proceedings of the 25th
International Conference on Software Engineering,
2003.

[4] D. Sharp. Object oriented avionics software flow
policies. In Proceedings of the 18th AIAA/IEEE Digital
Avionics Systems Conference, Oct. 1999.

4

SAVCBS 2003
PAPERS

5

Failure-free Coordinator Synthesis for Correct
Components Assembly

Paola Inverardi
University of L’Aquila

Dip. Informatica
via Vetoio 1, 67100 L’Aquila, Italy

inverard@di.univaq.it

Massimo Tivoli
University of L’Aquila

Dip. Informatica
via Vetoio 1, 67100 L’Aquila, Italy

tivoli@di.univaq.it

ABSTRACT
One of the main challenges in components assembly is re-
lated to the ability to predict possible coordination policies
of the components interaction behavior by only assuming a
limited knowledge of the single components computational
behavior. Our answer to this problem is a software architec-
ture based approach in which the software architecture im-
posed on the coordinating part of the system, allows for de-
tection and recovery of COTS (Commercial-Off-The-Shelf)
concurrency conflicts and for the enforcing of coordination
policies on the interaction behavior of the components into
composed system. Starting from the specification of the sys-
tem to be assembled and of the coordination policies for the
components interaction behavior, we develop a framework
which automatically derives the glue code for the set of com-
ponents in order to obtain a conflict-free and coordination
policy-satisfying system.

1. INTRODUCTION
One of the main challenges in components assembly is re-
lated to the ability to predict possible coordination policies
of the components interaction behavior by only assuming a
limited knowledge of the single components computational
behavior. Our answer to this problem is a software archi-
tecture based approach [11, 10] in which the software ar-
chitecture imposed on the coordinating part of the system,
allows for detection and recovery of COTS (Commercial-Off-
The-Shelf) [17] concurrency conflicts and for the enforcing
of coordination policies on the interaction behavior of the
components into composed system. Building a system from
a set of COTS components introduces problems related to
their truly black-box nature. Since system developers have
no method of looking inside the box, they can only operate
on components interaction behavior to enforce coordination
policies of the components into assembled system. In this
context, the notion of software architecture assumes a key
role since it represents the reference skeleton used to com-

pose components and let them interact. In the software ar-
chitecture domain, the interaction among the components is
represented by the notion of software connector [2]. We re-
call that a software architecture is defined as ”the structure
of the components of a system, their interrelationships, prin-
ciples and guidelines governing their design and evolution
over time, plus a set of connectors that mediate communica-
tion, coordination or cooperation among components.” [7].

Our approach is to compose systems by assuming a well de-
fined architectural style [11] in such a way that it is possible
to detect and to fix software anomalies. An architectural
style is defined as ”a set of constraints on a software ar-
chitecture that identify a class of architectures with similar
features” [4]. Moreover we assume that a specification of the
desired assembled system is available and that a precise def-
inition of the coordination policies to enforce exists. With
these assumptions we are able to develop a framework that
automatically derives the assembly code for a set of com-
ponents so that, if possible, a conflict-free and coordination
policy-satisfying system is obtained. The assembly code im-
plements an explicit software connector (i.e. a coordinator)
which mediates all interactions among the system compo-
nents as a new component to be inserted in the composed
system. The connector can then be analyzed and modified in
such a way that the concurrency conflicts can be avoided and
the specified coordination policies can be enforced on the in-
teraction behavior of the others components into assembled
system. Moreover the software architecture imposed on the
composed system allows for easy replacement of a connector
with another one in order to make the whole system flexible
with respect to different coordination policies.

In previous works [11, 10] we limited ourselves to only con-
currency conflict avoidance by enforcing only one type of co-
ordination policy namely deadlock-free policy. In [9] we have
applied the deadlock-free approach in a real scale context,
namely the context of COM/DCOM applications. In this
paper we generalize the framework by addressing generic
coordination policies of the components into assembled sys-
tem. In an other work [12] we have applied the framework
we show in this paper to an instance of a typical CSCW
(Computer Supported Cooperative Work) application, that
is a collaborative writing (CW) system we have designed.

The paper is organized as follows. Sections 2 and 3 introduce
background notions and, by using an explanatory example,

6

summarize the method concerning the synthesis of coordi-
nators that are only deadlock-free, already developed in [11,
10]. Section 3.3 contains the main contribution of the paper
and, by continuing the explanatory example, formalizes the
conflict-free coordination policy-satisfying connectors syn-
thesis. Section 4 presents related works and Section 5 dis-
cusses future work and concludes.

2. BACKGROUND
In this section we provide the background needed to under-
stand the approach formalized in Section 3.

2.1 The reference architectural style
The architectural style we use, called Connector Based Ar-
chitecture (CBA), consists of components and connectors
which define a notion of top and bottom. The top (bottom)
of a component may be connected to the bottom (top) of
a single connector. Components can only communicate via
connectors. Direct connection between connectors is disal-
lowed. Components communicate synchronously by passing
two type of messages: notifications and requests. A notifi-
cation is sent downward, while a request is sent upward. A
top-domain (bottom-domain) of a component or of a con-
nector is the set of requests sent upward and of received
notifications (of received requests received and of notifica-
tions sent downward). Connectors are responsible for the
routing of messages and they exhibit a strictly sequential
input-output behavior1. The CBA style is a generic layered
style. For the sake of presentation, in this paper we describe
our approach for single-layer systems. In [11] we show how
to cope with multi-layered systems.

2.2 Configuration formalization
To our purposes we need to formalize two different ways to
compose a system. The first one is called Connector Free
Architecture (CFA) and is defined as a set of components
directly connected in a synchronous way (i.e. without a con-
nector). The second one is called Connector Based Archi-
tecture (CBA) and is defined as a set of components directly
connected in a synchronous way to one or more connectors.
In order to describe components and system behaviors we
use CCS [14] (Calculus of Communicating Systems) nota-
tion. For the purpose of this paper this is an acceptable
assumption. Actually our framework allows to automati-
cally derive these CCS descriptions from ”HMSC (High level
Message Sequence Charts)” and ”bMSC (basic Message Se-
quence Charts)” [1] specifications of the system to be assem-
bled [16, 12]. This derivation step is performed by applying a
suitable version of a translation algorithm from bMSCs and
HMSCs to LTS (Labelled Transition Systems) [19]. HMSC
and bMSC specifications are common practice in real-scale
contexts thus CCS can merely be regarded as an internal to
the framework specification language. Since these specifi-
cations model finite-state behaviors of a system we will use
finite-state CCS:

Definition 1. Connector Free Architecture (CFA):
CFA ≡ (C1 | C2 | ... | Cn)\Sn

i=1 Acti where for all i =
1, .., n, Acti is the actions set of the CCS process Ci.

1Each input action is strictly followed by the corresponding
output action.

Definition 2. Connector Based Architecture (CBA):
CBA ≡ (C1[f1] | C2[f2] | ... | Cn[fn] | K)\Sn

i=1 Acti[fi]
where for all i = 1, .., n, Acti is the actions set of the CCS
process Ci and fi is a relabelling functions such that fi(α) =
αi for all α ∈ Acti and K is the CCS process representing
the connector.

In Figure 1 we show an example of CFA system and of the
corresponding CBA system. The double circled states rep-
resent initial states.

C1
C2 Ka

b b

a a1 a2

b2b1

C1[f1] C2[f2]a1

b1

a2

b2

CFA-system CBA-system

Figure 1: CFA and corresponding CBA

3. APPROACH DESCRIPTION
The problem we want to treat can be informally phrased as
follows: given a CFA system T for a set of black-box inter-
acting components, Ci, and a set of coordination policies P
automatically derive the corresponding CBA system V which
implements every policy in P .

We are assuming that a specification of the system to be
assembled is provided. Referring to Definition 1, we assume
that for each component a description of its behavior as
finite-state CCS term is provided (i.e. LTS Labelled Tran-
sitions System). Moreover we assume that a specification
of the coordination policies to be enforced exists. In the
following, by means of a working example, we discuss our
method proceeding in three steps as illustrated in Figure 2.

C1 C2

C3 C4
connectorStep 1: Connector

Synthesis

C1 C2

C3 C4

1 2

3 4
Step 2: Deadlocks

Analysis

deadlock-free
connector

C1 C2

C3 C4

1 2

3 4

Step 3:
Failures
Analysis

failure-free
connector

C1 C2

C3 C4

1 2

3 4

Figure 2: 3 step method

The first step builds a connector (i.e. the coordinator) fol-
lowing the CBA style constraints. The second step per-
forms the concurrency conflicts (i.e. deadlocks) detection
and recovery process. Finally, the third step performs the
enforcing of the specified coordination policies against the
conflict-free connector and then synthesizes a coordination
policy-satisfying connector. The first two steps concern the
approach already developed in our precedent works [11, 10].
Instead the third step concerns the extension of the approach
to deal with generic coordination policy. From the latter we
can derive the code implementing the coordinator compo-
nent which is by construction correct with respect to the
coordination policies specification.

Note that although in principle we could carry on the second
and third step together we decided to keep them separate.
Actually, the current framework implementation follows this
schema.

7

3.1 First step: Coordinator Synthesis
The first step of our method (see Figure 2) starts with a
CFA system and produces the equivalent CBA system. It is
worthwhile noticing that this can always be done [11]. We
proceed as follows:

i) for each finite-state CCS component specification in the
CFA system we derive the corresponding AC-Graph. AC-
Graphs model components behavior in terms of interactions
with the external environment. AC-Graph carry on infor-
mation on both labels and states:

Definition 3. AC-Graph:
Let 〈Si, Li,→i, si〉 be a labelled transition system of a com-
ponent Ci. The corresponding Actual Behavior (AC) Graph
ACi is a tuple of the form
〈NACi , LNACi , AACi , LAACi , si〉 where NACi = Si is a set
of nodes, LNACi is a set of state labels, LAACi is a set of arc
labels with τ (LAACi = Li

S
τ), AACi ⊆ NACi ×LAACi ×

NACi is a set of arcs and si is the root node.

• We shall write g
l→ h, if there is an arc (g, l, h) ∈ AACi .

We shall also write g → h meaning that g
l→ h for some

l ∈ LAACi .

• If t = l1 · · · ln ∈ LA∗
ACi

, then we write g
t

−→∗ h, if

g
l1→ · · · ln→ h. We shall also write g −→∗ h, meaning

that g
t

−→∗ h for some t ∈ LA∗
ACi

.

• We shall write g
l⇒ h, if g

t

−→∗ h for some t ∈ τ∗.l.τ∗.

In Figure 3 we show the AC-Graphs of the CFA system
of our explanatory example. The double-circled states are
the initial states. For the transition labels we use a CCS
notation (α is an input action and α is the corresponding
output action).

AC1: c

a

d
b a

S1

SI
1

S2

SI
2

SII
2

S3

SII
3

SIII
3

c

a

d

SI
3

abAC2: AC3:

Figure 3: AC-Graphs of the example

We are assuming a client-server components setting. AC1

and AC2 are the AC-Graphs of the two client components
(i.e. C1 and C2). AC3 is the AC-Graph of the server com-
ponent (i.e. C3). C3 exports two services, namely a and c.
c has not a return value. a has either b or d as return values.
The input actions on AC3 represent requests of service from
the clients while the output actions represent return values
towards the clients. The input actions on AC1 and AC2 rep-
resent return values from the server while the output actions
represent requests of service towards the server.

ii) We derive from AC-Graph the requirements on its envi-
ronment that guarantee concurrency conflict (i.e. deadlock)

freedom. Referring to Definition 1, the environment of a
component Ci is represented by the set of components Cj

(j �= i) in parallel. A component will not be in conflict with
its environment if the environment can always provide the
actions it requires for changing state. This is represented as
AS-Graphs (Figure 4):

Definition 4. AS-Graph:
Let (NACi , LNACi , AACi , LAACi , si) be the AC-Graph ACi

of a component Ci, then the corresponding ASsumption
(AS) Graph ASi is (NASi , LNASi , AASi , LAASi , si) where
NASi = NACi , LNASi = LNACi , LAASi = LAACi and
AAS= {(ν,a,ν′) | (ν,a,ν′) ∈ AAC} S {(ν,b,ν′) | (ν,b,ν′) ∈
AAC}.

AS1: c

a

d
b a

S1

SI
1

S2

SI
2

SII
2

S3

SII
3

SIII
3

c

a

d

SI
3

abAS2: AS3:

Figure 4: AS-Graphs of the example

Now if we consider Definition 2, the environment of a com-
ponent can only be represented by connectors, EX-Graph
represents the behavior that the component expects from
the connectors (Figure 5):

Definition 5. EX-Graph: Let (NASi , LNASi , AASi , LAASi ,
si) be the AS-Graph ASi of a component Ci; we define the
connector EXpected (EX) Graph EXi from the component
Ci the graph (NEXi , LNEXi , AEXi , LAEXi , si), where:

• NEXi = NASi and LNEXi = LNASi

• AEXi and LAEXi are empty

• ∀ (µ, α, µ′) ∈ AASi , with α �= τ

– Create a new node µnew with a new unique label,
add the node to NEXi and the unique label to
LNEXi

– if (µ, α, µ′) is such that α is an input action (i.e.
α = a, for some a)

∗ add the labels ai and a? to LAEXi

∗ add (µ, ai, µnew) and (µnew , a?, µ′) to AEXi

– if (µ, α, µ′) is such that α is an output action (i.e.
α = a, for some a)

∗ add the labels ai and a? to LAEXi

∗ add (µ, a?, µnew) and (µnew , ai, µ′) to AEXi

• ∀ (µ, τ , µ′) ∈ AASi add τ to LAEXi and (µ, τ , µ′) to
AEXi

iii) Each EX-Graph represents a partial view (i.e. the sin-
gle component’s view) of the connector behavior. The EX-
Graph for component Ci (i.e. EXi) is the behavior that Ci

expects from the connector. Thus EXi has either transitions

8

EX1: c2

a2

d?b1

a1

S1

SI
1

S2

SI
2

SII
2

EX2: EX3:

a?

b?

S1

SI
1

c?

a?

d2

S2 SI
2

SII
2

c?

a?

d3
S3

SII
3

c3

a3

d?

S3
SII

3

SIII
3

SIII
3

b3

a3

b?

a?

S3
SI

3

SI
3

Figure 5: EX-Graphs of the example

labelled with known actions or with unknown actions for Ci.
Known actions are performed on the channel connecting Ci

to the connector. This channel is known to Ci and identified
by a number. Unknown actions are performed on channels
connecting other components Cj (j �= i) to the connector,
therefore unknown from the Ci perspective. These chan-
nels are identified by the question mark. We derive the
connector global behavior through the following EX-Graphs
unification algorithm.

Definition 6. EX-Graphs Unification:

• Let C1, .., Cn be the components in CFA-version of the
composed system in such a way that {C1, .., Ch} is the
set of null bottom domain components and {Ch+1, .., Cn}
is the set of null top domain components;

• Let EX1, .., EXh, EXh+1, .., EXn be their correspond-
ing EX-Graphs;

• Let 1, .., h, h + 1, .., n be their corresponding commu-
nication channels;

• Let S1, .., Sh, Sh + 1, .., Sn be their corresponding cur-
rent states.

At the beginning the current states are the initial states.

1. Create the actual behavior graph of the connector,
with one node (initial state) and no arcs.

2. Set as current states of the components EX −Graphs
the respective initial states.

3. Label the connector initial state with an ordered tuple
composed of the initial states of all components (null
bottom domain and null top domain). For simplicity
of presentation we assume to order them so that the
j−th element of the state label corresponds to the cur-
rent state of the component Cj where j ∈ [1, .., h, h +
1, .., n]. This state is set as the connector current state.

4. Perform the following unification procedure:

(a) Let g be the connector current state. Mark g as
visited.

(b) Let < S1, .., Sh, Sh+1, .., Sn > be the state label
of g.

(c) Generate the set TER of action terms and the set
V AR of action variables so that ti ∈ TER, if in

EXi Si
ti⇒ Si. Similarly v? ∈ V AR, if ∃ j in such

a way that in EXj Sj
v?⇒ Sj .

(d) For all unifiable pairs (ti, v?), with i �= j do:

i. if i ∈ {1, .., h}, j ∈ {h + 1, .., n} and they do
not already exist then create new nodes (in
the connector graph) gi, gj with state label
< S1, .., Si, .., Sh, Sh+1, .., Sj , .., Sn > and
< S1, .., S

′
i, .., Sh, Sh+1, .., S

′
j , .., Sn > respec-

tively,

where in ASi Si
t⇒ S′

i and in ASj Sj
v⇒ S′

j ;

ii. if j ∈ {1, .., h}, i ∈ {h + 1, .., n} and they do
not already exist then create new nodes (in
the connector graph) gi, gj with state label
< S1, .., Sj , .., Sh, Sh+1, .., Si, .., Sn > and
< S1, .., S

′
j , .., Sh, Sh+1, .., S

′
i, .., Sn > respec-

tively,

where in ASi Si
t⇒ S′

i and in ASj Sj
v⇒ S′

j ;

iii. create the arc (g, ti, gi) in the connector
graph;

iv. mark gi as visited;

v. create the arc (gi, vj , gj) in the connector
graph.

(e) Perform recursively this procedure on all not marked
(as visited) adjacent nodes of current node.

In Figure 6 we show the connector graph for the example
illustrated in this section. The resulting CBA system is built
as defined in Definition 2.

K: c2 a2

d3
K1

K5
c3

a3

d2

K4

K9

K10
K11

b3

a3

b1

a1

K2
K3

K6

K7
K8

nodes labels:

a1 a3

K1=<S1,S2,S3>

K2=<S1,S2,S3>
K3=<SI

1,S2,SI
3>

K4=<S1,S2,S3>

K5=<S1,SI
2,S

II
3>

K6=<SI
1,S2,SI

3>

K7=<S1,SI
2,S

II
3>

K8=<SI
1,SI

2,S
III

3>

K9=<S1,S
I
2,SII

3>

K10=<S1,SII
2,SIII

3>

K11=<S 1,S
II

2,S
III

3>

Figure 6: Connector graph of the example

In [11] we have proved that the CBA-system obtained by
the connector synthesis process is equivalent to the cor-
responding CFA-system. To do this we have proved that
the CFA-system can be simulated by the synthesized CBA-
system (correctness of the synthesis) under a suitable no-
tion of ”state based”2 equivalence called CB-Simulation [11].
The starting point of CB-Simulation is the stuttering equiv-
alence [15]. We have also proved that the connector does
not introduce in the system any new logic (completeness of
the synthesis).

3.2 Second step: Concurrency conflicts avoid-
ance

The second step concerns the concurrency conflicts avoid-
ance, which is performed on the CBA system. In [11], we
have proved that if a concurrency conflict (i.e. coordination
deadlock) is possible, then this results in a precise connec-
tor behavior that is detectable by observing the connector
graph. To fix this problem it is enough to prune all the fi-
nite branches of the connector transition graph. The pruned
connector preserves all the correct (with respect to deadlock
freeness) behaviors of CFA-system [11]. In Figure 7 we show
the concurrency conflict-free connector graph.
2By definition, both CFA and CBA systems exhibit only τ
transitions.

9

K: c2 a2

d3
K1

K5
c3

a3

d2

K4

K9

K10
K11

b3

a3

b1

a1

K2
K3

K6

Figure 7: Deadlock-free connector graph of the ex-
ample

3.3 Third step: Coordination policies enforc-
ing

In this section we formalize the third step of the method of
Figure 2. This step concerns the coordination policy enforc-
ing on the connector graph.

3.3.1 Generic coordination policies specification:
The behavioral properties we want to enforce are related
to behaviors of the CFA system that concern coordination
policies of the interaction behavior of the components in
the CFA system. The CFA behaviors that do not comply
to the specified properties represent behavioral failures. A
behavior of the CFA system is given in terms of sequences
of actions performed by components in the CFA system.
In specifying properties we have to distinguish an action
α performed by a component Ci with the same action α
performed by a component Cj (i �= j). Thus, referring to
Definition 1, the behavioral properties (i.e. coordination
properties) can only be specified in terms of visible actions
of the components C1[f1], C2[f2], .., Cn[fn] where for each
i = 1, .., n, fi is a relabelling function such that fi(α) = αi

for all α ∈ Acti and Acti is the actions set for Ci. By
referring to the usual model checking approach [5] we spec-
ify every property through a temporal logic formalism. We
choose LTL [5] (Linerar-time Temporal Logic) as specifica-
tion language. We define AP = {γ : γ = li ∨ γ =
li with l ∈ LAACi , l �= τ, i = 1, .., n} as the set of atomic
proposition on which we define the LTL formulas corre-
sponding to the coordination policies. Refer to [5] for the
standard LTL syntax and semantics.

3.3.2 Enforcing a coordination policy:
The semantics of a LTL formula is defined with respect to
a model represented by a Kripke structure. We consider as
Kripke structure corresponding to the connector graph K a
connector model KSK that represents the Kripke structure
of K. KSK is defined as follows:

Definition 7. Kripke structure of a connector graph K:
Let (N, LN, LA, A, k1) be the connector graph K. We define
the Kripke Structure of K, the Kripke structure KSK =
(N, A, {k1}, LV) where LV ⊆ 2LA with
LV (k1) = {αi : LA((k, k1)) = αi, (k, k1) ∈ A}. For
each v ∈ N then LV (v) is interpreted as the set of atomic
propositions true in state v.

In Figure 8, we show the Kripke structure of K. The node
with an incoming little-arrow is the initial state. In Sec-
tion 3.3.1 we have described how we can specify a property
in terms of desired CFA behaviors. We have also said that

KSK:

{b1,d2}

{c3}{c2}
{a2}

{a3}
{d3}

{a1}

{b3}

{a3}

Figure 8: Kripke structure of K

all the undesired behaviors represent CFA failures. Analo-
gously to deadlocks analysis, we can solve behavioral failures
of the CFA system that are identifiable in the corresponding
CBA system with precise behaviors of the synthesized con-
nector. A connector behavior is simply an execution path
into the connector graph. An execution path is a sequence
of state’s transition labels. It is worthwhile noticing that
the behavioral properties (i.e. coordination properties) that
we specify for the CFA system are corresponding to behav-
ioral properties of the connector in the CBA system. In
fact every action γ = αi ∈ AP can be seen as the action
α (into the connector graph) performed on the communica-
tion channel that connects Ci to the connector. This is true
for construction (see Section 3.1). Thus let P be a behav-
ioral property specification (i.e. LTL formula) for the CFA
system, we can translate P in another behavioral property:
Pcba. Pcba is automatically obtained by applying the CCS
complement operator to the atomic propositions in P . Pcba

is the property specification for the CBA system correspond-
ing to P . Then we translate Pcba in the corresponding Büchi
Automaton [5] BPcba :

Definition 8. Büchi Automaton:
A Büchi Automaton B is a 5-tuple < S, A,
, q0, F >, where
S is a finite set of states, A is a set of actions,
 ⊆ S× A× S
is a set of transitions , q0 ∈ S is the initial state, and F ⊆ S
is a set of accepting states. An execution of B on an infinite
word w = a0a1... over A is an infinite sequence σ = q0q1...
of elements of S, where (qi, ai, qi+1) ∈
, ∀ i ≥ 0. An
execution of B is accepting if it contains some accepting
state of B an infinite number of times. B accepts a word w
if there exists an accepting execution of B on w.

Referring to our example we consider the following behav-
ioral property: P = F ((a1∧X(!a1Ua2))∨(a2∧X(!a2Ua1))).
This property specifies all CFA system behaviors that guar-
antee the evolution of all components in the system. It
specifies that the components C1 and C2 can perform the
action a by necessarily using an alternating coordination
policy. In other words it means that if the component C1

performs an action a then C1 cannot perform a again if
C2 has not performed a and viceversa. The connector to
be synthesized will avoid starvation by satisfying this prop-
erty. In Figure 9 we show BPcba . We recall that Pcba =
F ((a1 ∧ X(!a1Ua2)) ∨ (a2 ∧ X(!a2Ua1))); p0 and p2 are the
initial and accepting state respectively.

Given a Büchi Automaton A, L(A) is the language con-
sisting of all words accepted by A. Moreover to a Kripke
structure T corresponds a Büchi Automaton BT [5]. We
can derive BKSK as the Büchi Automaton corresponding
to KSK (see Figure 9). The double-circled states are ac-
cepting states. Given BKSK = (N, A′, ∆, {s}, N) and BP =

10

p0

p1

p3

a1 a2

true

BPcba

!a1

a2 a1

!a2

p2

b1

c3

c2

a2

a3

d3

a1b3

a3

 d2

BKS K

k
1

k2
k3 k4 k

5

k
6

k
9

k
10

k
11

Figure 9: Büchi Automata BPcba and BKSK of Pcba

and KSK respectively

(S, A′′, Γ, {v}, F) the method performs the following enforc-
ing procedure in order to synthesize a deadlock-free connec-
tor graph that satisfies the property P :

1. build the automaton that accepts L(BKSK)∩ L(BPcba);
this automaton is defined as
BK,P

intersection = (S × N, A′, ∆′, {< v, s >}, F × N)
where (< ri, qj >, a,< rm, qn >) ∈ ∆′ if and only if
(ri, a, rm) ∈ Γ and (qj , a, qn) ∈ ∆;

2. if B
K,Pcba
intersection is not empty return B

K,Pcba
intersection as the

Büchi Automaton corresponding to the P -satisfying ex-
ecution paths of K.

In Figure 10, we show BK,Pcba
intersection.

a1

a3

b3

c3
a2

b1

d3

c2

(k1,p0)

(k2,p1)(k3,p1)

(k6,p1)

(k1,p1)

(k4,p1)

(k5,p1) (k9,p3)

(k10,p2)(k4,p0) (k5,p0) (k9,p2)

(k11,p2)

c2
c3 a2

a3

d2
b1 d2

(k1,p2)

a1 c2

(k4,p2)(k2,p3)

c3

(k5,p2)

a1

a3

b3

c3

b1

d3

c2

(k1,p0)

(k2,p1)(k3,p1)

(k6,p1)

(k1,p1)

(k4,p1)

(k5,p1)

(k10,p2)(k4,p0) (k5,p0) (k9,p2)

(k11,p2)

c2
c3 a2

a3

d2
(k1,p2)

a2

(k9,p3)

a1

(k2,p3)

Figure 10: BK,Pcba
intersection and deadlock-free property-

satisfying connector graph of the explanatory ex-
ample

Finally our method derives from B
K,Pcba
intersection the correspond-

ing connector graph. This graph is constructed by consid-
ering the execution paths of BK,Pcba

intersection that are only ac-
cepting (see the path made of bold arrows in Figure 10); we

define an accepting execution path of B
K,Pcba
intersection as follows:

Definition 9. Accepting execution path of B
K,Pcba
intersection:

Let BK,Pcba
intersection = (S × N, ∆′, {< v, s >}, F × N) be the

automaton that accepts L(BKSK) ∩ L(BPcba). We define

an accepting execution path of BK,Pcba
intersection a sequence of

states γ = s1, s2, .., sn such that ∀ i = 1, .., n : si ∈ S× N ;
for 1 ≤ i ≤ n − 1, (si, si+1) ∈ ∆′ and (sn, s1) ∈ ∆′ or
(sn, s1) /∈ ∆′; and ∃ k = 1, .., n : k ∈ F × N .

In Figure 10, we show the deadlock-free property-satisfying
connector graph for our explanatory example. Depending
on the property, this graph could contain finite paths (i.e.
paths terminating with a stop node). Note that at this stage
the stop nodes representing accepting states. In fact we
have obtained the deadlock-free property-satisfying connec-
tor graph by considering only the accepting execution paths
of B

K,Pcba
intersection, thus stop nodes represent connector states

satisfying the property. Once the connector has reached an
accepting stop node it will return to its initial state waiting
for a new request from an its client. Returning to the ini-
tial state is not explicitly represented in the deadlock-free
property-satisfying connector graph but it will be implicitly
considered in the automatic derivation of the code imple-
menting the deadlock-free property-satisfying connector. By
visiting this graph and by exploiting the information stored
in its states and transitions we can automatically derive the
code that implements the P-satisfying deadlock-free connec-
tor (i.e. the coordinator component) analogously to what
done for deadlock-free connectors [10]. The implementation
refers to Microsoft COM (Component Object Model) com-
ponents and uses C++ wiht ATL (Active Template Library)
as programming environment. The connector component K
implements the COM interface IC3 of the component C3

by defining a COM class K and by implementing a wrap-
ping mechanism in order to wrap the requests that C1 and
C2 perform on component C3 (actions a and c on AC1 and
AC2 of Figure 3). In the following we show fragments of
the IDL (Interface Definition Language) definition for K, of
the K COM library and of the K COM class respectively.
c3Obj is an instance of the inner COM server corresponding
to C3 and encapsulated into connector component K.

import ic3.idl; ... library K_Lib {

...

coclass K {

[default] interface IC3;

}

}

...

class K : public IC3 {

// stores the current state of the connector

private static int sLbl;

// stores the current state of the

// property automaton

private static int pState;

// stores the number of clients

private static int clientsCounter = 0;

// channel’s number of a client

private int chId;

// COM smart pointer; is a reference to

// the C3 server object

private static C3* c3Obj;

...

// the constructor

K() {

sLbl = 1;

pState = 0;

clientsCounter++;

chId = clientsCounter;

c3Obj = new C3();

...

}

// implemented methods

...

}

In the following we show the deadlock-free property-satisfying
code implementing the methods a and c of the connector
component K. Even if the property P of our example con-
siders a coordination policy only for action a, we have to

11

coordinate also the requests of c in order to satisfy P . Actu-
ally, as we can see in Figure 10, the deadlock-free property-
satisfying connector has execution paths in which transitions
labelled with c there exist.

HRESULT a(/* params list of a */) {

if(sLbl == 1) {

if((chId == 1) && (pState == 0)) {

return c3Obj->a(/* params list of a */);

pState = 1; sLbl = 1; //it goes on the state preceding the next

//request of a method from a client

}

else if((chId == 1) && (pState == 2)) {

return c3Obj->a(/* params list of a */);

pState = 0; sLbl = 1; //since it has found an accepting stop node,

//it returns to its initial state

}

}

else if(sLbl == 5) {

if((chId == 2) && (pState == 1)) {

return c3Obj->a(/* params list of a */);

pState = 0; sLbl = 1; //since it has found an accepting stop node,

//it returns to its initial state

}

else if((chId == 2) && (pState == 0)) {

return c3Obj->a(/* params list of a */);

pState = 2; sLbl = 1; //it goes on the state preceding the next

//request of a method from a client

}

}

return E_HANDLE;

}

HRESULT c(/* params list of c */) {

if(sLbl == 1) {

if((chId == 2) && (pState == 1)) {

return c3Obj->a(/* params list of a */);

pState = 1; sLbl = 5; //it goes on the state preceding the next

//request of a method from a client

}

else if((chId == 2) && (pState == 0)) {

return c3Obj->a(/* params list of a */);

pState = 0; sLbl = 5; //it goes on the state preceding the next

//request of a method from a client

}

}

return E_HANDLE;

}

In [13] we prove the correctness of the property enforcing
procedure. We prove that the CBA-system based on the
property-satisfying deadlock-free connector preserves all the
property-satisfying behaviors of the corresponding deadlock-
free CFA-system.

4. RELATED WORKS
The architectural approach to correct and automatic con-
nector synthesis presented in this paper is related to a large
number of other problems that have been considered by re-
searchers over the past two decades. For the sake of brevity
we mention below only the works closest to our approach.
The most strictly related approaches are in the ”scheduler
synthesis” research area. In the discrete event domain they
appear as ”supervisory control” problem [3, 18]. In very
general terms, these works can be seen as an instance of
a problem similar to the problem treated in our approach.
However the application domain of these approaches is sensi-
bly different from the software component domain. Dealing
with software components introduces a number of problem-
atic dimensions to the original synthesis problem. There
are two main problems with this approach: i) the compu-
tational complexity and the state-space explosion and ii) in
general the approach is not compositional. The first prob-
lem can be avoided by using a logical encoding of the system
specification in order to use a more efficient data structure
(i. e. BDD (Binary Decision Diagram)) to perform the su-
pervisor synthesis; however the second problem cannot be

avoided and only under particular conditions it is possible
to synthesize the global complete supervisor by composing
modular supervisors. While the state-space explosion is a
problem also present in our approach, on the other side we
have proved in [11] that our approach is always composi-
tional. It means that if we build the connector for a given
set of components and later we add a new component in the
resulting system we can extend the already available con-
nector and we must not perform again the entire synthesis
process.

Other works that are related to our approach, appear in
the model checking of software components context in which
CRA (Compositional Reachability Analysis) techniques are
largely used [8]. Also these works can be seen as an instance
of the general problem formulated in Section 3. They pro-
vide an optimistic approach to software components model
checking. These approaches suffer the state-space explo-
sion problem. However this problem is raised only in the
worst case that may not be the case often in practice. In
these approaches the assumptions that represent the weakest
environment in which the components satisfy the specified
properties are automatically synthesized. However the syn-
thesized environment does not provide a model for the prop-
erties satisfying glue code. The synthesized environment
may be rather used for runtime monitoring or for compo-
nents retrieval.

Recently promising formal techniques for the compositional
analysis of component based design have been developed [6].
The key of these works is the modular-based reasoning that
provides a support for the modular checking of behavioral
properties. The goal of these works is quite different from
our in fact they are related only to software components
interfaces compatibility check. Thus they provide only a
check on component-based design level.

5. CONCLUSION AND FUTURE WORKS
In this paper we have described a connector-based archi-
tectural approach to component assembly. Our approach
focusses on detection and recovery of the assembly behav-
ioral failures. A key role is played by the software archi-
tecture structure since it allows all the interactions among
components to be explicitly routed through a synthesized
connector. We have applied our approach to an example
and we have discussed its implications on the actual nature
of black-box components. As far as components are con-
cerned we only assumed to have a CCS description of the
components behavior. For the purpose of this paper this is
an acceptable assumption. However our framework allows
to automatically derive these CCS descriptions from spec-
ifications that are common practice in real-scale contexts.
For behavioral properties we have shown in this paper how
to go beyond deadlock. The complexity of the synthesis
and analysis algorithm is exponential either in space and
time. This value of complexity is obtained by considering
the unification process complexity and the size of the data
structure used to build the connector graph. At present we
are studying better data structures for the connector model
in order to reduce their size. By referring to the automata
based model checking [5], we are also working to perform on
the fly analysis during the connector model building process.
Other possible limits of the approach are: i) we completely

12

centralize the connector logic and we provide a strategy for
the connector source code derivation step that derives a cen-
tralized implementation of the connector component. We
do not think this is a real limit because even if we central-
ize the connector logic we can actually think of deriving a
distributed implementation of the connector component; ii)
we assume that an HMSC and bMSC specification for the
system to be assembled is provided. Although this is reason-
able to be expected, it is interesting to investigate testing
and inspection techniques to directly derive from a COTS
(black-box) component some kind (possibly partial) behav-
ioral specification; iii) we assume also an LTL specification
for the behavioral property to be checked. It is interesting
to find a more user-friendly property specification; for exam-
ple by extending the HMSC and bMSC notations to express
more complex system’s components interaction behaviors.

Acknowledgements
This work has been partially supported by Progetto MIUR
SAHARA.

6. REFERENCES
[1] Itu telecommunication standardisation sector, itu-t

reccomendation z.120. message sequence charts.
(msc’96). Geneva 1996.

[2] R. Allen and D. Garlan. A formal basis for
architectural connection. ACM Transactions On
Software Engineering and Methodology, Vol. 6, No. 3,
pp. 213-249, 6(3):213–249, July 1997.

[3] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi,
and G. F. Franklin. Supervisory control of a rapid
thermal multiprocessor. IEEE Transactions on
Automatic Control, 38(7):1040–1059, July 1993.

[4] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison Wesley, 1998.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts,
London, England, 2001.

[6] L. de Alfaro and T. Heinzinger. Interface automata. In
ACM Proc. of the joint 8th ESEC and 9th FSE, ACM
Press, Sep 2001.

[7] D. Garlan and D. E. Perry. Introduction to the Special
Issue on Software Architecture, Vol. 21. Num. 4. pp.
269-274, April 1995.

[8] D. Giannakopoulou, C. S. Pasareanu, and
H. Barringer. Assumption generation for software
component verification. Proc. 17th IEEE Int. Conf.
Automated Software Engineering 2002, September
2002.

[9] P. Inverardi and M. Tivoli. Deadlock-free software
architectures for com/dcom applications. Journal of
Systems and Software, Volume 65, Issue 3, 15 March
2003, Pages 173-183, Component-Based Software
Engineering.

[10] P. Inverardi and M. Tivoli. Automatic synthesis of
deadlock free connectors for com/dcom applications.
In ACM Proceedings of the joint 8th ESEC and 9th
FSE, ACM Press, Vienna, Sep 2001.

[11] P. Inverardi and M. Tivoli. Connectors synthesis for
failures-free component based architectures. Technical
Report, University of L’Aquila, Department of
Computer Science,
http://sahara.di.univaq.it/tech.php?id tech=7 or
http://www.di.univaq.it/∼tivoli/ffsynthesis.pdf,
ITALY, January 2003.

[12] P. Inverardi, M. Tivoli, and A. Bucchiarone.
Automatic synthesis of coordinators of cots
group-ware applications: an example. International
Workshop on Distributed and Mobile Collaboration
(DMC 2003),
http://www.di.univaq.it/tivoli/Publications
/Full/DMC2003.pdf, 9-11 June, Linz, Austria
WETICE 2003.

[13] P. Inverardi, M. Tivoli, and A. Bucchiarone.
Failures-free connector synthesis for correct
components assembly. Technical Report, University of
L’Aquila, Department of Computer Science,
http://www.di.univaq.it/tivoli/ffs techrep.pdf, ITALY,
March 2003.

[14] R. Milner. Communication and Concurrency. Prentice
Hall, New York, 1989.

[15] R. D. Nicola and F. Vaandrager. Three logics for
branching bisimulation. Journal of the ACM,
42(2):458–487, 1995.

[16] P.Inverardi and M.Tivoli. Automatic failures-free
connector synthesis: An example. published on the
post-workshop proceedings of Monterey 2002
Workshop: Radical Innovations of Software and
Systems Engineering in the Future, Venezia (ITALY),
September 2002.

[17] C. Szyperski. Component Software. Beyond Object
Oriented Programming. Addison Wesley, Harlow,
England, 1998.

[18] E. Tronci. Automatic synthesis of controllers from
formal specifications. Proc. of 2nd IEEE Int. Conf. on
Formal Engineering Methods, December 1998.

[19] S. Uchitel, J. Kramer, and J. Magee. Detecting
implied scenarios in message sequence chart
specifications. In ACM Proceedings of the joint 8th
ESEC and 9th FSE, Vienna, Sep 2001.

13

Proof Rules for Automated Compositional Verification
through Learning

Howard Barringer
∗

Department of Computer Science

University of Manchester

Oxford Road, Manchester, M13 9PL

howard@cs.man.ac.uk

Dimitra Giannakopoulou
RIACS/USRA

NASA Ames Research Center

Moffett Field, CA 94035-1000, USA

dimitra@email.arc.nasa.gov

Corina S. Păsăreanu
Kestrel Technology LLC

NASA Ames Research Center

Moffett Field, CA 94035-1000, USA

pcorina@email.arc.nasa.gov

ABSTRACT
Compositional proof systems not only enable the stepwise
development of concurrent processes but also provide a ba-
sis to alleviate the state explosion problem associated with
model checking. An assume-guarantee style of specification
and reasoning has long been advocated to achieve compo-
sitionality. However, this style of reasoning is often non-
trivial, typically requiring human input to determine appro-
priate assumptions. In this paper, we present novel assume-
guarantee rules in the setting of finite labelled transition
systems with blocking communication. We show how these
rules can be applied in an iterative and fully automated
fashion within a framework based on learning.

Keywords
Parallel Composition, Automated Verification, Assumption
Generation, Learning

1. INTRODUCTION
Our work is motivated by an ongoing project at NASA Ames
Research Center on the application of model checking to the
verification of autonomous software. Autonomous software
involves complex concurrent behaviors for reacting to exter-
nal stimuli without human intervention. Extensive verifica-
tion is a pre-requisite for the deployment of missions that
involve autonomy.

Given a finite model of a system and of a required prop-
erty, model checking can be used to determine automatically
whether the property is satisfied by the system. The limi-
tation of this approach, commonly referred to as the “state-
explosion” problem [7], is that it needs to store the explored

∗This author is most grateful to RIACS/USRA and the
UK’s EPSRC under grant GR/S40435/01 for the partial
support provided to conduct this research

system states in memory, which may be prohibitively large
for realistic systems.

Compositional verification presents a promising way of ad-
dressing state explosion. It advocates a “divide and con-
quer” approach where properties of the system are decom-
posed into properties of its components, so that if each com-
ponent satisfies its respective property, then so does the en-
tire system. Components are therefore model checked sepa-
rately. It is often the case, however, that components only
satisfy properties in specific contexts (also called environ-
ments). This has given rise to the application of assume-
guarantee reasoning [16, 21] to model checking [11].

Assume-guarantee1 reasoning first checks whether a compo-
nent M guarantees a property P , when it is part of a system
that satisfies an assumption A. Intuitively, A characterizes
all contexts in which the component is expected to operate
correctly. To complete the proof, it must also be shown that
the remaining components in the system, i.e., M ’s environ-
ment, satisfy A. Several frameworks have been proposed [16,
21, 6, 14, 24, 15] to support this style of reasoning. However,
their practical impact has been limited because they require
non-trivial human input in defining assumptions that are
strong enough to eliminate false violations, but that also
reflect appropriately the remaining system.

In previous work [8], we developed a novel framework to per-
form assume-guarantee reasoning in an iterative and fully
automatic fashion; the approach uses learning and model-
checking. To check that a system made up of components
M1 and M2 satisfies a property P , our framework automat-
ically learns and refines assumptions for one of the compo-
nents to satisfy P , which it then tries to discharge on the
other component. Our approach is guaranteed to terminate,
stating that the property holds for the system, or returning
a counterexample if the property is violated.

This work introduces a variety of sound and complete assume-
guarantee rules in the setting of Labeled Transition Systems
with blocking communication. The rules are motivated by
the need for automating assume-guarantee reasoning. How-

1The original terminology for this style of reasoning was
rely-guarantee or assumption-commitment; it was intro-
duced for enabling top-down development of concurrent sys-
tems.

14

ever, in contrast to our previous work, they are symmetric,
meaning that they are based on establishing and discharg-
ing assumptions for both components at the same time. The
remainder of this paper is organized as follows. We first pro-
vide some background in Section 2, followed by some basic
compositional proof rules in Section 3. The framework that
automates these rules is presented in Section 4. Section 5
introduces rules that optimize and extend the basic rules.
Finally, Section 6 presents related work and Section 7 con-
cludes the paper.

2. BACKGROUND
We use Labeled Transition Systems (LTSs) to model the
behavior of communicating components in a concurrent sys-
tem. In this section, we provide background on LTSs and
their associated operators, and also present how properties
are expressed and checked in our framework. We also sum-
marize the learning algorithm that is used to automate our
compositional verification approach.

2.1 Labeled Transition Systems
Let Act be the universal set of observable actions and let
τ denote a local action unobservable to a component’s envi-
ronment. An LTS M is a quadruple 〈Q, αM, δ, q0〉 where:

• Q is a non-empty finite set of states

• αM ⊆ Act is a finite set of observable actions called
the alphabet of M

• δ ⊆ Q × αM ∪ {τ} × Q is a transition relation

• q0 ∈ Q is the initial state

An LTS M = 〈Q, αM, δ, q0〉 is non-deterministic if it con-
tains τ -transitions or if ∃(q, a, q′), (q, a, q′′) ∈ δ such that
q′ �= q′′. Otherwise, M is deterministic.

Traces. A trace t of an LTS M is a sequence of observable
actions that M can perform starting at its initial state. For
Σ ⊆ Act, we use t�Σ to denote the trace obtained by re-
moving from t all occurrences of actions a /∈ Σ. The set of
all traces of M is called the language of M , denoted L (M).
We will freely use the expression “a word t is accepted by
M” to mean that t ∈ L (M). Note that the empty word is
accepted by any LTS.

Parallel Composition. Let M = 〈Q, αM, δ, q0〉 and M ′ =
〈Q′, αM ′, δ′, q0′〉. We say that M transits into M ′ with

action a, denoted M
a−→ M ′, if and only if (q0, a, q0′) ∈ δ

and αM = αM ′ and δ = δ′.

The parallel composition operator ‖ is a commutative and
associative operator that combines the behavior of two com-
ponents by synchronizing the actions common to their al-
phabets and interleaving the remaining actions.

Let M1 = 〈Q1, αM1, δ1, q01〉 and M2 = 〈Q2, αM2, δ2, q02〉
be two LTSs. Then M1 ‖ M2 is an LTS M = 〈Q, αM, δ, q0〉,
where Q = Q1 × Q2, q0 = (q01, q02), αM = αM1 ∪ αM2,
and δ is defined as follows, where a is either an observable
action or τ (note that the symmetric rules are implied by
the fact that the operator is commutative):

M1
a−→ M ′

1, a /∈ αM2

M1 ‖ M2
a−→ M ′

1 ‖ M2

M1
a−→ M ′

1, M2
a−→ M ′

2, a �= τ

M1 ‖ M2
a−→ M ′

1 ‖ M ′
2

Note. L (M1 ‖ M2) = {t | t�αM1 ∈ L (M1) ∧ t�αM2 ∈
L (M2) ∧ t ∈ (αM1 ∪ αM2)

∗}

Properties and Satisfiability. A property is also defined
as an LTS P , whose language L (P) defines the set of accept-
able behaviors over αP . An LTS M satisfies P , denoted as
M |= P , if and only if ∀t ∈ L (M).t�αP ∈ L (P).

2.2 LTSs and Finite-State Machines
As will be described in section 4, our proof-rules require the
use of the “complement” of an LTS. LTSs are not closed
under complementation (their languages are prefix-closed),
so we need to define here a more general class of finite-state
machines (FSMs) and associated operators for our frame-
work.

An FSM M is a five tuple 〈Q, αM, δ, q0, F 〉 where Q, αM, δ,
and q0 are defined as for LTSs, and F ⊆ Q is a set of ac-
cepting states.

For an FSM M and a word t, we use δ̂(q, t) to denote
the set of states that M can reach after reading t start-
ing at state q. A word t is said to be accepted by an FSM
M = 〈Q, αM, δ, q0, F 〉 if δ̂(q0, t) ∩ F �= ∅. Note that in the
following sections, the term trace is often used to denote a
word. The language accepted by M , denoted L (M) is the

set {t | δ̂(q0, t) ∩ F �= ∅}.

For an FSM M = 〈Q, αM, δ, q0, F 〉, we use LTS(M) to de-
note the LTS 〈Q, αM, δ, q0〉 defined by its first four fields.
Note that this transformation does not preserve the lan-
guage of the FSM. On the other hand, an LTS is in fact a
special instance of an FSM, since it can be viewed as an FSM
for which all states are accepting. From now on, whenever
we apply operators between FSMs and LTSs, it is implied
that the LTS is treated as its corresponding FSM.

We call an FSM M deterministic iff LTS(M) is deterministic.

Parallel Composition. Let M1 = 〈Q1, αM1, δ1, q01, F1〉
and M2 = 〈Q2, αM2, δ2, q02, F2〉 be two FSMs. Then M1 ‖
M2 is an FSM M = 〈Q, αM, δ, q0, F 〉, where:

• 〈Q, αM, δ, q0〉 = LTS(M1) ‖ LTS(M2), and

• F = {(s1, s2) ∈ Q1 × Q2 | s1 ∈ F1 ∧ s2 ∈ F2}.

Note. L (M1 ‖ M2) = {t | t�αM1 ∈ L (M1) ∧ t�αM2 ∈
L (M2) ∧ t ∈ (αM1 ∪ αM2)

∗}

Satisfiability. For FSMs M and P where αP ⊆ αM , M |=
P if and only if ∀t ∈ L (M).t�αP ∈ L (P).

Complementation. The complement of an FSM (or an
LTS) M , denoted coM , is an FSM that accepts the com-
plement of M ’s language. It is constructed by first making

15

M deterministic, subsequently completing it with respect
to αM , and finally turning all accepting states into non-
accepting ones, and vice-versa. An automaton is complete
with respect to some alphabet if every state has an outgo-
ing transition for each action in the alphabet. Completion
typically introduces a non-accepting state and appropriate
transitions to that state.

2.3 The L* Algorithm
In Section 4, we present a framework that automates com-
positional reasoning using a learning algorithm.

The learning algorithm (L*) used by our approach was de-
veloped by Angluin [2] and later improved by Rivest and
Schapire [22]. L* learns an unknown regular language (U
over an alphabet Σ) and produces a deterministic FSM C
such that L(C) = U . L* works by incrementally producing
a sequence of candidate deterministic FSMs C1, C2, ... con-
verging to C. In order to learn U , L* needs a Teacher to
answer two type of questions. The first type is a member-
ship query, consisting of a string σ ∈ Σ∗; the answer is true
if σ ∈ U , and false otherwise. The second type of question
is a conjecture, i.e. a candidate deterministic FSM C whose
language the algorithm believes to be identical to U . The
answer is true if L (C) = U . Otherwise the Teacher returns
a counterexample, which is a string σ in the symmetric dif-
ference of L (C) and U .

At a higher level, L* creates a table where it incrementally
records whether strings in Σ∗ belong to U . It does this
by making membership queries to the Teacher. At various
stages L* decides to make a conjecture. It constructs a can-
didate automaton C based on the information contained in
the table and asks the Teacher whether the conjecture is
correct. If it is, the algorithm terminates. Otherwise, L*
uses the counterexample returned by the Teacher to extend
the table with strings that witness differences between L (C)
and U .

L* is guaranteed to terminate with a minimal automaton
C for the unknown language U . Moreover, each candidate
deterministic FSM Ci that L* constructs is smallest, in the
sense that any other deterministic FSM consistent with the
table has at least as many states as Ci. The candidates
conjectured by L* strictly increase in size; each candidate is
smaller than the next one, and all incorrect candidates are
smaller than C. Therefore, if C has n states, L* makes at
most n − 1 incorrect conjectures.

3. COMPOSITIONAL PROOF RULES
3.1 Motivation
In our previous work on assumption generation and learning
[12, 8], we used the following basic rule for establishing that
a property P holds for a (closed) parallel composition of two
software components M1 and M2.

Rule 0.

1 : M1 ‖ AM1 |= P
2 : M2 |= AM1

M1 ‖ M2 |= P

AM1 denotes an assumption about the environment in which
M1 is placed.

In [12], we present an approach to synthesizing the assump-
tion that a component needs to make about its environment
for a given property to be satisfied. The assumption pro-
duced is the weakest, that is, it restricts the environment
no more and no less than is necessary for the component to
satisfy the property. The automatic generation of weakest
assumptions has direct application to the assume-guarantee
proof. More specifically, it removes the burden of specifying
assumptions manually thus automating this type of reason-
ing.

The algorithm presented in [12] does not compute partial re-
sults, meaning no assumption is obtained if the computation
runs out of memory, which may happen if the state-space
of the component is too large. We address this problem
in [8], where we present a novel framework for performing
assume-guarantee reasoning using the above rule in an incre-
mental and fully automatic fashion. The framework iterates
a process based on gradually learning assumptions. The
learning process is based on queries to component M1 and
on counterexamples obtained by model checking M1 and its
environment, i.e. component M2, alternately. Each iteration
may conclude that the required property is satisfied or vio-
lated in the system analyzed. This process is guaranteed to
terminate; in fact, it converges to an assumption that is nec-
essary and sufficient for the property to hold in the specific
system.

Although sound and complete, Rule 0 is unsatisfactory from
an automation point of view 2 since it is not symmetric. We
thus considered whether some form of “circular”, assume-
guarantee like, rule could be developed. For our framework
the obvious rule for the parallel composition of two pro-
cesses, where the assumption of each process is discharged
by the commitment (or guarantee) of the other, however, is
unsound. Indeed, we demonstrate the unsoundness of the
following rule.

Rule 0m.

1 : M1 ‖ AM1 |= P
2 : M2 ‖ AM2 |= P
3 : P |= AM1

4 : P |= AM2

M1 ‖ M2 |= P

Take M1 and M2 each to be the same process M and the
property P as illustrated in Figure 1.

Now take as assumption AM1 the behaviour defined by P ,
similarly for AM2 . Clearly, premises 3 and 4 hold. And
premises 1 and 2 also hold; the parallel composition of M1

with the assumption AM1 constrains its behaviour to be
just that of P , similarly for premise 2. But unfortunately
the conclusion doesn’t hold since, in our framework, M1

composed in parallel with M2 is the behaviour M again;
M clearly violates property P since it allows b to occur

2It is also unsatisfactory from a formal development point
of view!

16

P:

0 1
b

a

2

b a

0
ba

1

M:

Figure 1: Example of process M and property P to
demonstrate unsoundness of Rule 0m

first, rather than ensuring a does. The circular reasoning
to discharge the assumptions in this case was unsound. The
above rule fails for our framework essentially because the
two components may have common erroneous behaviour(as
far as the property is concerned) which is (mis-)ruled out by
assumptions that are overly presumptuous for the particular
composition.

3.2 Basic Proof Rule
In the following we give a symmetric parallel composition
rule and establish its soundness and completeness for our
framework. In Section 4 we then outline how the rule can be
used for automated compositional verification along similar
lines to the approach given in [8].

Rule 1.

1 : M1 ‖ AM1 |= P
2 : M2 ‖ AM2 |= P
3 : L (coAM1 ‖ coAM2) = ∅

M1 ‖ M2 |= P

M1, M2, AM1 , AM2 and P are LTSs3 as defined in the previ-
ous section; we require αP ⊆ αM1 ∪αM2, αAM1 ⊆ (αM1 ∩
αM2) ∪ αP and αAM2 ⊆ (αM1 ∩ αM2) ∪ αP . Informally,
however, the AMi are postulated environment assumptions
for the components Mi to achieve, respectively, property P .
coAM1 denotes the co-assumption for M1, which is the com-
plement of AM1 . Similarly for coAM2 .

The intuition behind premise 3 stems directly from an un-
derstanding of the failure of Rule 0m; premise 3 ensures that
the assumptions do not both rule out possible, common, vi-
olating behaviour from the components. For example, Rule
0m failed in our example above, because both assumptions
ruled out common behaviour (ba)∗ of M1 and M2, which
violates property P . Premise 3 in Rule 1 is a remedy for
this problem.

Theorem 1. Rule 1 is sound and complete.

Proof. To establish soundness, we show that the premises
together with the negated conclusion leads to a contradic-
tion. Consider a word t for which the conclusion fails, i.e. t
is a trace of M1 ‖ M2 that violates property P , in other

3except for when AM1 , AM2 and P are false, in which case
they are represented as FSMs

words t is not accepted by P . Clearly, by definition of par-
allel composition, t � αM1 is accepted by M1. Hence, by
premise 1, the trace t�αAM1 can not be accepted by AM1 ,
i.e. t�αAM1 is accepted by coAM1 . Similarly, by premise 2,
the trace t�αAM2 is accepted by coAM2 . By the definition
of parallel composition and the fact that an FSM and its
complement have the same alphabet, t�(αAM1 ∪ AM2) will
be accepted by coAM1 ‖ coAM2 . But premise 3 states that
there are no common words in the co-sets. Hence we have a
contradiction.

Our argument for the completeness of Rule 1 relies upon
the use of weakest environment assumptions that are con-
structed in a similar way to [12]. Let WA(M, P) denote the
weakest environment for M that will achieve property P .
WA(M, P) is such that, for any environment A, M ‖ A |= P
iff A |= WA(M, P).

Lemma 1. coWA(M, P) is the set of all traces over the
alphabet of WA(M, P) in the context of which M violates
property P . In other words, this defines the most general
violating environment for (M, P). A violating environment
for (M, P) is one that causes M to violate property P in all
circumstances.

To establish completeness, we assume the conclusion of the
rule and show that we can construct assumptions that will
satisfy the premises of the rule. In fact, we construct the
weakest assumptions WAM1

4, resp. WAM2 , for M1, resp.
M2, to achieve P , and substitute them for AM1 and AM2 .
Clearly premises 1 and 2 are satisfied. It remains to show
that premise 3 holds. Again we proceed by proof by contra-
diction. Suppose there is a word t in L (coWAM1 ‖ coWAM2).
By definition of parallel composition, t is accepted by both
coWAM1 and coWAM2 . By Lemma 1, t�αP violates prop-
erty P . Furthermore, there will exist t1 ∈ L (M1 ‖ coP) such
that t1�αt = t, where αt is the alphabet of the assumptions.
Similarly for t2 ∈ L (M2 ‖ coP). t1 and t2 can then be com-
bined to be a trace t3 of M1 ‖ M2 such that t3�αt = t. But
if that is so, this contradicts the assumed conclusion that
M1 ‖ M2 |= P , since t violates P . Therefore, there can not
be such a common word t and premise 3 holds.

4. AUTOMATED REASONING
4.1 Framework
For the use of Rule 1 to be justified, the assumptions AM1

and AM2 must be more abstract than the components that
they represent, i.e. M2 and M1 respectively, but also strong
enough for the three steps of the rule to be satisfied. Devel-
oping such assumptions is a non-trivial process. We propose
an iterative approach to automate the application of Rule
1. The approach extends the framework of counterexample-
based learning presented in [8]. As in our previous work
and as supported by the LTSA model checking tool [19], we
assume that both properties and assumptions are described
by deterministic FSMs; this is not a serious limitation since
any non-deterministic FSM can be transformed to a deter-
ministic one via the subset construction.

4Since the context is clear we abbreviate WA(M, P) as
WAM .

17

Analysis
Counterexample

Assumption
Learning

|| M11M
i

Assumption
Learning

1M
i

2

i
McoA

1

Model checking

M1 || M2 |= P

strengthenstrengthen

weaken weaken

true true

false false

true

false

|= P1: A

3: || = O

A Aj
M

|= P2: || MA
2

j
M 2

j
McoA

2

M1 || M2 |= P
+ counterexample

Figure 2: Incremental compositional verification

To obtain appropriate assumptions, our framework applies
the compositional rule in an iterative fashion as illustrated
in Fig. 2. We use a learning algorithm to generate incre-
mentally an assumption for each component, each of which
is strong enough to establish the property P , i.e. to discharge
premises 1 and 2 of Rule 1.

We have seen in the previous section that Rule 1 is guaran-
teed to return conclusive results with the weakest assump-
tions WAM1 , resp. WAM2 , for M1, resp. M2, to achieve
P . We therefore use L* to iteratively learn the traces of
WAM1 , resp. WAM2 . Conjectures are intermediate assump-
tions Ai

M1 , resp. Aj
M2

. As in [8], we use model checking to
implement the Teacher needed by L*.

At each iteration, L* is used to build approximate assump-
tions Ai

M1 and Aj
M2

, based on querying the system and on
the results of the previous iteration. The first two premises
of the compositional rule are then checked. Premise 1 is
checked to determine whether M1 guarantees P in environ-
ments that satisfy Ai

M1 . If the result is false, it means that

this assumption is too weak, i.e. Ai
M1 does not restrict the

environment enough for P to be satisfied. The assumption
therefore needs to be strengthened, which corresponds to re-
moving behaviours from it, with the help of the counterex-
ample produced by checking premise 1. In the context of the
next assumption Ai+1

M1
, component M1 should at least not

exhibit the violating behaviour reflected by this counterex-
ample. Premise 2 is checked in a similar fashion, to obtain
an assumption Aj

M2
such that component M2 guarantees P

in environments that satisfy Aj
M2

.

If both premise 1 and premise 2 hold, it means that Ai
M1

and Aj
M2

are strong enough for the property to be satis-
fied. To complete the proof, premise 3 must be discharged.
If premise 3 holds, then the compositional rule guarantees
that P holds in M1 ‖ M2. If it doesn’t hold, further anal-
ysis is required to identify whether P is indeed violated in
M1 ‖ M2 or whether either Ai

M1 or Aj
M2

are stronger than
necessary. Such analysis is based on the counterexample re-

turned by checking premise 3 and is described in more detail
below. If an assumption is too strong it must be weakened,
i.e. behaviors must be added, in the next iteration. The
result of such weakening will be that at least the behavior
that the counterexample represents will be allowed by the
respective assumption produced at the next iteration. The
new assumption may of course be too weak, and therefore
the entire process must be repeated.

4.2 Counterexample analysis
If premise 3 fails, then we can obtain a counterexample in the
form of a trace t. Similar to [8], we analyse the trace in order
to determine how to proceed. We need to determine whether
the trace t indeed corresponds to a violation in M1||M2.
This is checked by simulating t on Mi||coP , for i = 1, 2.
The following cases arise. (1) If t is a violating trace of both
M1 and M2, then M1 and M2 do indeed have a common bad
trace and therefore do not compose to achieve P . (2) If t is
not a violating trace of M1 or M2 then we use t to weaken
the corresponding assumption(s).

4.3 Discussion
A characteristic of L* that makes it particularly attractive
for our framework is its monotonicity. This means that the
intermediate candidate assumptions that are generated in-
crease in size; each assumption is smaller than the next one,
i.e. |Ai

M1 | ≤ |Ai+1
M1

| ≤ |WAM1 | and |Aj
M2

| ≤ |Aj+1
M2

| ≤
|WAM2 |. However, we should note that there is no mono-
tonicity at the semantic level, i.e. it is not necessarily the
case that L(Ai

M1) ⊆ L(Ai+1
M1

) or L(Aj
M2

) ⊆ L(Aj+1
M2

) hold.

The iterative process performed by our framework termi-
nates for the following reason. At any iteration, our algo-
rithm returns true or false and terminates, or continues by
providing a counterexample to L*. By the correctness of L*,
we are guaranteed that if it keeps receiving counterexamples,
it will eventually, produce WAM1 and WAM2 respectively.

During this last iteration, premises 1 and 2 will hold by def-
inition of the weakest assumptions. The Teacher will there-
fore check premise 3, which will return either true and termi-
nate, or a counterexample. Since the weakest assumptions
are used, by the completeness proof of Rule 1, we know that
the counterexample analysis will reveal a true error, and
hence the process will terminate.

It is interesting to note that our algorithm may terminate
before the weakest assumptions are constructed via the iter-
ative learning and refinement process. It terminates as soon
as two assumptions have been constructed that are strong
enough to discharge the first two premises but weak enough
for the third premise to produce conclusive results, i.e. to
prove the property or produce a real counterexample; these
assumptions are smaller (in size) than the weakest assump-
tions.

5. VARIATIONS
In Section 3 we established that Rule 1 is sound and com-
plete for our framework and in Section 4 we showed its ap-
plicability for the automated learning approach to composi-
tional verification. However, we need to explore and under-
stand its effectiveness in our automated compositional verifi-

18

cation approach. In this section we introduce some straight-
forward modifications to the rule, maintaining soundness
and completeness of course, that may remove unnecessary
assumption refinement steps and therefore result in a prob-
able overall improvement in performance.

5.1 First Modification
Our first variation, Rule 1a given below, relaxes the third
premise by requiring that any common “bad” trace, as far
as the assumptions are concerned, satisfies the property P .
The intuition behind this is that the assumptions may well
have been overly restrictive and therefore there may be com-
mon behaviours of M1 and M2, ruled out by the assump-
tions, that do indeed satisfy the property P .

Rule 1a.

1 : M1 ‖ AM1 |= P
2 : M2 ‖ AM2 |= P
3 : L (coAM1 ‖ coAM2) ⊆ L (P)

M1 ‖ M2 |= P

Theorem 2. Rule 1a is sound and complete.

Proof. Follows easily from the soundness and complete-
ness proofs for Rule 1.

Rule 1b.

1 : M1 ‖ AM1 |= P
2 : M2 ‖ AM2 |= P
3 : M1 ‖ coAM1 |= AM2 or M2 ‖ coAM2 |= AM1

M1 ‖ M2 |= P

In essence, in this variation, premise 3 effectively now checks
whether any trace in the intersection of the co-assumptions
is an illegal behaviour of either component, rather than
it just satisfying the property. Notice that the disjunct
M1 ‖ coAM1 |= AM2 is equivalent to L (coAM1 ‖ coAM2) ⊆
L (M1), similarly for the other disjunct. We’ve used this
particular form for the disjuncts because of similarity with
assumption discharge.

Theorem 3. Rule 1b is sound and complete.

Proof. Similar to proofs of Theorems 1 and 2.

Incorporation of Rules 1a and 1b.
Rule 1a can easily be incorporated into our incremental com-
positional verification framework. Step 3 of Fig. 2 is followed
by an extra step, Step 4, for the case when the intersection
of the co-assumptions is not empty. Step 4 checks whether
the intersection satisfies the given property: if it returns true
then we terminate, otherwise continue with counter-example
analysis and assumption refinement. In order to incorporate
Rule 1b, we simply include a further check to discharge one
of the disjuncts of the rule’s third premise.

Clearly these “optimisation”s may result in the verification
process terminating after fewer learning iterations. On the

other hand there will be some increased overhead in per-
forming the extra checks on each weakening iteration. These
issues will be analysed more fully in our future implementa-
tion of this incremental approach.

5.2 Further Variation
Suppose we are now given components, M1 and M2, with
associated properties, P1 and P2. The following composition
rule can be used to establish that propertyP1 ‖ P2 holds for
M1 ‖ M2.

Rule 2.

1 : M1 ‖ AM1 |= P1

2 : M2 ‖ AM2 |= P2

3 : M1 ‖ AM1 |= AM2

4 : M2 ‖ AM2 |= AM1

5 : L (coAM1 ‖ coAM2) = ∅
M1 ‖ M2 |= P1 ‖ P2

where we require αP1 ⊆ αM1, αP2 ⊆ αM2, αAM1 ⊆ αM1 ∩
αM2 and αAM2 ⊆ αM1 ∩ αM2.

Theorem 4. Rule 2 is sound and complete.

Proof. Soundness is established by contradiction, in a
similar way to the soundness results for Rules 1, 1a and 1b.
We outline the steps. We also abuse and simplify notation
by omitting the projections of traces onto the appropriate
alphabets.

We assume the properties P1 and P2 are not contradictory,
i.e. L(P1 ‖ P2) is not empty, or all behaviours are not er-
roneous. Further, assume the conclusion does not hold, i.e.
M1 ‖ M2 �|= P1 ‖ P2. There then exists a trace t of M1 ‖ M2

s.t. t is in not accepted by P1 ‖ P2. There are three sub-
cases to consider.

1. t not in P1 and t not in P2

2. t not in P1 and t in P2

3. t in P1 and t not in P2

The first case contradicts premise 5. By premise 1, t not in
P1 means t is not a trace of M1 ‖ AM1 . But since t is a
trace of M1 ‖ M2 and hence of M1, then t must be accepted
by coAM1 . Similarly, by premise 2, t must be accepted by
coAM2 . But this now contradicts premise 5.

For the second case, and similarly for the third case, we will
show a contradiction of premise 4, resp. premise 3. As for
the first case, by premise 1 if t is not in P1 and t in M1 then
t must be accepted by coAM1 . As t in P2, t is accepted by
M2 ‖ AM2 . Hence, by premise 4, t is in AM1 . But t can’t be
both in AM1 and in coAM1 . The mirror argument follows
for the third case.

Observe that if premises 3 and 4 were not present, as in the
case of rule 1, then soundness is not obtained.

19

Completeness follows by constructing the weakest assump-
tions WAM1 , resp. WAM2 , for M1, resp. M2, to achieve P1,
resp. P2, and substituting them for AM1 and AM2 . We can
then show that if the rule’s conclusion holds, then so do the
premises.

It is interesting to note that if premises 3 and 4 of Rule
2 are modified to be in the more usual form of guarantee
discharging assumption, i.e. P1 |= AM2 and P2 |= AM1 ,
then the rule is not complete.

As was the case with Rule 1, we can weaken premise 5 of
Rule 2 to obtain similar rules to Rule 1a and Rule 1b.

6. HISTORICAL PERSPECTIVE
Over two decades ago, the quest for obtaining sound and
complete compositional program proof systems, in various
frameworks, remained open. The foundational work on proof
systems for concurrent programs, for example [3, 20, 18],
whilst not achieving compositional rules, introduced key no-
tions of meta-level co-operation proofs and non-interference
proofs. These meta-level proofs were carried out using pro-
gram code and intermediate assertions from the proofs of
the sequential processes. Assumption-commitment, or rely-
guarantee, style specifications, in addition to pre- and post-
conditions, were then introduced to capture the essence of
the meta-level co-operation and non-interference proofs, lift-
ing the assumptions that were implicitly made in the sequen-
tial proof outlines to be an explicit part of the specification.
Program proof systems, built over such extended specifi-
cations, were then developed to support the stepwise, or
hierarchical, development of concurrent, or distributed, pro-
grams, see for example [16, 25, 4, 23]. The development of
such compositional proof systems continues to this day and
the interested reader should consult [10] for an extensive and
detailed coverage.

In recent years, there has been a resurgence of interest in
formal techniques, and in particular assume-guarantee rea-
soning, for supporting component-based design: see for ex-
ample [9]. Even though various sound and often complete
proof systems have been developed for this style of reason-
ing, more often than not it is a mental challenge to obtain
the most appropriate assumptions [15]. It is even more of a
challenge to find automated techniques to support this style
of reasoning. The thread modular reasoning underlying the
Calvin tool [11] is one start in this direction. One way of
addressing both the design and verification of large systems
is to use their natural decomposition into components. For-
mal techniques for support of component-based design are
gaining prominence, see for example [9]. In order to reason
formally about components in isolation, some form of as-
sumption (either implicit or explicit) about the interaction
with, or interference from, the environment has to be made.
Even though we have sound and complete reasoning sys-
tems for assume-guarantee reasoning, see for example [16,
21, 6, 14], it is always a mental challenge to obtain the most
appropriate assumption [15].

It is even more of a challenge to find automated techniques
to support this style of reasoning. The thread modular rea-
soning underlying the Calvin tool [11] is one start in this

direction. The Mocha toolkit [1] provides support for mod-
ular verification of components.

The problem of generating an assumption for a component
is similar to the problem of generating component interfaces
to deal with intermediate state explosion in CRA. Several
approaches have been defined for automatically abstract-
ing a component’s environment to obtain interfaces [5, 17].
These approaches do not address the incremental refinement
of interfaces.

Learning in the context of model checking has also been in-
vestigated in [13], but with a different goal. In that work,
the L* Algorithm is used to generate a model of a software
system which can then be fed to a model checker. A confor-
mance checker determines if the model accurately describes
the system.

7. CONCLUSIONS AND FUTURE WORK
Although theoretical frameworks for sound and complete
assumption-commitment reasoning have existed for many
years, their practical impact has been limited because they
involve non-trivial human interaction. In this paper, we
have presented a new set of sound and complete proof rules
for parallel composition that support a fully automated ver-
ification approach based upon such a reasoning style. The
automation approach extends and improves upon our previ-
ous work that introduced a learning algorithm to generate
and refine assumptions based on queries and counterexam-
ples, in an iterative process. The process is guaranteed to
terminate, and return true if a property holds in a system,
and a counterexample otherwise. If memory is insufficient to
reach termination, intermediate assumptions are generated,
which may be useful in approximating the requirements that
a component places on its environment to satisfy certain
properties.

One advantage of our approach is its generality. It relies
on standard features of model checkers, and could therefore
easily be introduced in any such tool. For example, we are
currently in the process of implementing it in the LTSA. The
architecture of our framework is modular, so its components
can easily be substituted by more efficient ones.

We have implemented our framework within the LTSA tool
and over the coming months we will conduct a number of ex-
periments to establish the practical effectiveness of our new
composition rule and its variations. We need to understand
better the various trade-offs between the increased overhead
of additional premise testing and the computational savings
from earlier termination of the overall process. In addi-
tion, we need to investigate known variants of our rules for
N -process compositions, again considering various practical
tradeoffs in implementation terms. Of course, an interesting
challenge will also be to extend the types of properties that
our framework can handle to include liveness, fairness, and
timed properties.

REFERENCES
[1] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer,

S. K. Rajamani, and S. Tasiran. MOCHA: Modularity
in model checking. In Proc. of the Tenth Int. Conf. on

20

Comp.-Aided Verification (CAV), pages 521–525, June
28–July 2, 1998.

[2] D. Angluin. Learning regular sets from queries and
counterexamples. Information and Computation,
75(2):87–106, Nov. 1987.

[3] K. R. Apt, N. Francez, and W.-P. de Roever. A proof
system for communicating sequential processes. ACM
Transactions on Programming Languages and
Systems, 2:359–385, 1980.

[4] H. Barringer and R. Kuiper. Hierarchical development
of concurrent systems in a framework. In S. B. et al,
editor, Seminar in Concurrency, volume 197 of Lecture
Notes in Computer Science, pages 35–61, 1985.

[5] S. C. Cheung and J. Kramer. Context constraints for
compositional reachability analysis. ACM Trans. on
Soft. Eng. and Methodology, 5(4):334–377, Oct. 1996.

[6] E. M. Clarke, D. E. Long, and K. L. McMillan.
Compositional model checking. In Proc. of the Fourth
Symp. on Logic in Comp. Sci., pages 353–362, June
1989.

[7] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, 2000.

[8] J. M. Cobleigh, D. Giannakopoulou, and C. S.
Păsăreanu. Learning assumptions for compositional
verification. In 9th International Conference for the
Construction and Analysis of Systems (TACAS 2003),
volume 2619 of LNCS, Warsaw, Poland, 2003.
Springer.

[9] L. de Alfaro and T. A. Henzinger. Interface theories
for component-based design. In Proc. of the First Int.
Workshop on Embedded Soft., pages 148–165, Oct.
2001.

[10] W.-P. de Roever, F. de Boer, U. Hanneman,
J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers.
Concurrency Verification: Introduction to
Compositional and Non-compositional Methods.
Cambridge University Press, 2001.

[11] C. Flanagan, S. N. Freund, and S. Qadeer.
Thread-modular verification for shared-memory
programs. In Proc. of the Eleventh European Symp. on
Prog., pages 262–277, Apr. 2002.

[12] D. Giannakopoulou, C. S. Păsăreanu, and
H. Barringer. Assumption generation for software
component verification. In Proc. of the Seventeenth
IEEE Int. Conf. on Auto. Soft. Eng., Sept. 2002.

[13] A. Groce, D. Peled, and M. Yannakakis. Adaptive
model checking. In Proc. of the Eighth Int. Conf. on
Tools and Alg. for the Construction and Analysis of
Sys., pages 357–370, Apr. 2002.

[14] O. Grumberg and D. E. Long. Model checking and
modular verification. In Proc. of the Second Int. Conf.
on Concurrency Theory, pages 250–265, Aug. 1991.

[15] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You
assume, we guarantee: Methodology and case studies.
In Proc. of the Tenth Int. Conf. on Comp.-Aided
Verification (CAV), pages 440–451, June 28–July 2,
1998.

[16] C. B. Jones. Specification and design of (parallel)
programs. In R. Mason, editor, Information
Processing 83: Proceedings of the IFIP 9th World
Congress, pages 321–332. IFIP: North Holland, 1983.

[17] J.-P. Krimm and L. Mounier. Compositional state
space generation from Lotos programs. In Proc. of the
Third Int. Workshop on Tools and Alg. for the
Construction and Analysis of Sys., pages 239–258,
Apr. 1997.

[18] G. Levin and D. Gries. A proof technique for
communicating sequential processe s. Acta
Informatica, 15(3):281–302, 1981.

[19] J. Magee and J. Kramer. Concurrency: State Models
& Java Programs. John Wiley & Sons, 1999.

[20] S. Owicki and D. Gries. An axiomatic proof technique
for parallel programs. Acta Informatica, 6(4):319–340,
1976.

[21] A. Pnueli. In transition from global to modular
temporal reasoning about programs. In K. Apt, editor,
Logic and Models of Concurrent Systems, volume 13,
pages 123–144, New York, 1984. Springer-Verlag.

[22] R. L. Rivest and R. E. Schapire. Inference of finite
automata using homing sequences. Information and
Computation, 103(2):299–347, Apr. 1993.

[23] E. W. Stark. A proof technique for rely/guarantee
properties. In Fifth Conference on Foundations of
Software Technology and Theoretical Computer
Science, volume 206 of Lecture Notes in Theoretical
Computer Science, pages 369–391. Springer-Verlag,
Dec. 1985.

[24] Q. Xu, W. P. de Roever, and J. He. The
rely-guarantee method for verifying shared variable
concurrent programs. Formal Aspects of Computing,
9(2):149–174, 1997.

[25] J. Zwiers, W.-P. de Roever, and P. van Emde Boas.
Compositionality and concurrent networks: Soundness
and completeness of a proof system. In Proceedings of
ICALP ’85, Springer LNCS 194, pages 509–519.
Springer-Verlag, 1985.

21

Behavioral Substitutability in Component Frameworks:
a Formal Approach

Sabine Moisan
INRIA Sophia Antipolis

2004, route des Lucioles
06902 Sophia Antipolis,

France

Sabine.Moisan@inria.fr

Annie Ressouche
INRIA Sophia Antipolis

2004, route des Lucioles
06902 Sophia Antipolis,

France

Annie.Ressouche@inria.fr

Jean-Paul Rigault
I3S Laboratory

UNSA/CNRS, UMR 6070
06902 Sophia Antipolis,

France

jpr@essi.fr

ABSTRACT
When using a component framework, developers need to respect
the behavior implemented by the components. Dynamic informa-
tion such as the description of valid sequences of operations is re-
quired. In this paper we propose a mathematical model and a for-
mal language to describe the knowledge about behavior. We rely
on a hierarchical model of deterministic finite state-machines. The
communication between the machines follows the Synchronous Pa-
radigm. We focus on extension of components, owing to the notion
of behavioral substitutability. Our approach relies on composition-
ality properties to ease automatic verification. From the language
and the model, we can draw practical design rules that preserve
safety properties. Associated tools may ensure correct and safe
reuse of components, as well as automatic simulation and verifica-
tion, code generation, and run-time checks.

Keywords
framework, components, behavioral substitutability, synchronous
reactive systems, model checking

1. INTRODUCTION
A current trend in Software Engineering is to favor reusability of
code and also of analysis and design models. This is mandatory
to improve product time to market, software quality, maintenance,
and to decrease development cost. The notion of frameworks was
introduced as a possible answer to these needs. Basically, a frame-
work is a well-defined architecture composed of generic classes
and their relationships. As reusable entities, classes rapidly ap-
peared as too fine grained. Hence, the notion of component frame-
works emerged. According to Szyperski [21] a component is “a
unit of [software] composition with contractually specified inter-
faces and explicit context dependencies...”. In the object-oriented
approach a component usually corresponds to a collection of inter-
related classes and objects providing a logically consistent set of
services.

Using a component framework involves selecting, adapting, and
assembling components to build a customized application. Thus
reusing existing components is a major task. Building on reusabil-
ity is not straightforward, though; it implies to understand the na-
ture of the contract between the client (i.e., the framework user)
and the component. This contract may be the mere specification of
a static interface (list of operation signatures), which is clearly not
sufficient since it misses the information regarding the component
behavior. Adding pre- and post-conditions to operations is an in-
teresting improvement. However, contracts express only behavior
local to an operation, making it difficult to comprehend the global
valid sequences of operations. The description of such a valid se-
quence is the essential part of what we call the protocol of use of
the framework. This protocol is often more complex than for using,
e.g., a simple library. Hence, it is important to provide models and
tools to formalize it, reason about it, and manipulate it.

Our work on formalizing component protocols relies on our expe-
rience with a framework for knowledge-based system (KBS) infer-
ence engines, named BLOCKS [17]. BLOCKS’s objective is to help
designers create new engines and reuse or modify existing ones,
without extensive code rewriting. It is a set of C++ classes, each
one coming with a behavioral description of the valid sequences
of operations, in the form of state-transition diagrams. Such a de-
scription allowed us to prove invariant properties of the framework,
using model-checking techniques. As with other frameworks, the
developer adapts BLOCKS classes essentially through subtyping
(more exactly, class derivation used as subtyping). The least that
can be expected is that the derived classes respect the behavioral
protocol that the base classes implement and guarantee. In partic-
ular, we want to ensure that an invariant property at the framework
base level also holds at the developer’s class level. Thus the no-
tion of behavioral substitutability is central to such a safe use of
the framework. To this end we chose to elaborate a formal model
of behavioral substitutability so that we may lay design rules on
top of it. In this model safety properties are preserved during sub-
typing. Our aim is to propose a verification algorithm as well as
practical design rules to ensure sound framework adaptation.

The paper is organized as follows. The next section details our no-
tion of components and defines their protocols of use. Section 3
presents the mathematical model and the formal language to de-
scribe the behavioral part of the protocol. Section 4 illustrates prac-
tical design rules drawn from the model. Section 5 briefly compares
our approach with other techniques and methods. The conclusion
draws perspectives about the development of supporting tools.

22

2. TARGET FRAMEWORK CHARACTER-
ISTICS

2.1 Notion of Components
In the object-oriented community a component framework is usu-
ally composed of hierarchies of classes that the framework user
may compose or extend. The root class of each hierarchy corre-
sponds to an important concept in the target domain. In this con-
text, a component can be viewed as the realization of a sub-tree of
the class hierarchy: this complies with one of Szyperski’s defini-
tions for components [21].

As a matter of example, let us examine the problem of history
management in an object-oriented environment. In our framework
(BLOCKS) a history is composed of several successive snapshots,
each one gathering the modifications (or deltas) to object attributes
that have happened since the previous snapshot (that is during an
execution step). It is a rather general view of history manage-
ment and any framework with a similar purpose is likely to pro-
vide classes such as History, Snapshot and Delta, as shown in
the UML class diagram of figure 1. Class Snapshot memorizes
the modifications of objects during an execution step in its attached
Delta set; it displays several operations: memorize the deltas and
other contextual information, add a new delta, and add a child snap-
shot (i.e., close the current step and start a new one).

Delta
History Snapshot

memorize()
add_child()
add_delta()

0..*0..*

0..*0..*

0..1

+current

0..1

0..*
0..1

-children 0..*

-parent
0..1

Figure 1: Simplified UML diagram of class Snapshot

2.2 Using a Framework
Framework users both adapt the components and write some glue
code.They will (non-exclusively) use these components directly, or
specialize the classes they contain by inheritance, or compose the
classes together, or instantiate new classes from predefined generic1

ones. Among all these possibilities, class derivation is frequent. It
is also the one that may raise the trickiest problems, that is why we
shall concentrate on it in the rest of this paper.

When deriving a class the user may either introduce new attributes
and/or operations or redefine inherited operations. These special-
izations should be “semantically acceptable”, i.e., they should re-
spect the framework invariants.

In our example, the Snapshot class originally does not take into
account a possible “backtrack” (the “linear” history of Snapshot
becomes a “branching” one). This feature is necessary in simula-
tion activities to try different actions or to modify some contextual
information and see what happens. To cope with such require-
ments, the user can derive a BSnapshot class from Snapshot
(figure 2). In this example, the inherited operations need no re-
definition2. BSnapshot defines two new operations: regenerate

1class templates in C++
2In the general case, there would be new operations as well as re-
defined operations. Our approach is able to cope with both cases.

that reestablishes the memorized values and search that checks
whether a condition was true in a previous state. The regenera-
tion feature implies that deltas have the ability to redo and undo
their changes; hence the new class BDelta has to be substituted
to Delta. Relying on static information in the class diagram of
Snapshot (signatures of operations and associations), the frame-
work user obtains the inheritance graph shown on figure 2.

BDelta

undo()
redo()

BSnapshot

regenerate()
search()

0..*0..*

<<refines>>

Delta
Snapshot

memorize()
add_child()
add_delta()

0..*0..*

0..*

0..1

-children
0..*

-parent

0..1

Figure 2: UML class diagram of BSnapshot; above, the origi-
nal classes, below, the derived ones

2.3 Protocol(s) of Use
Static information is not sufficient to ensure a safe and correct use
of a framework: specifying a protocol of use is required. This pro-
tocol is defined by two sets of constraints. First, a static set en-
forces the internal consistency of class structures. UML-like class
diagrams provide a part of this information: input interfaces of
classes (list of operation signatures), specializations, associations,
indication of operation redefinitions, and even constraints on the
operations that a component expects from other components (a sort
of required interface, something that will likely find its way into
UML 2.0). We do not focus on this part of the protocol since its
static nature makes it easy to generate the necessary information
at compile-time. A second set of constraints describes dynamic
requirements: (1) the legal sequences of operation calls, (2) the
specification of internal behavior of operations and of sequences
of messages these operations send to other components, and (3)
the behavioral specification of valid redefinition of operations in
derived classes. These dynamic aspects are more complicated to
express than static ones and there is no tool (as natural as compiler-
like tools for the static case) to handle and check them. While
item (1) and partially item (2) are addressed by classical UML
state-transition models, the complete treatment of the last two items
is more challenging. We shall propose a solution in section 3.

3. BEHAVIOR DESCRIPTION AND
BEHAVIOR REFINEMENT

Our approach is threefold. First, we define a mathematical model
providing consistent description of behavioral entities. In the model,
behavioral entities are whole components, sub-components, single
operations, or any assembly of these. Hence, the whole system
is a hierarchical composition of communicating behavioral enti-
ties. Such a model complements the UML approach and allows
to specify the class and operation behavior with respect to class
derivation. Second, we propose a hierarchical behavioral specifi-
cation language to describe the dynamic aspect of components. In
the third place, we define a semantic mapping to bridge the gap

23

between the specification language and its meaning in the mathe-
matical model.

As already mentioned, our primary intent is to formalize the behav-
ior side of class derivation, in the sense of subtyping3. In the object-
oriented approach, subtyping usually obeys the classical Substi-
tutability Principle [13]. This principle has a static interpretation
which leads to, for instance, the well-known covariant and con-
travariant issues for parameters and return types. But it may also
be given a dynamic interpretation, leading to behavioral subtyping,
or behavioral substitutability [10]. This is the kind of interpreta-
tion we need to enforce the dynamic aspect of framework protocols,
since it provides a notion of behaviorwise safe derivation.

To deal with behavioral substitutability, we need behavior represen-
tation formalisms: we propose to rely on the family of synchronous
models [9]. These models are dedicated to specify event-driven
and discrete time systems. Such systems interact with their envi-
ronment, reacting to input events by sending output events. Fur-
thermore, they obey the synchrony hypothesis: the corresponding
reaction is atomic; during a reaction, the input events are frozen,
all events are considered as simultaneous, events are broadcast and
available to any part of the system that listens to them. A reaction
is also called an instant. The succession of instants defines a log-
ical time. The major interest of synchronous models is that their
verification exhibits a lower computational complexity than asyn-
chronous ones, which is the main reason for our choice.

3.1 Mathematical Model of Behavior
Labeled transition systems are usual mathematical models for syn-
chronous languages. These systems are a special kind of finite
deterministic state machines (automata) and we shall denote them
LFSM for short. In our model, we use LFSMs to represent the state
behavior of behavioral entities (classes as well as their operations).
Each transition has a label representing an elementary execution
step of the entity, consisting of a trigger (input condition) and an
action to be executed when the transition is fired. In our case an ac-
tion corresponds to emitting events, such as calling an operation of
some component whereas a trigger corresponds to receiving events
such as calling an operation.

A LFSM is a tuple M = (S, s0, T,A) where S is a finite set of
states, s0 ∈ S is the initial state, A is the alphabet of events from
which the set of labels L is built, and T is the transition relation
T ⊆ S ×L×S. We introduce the set I of input events I ⊆ A and
the set O ⊆ A of output events (or actions).

Labels. L, the set of labels, has elements of the form i/o, where
i is the trigger set and o ⊆ O the action or output events set; i
has the form (i+, i−) where i+, the positive (input event) set of a
label (resp. i−, the negative (input event) set), consists of the events
tested for their presence (resp. for their absence) in the trigger at a
given instant.

A trigger contains the information about all the input events, be
they present or absent at a given instant. Obviously, an event cannot
be tested for both absence and presence at the same instant. Thus
(i+, i−) constitutes a partition of I . Moreover, as a consequence
of the previous definition of an instant in the synchronous model,
3Note that, in this paper, derivation, inheritance, specialization all
refer to the subtyping interpretation. In particular, we do not con-
sider the other uses or interpretations of inheritance that some pro-
gramming languages may offer.

an event cannot be tested for absence while being emitted in the
same instant. Hence, the following well-formedness conditions on
labels: 8<

:
i+ ∩ i− = ∅ (trigger consistency)
i+ ∪ i− = I (trigger completeness)
i− ∩ o = ∅ (synchrony hypothesis)

Transitions. Each transition s
l→ s′ has three parts: a source state

s, a label l, and a target state s′. There cannot be two transitions
leaving the same state and bearing the same trigger. Formally, if

there are two transitions from the same state s such that s
i1/o1→ s1

and s
i2/o2→ s2, with s1 �= s2, then i1 �= i2. This rule, together

with the label well-formedness conditions, ensure that LFSMs are
deterministic. This requirement for determinism constitutes one of
the foundations of the synchronous approach and is mandatory for
all models and proofs that follow.

Behavioral Substitutability. The substitutability principle should
apply to the dynamic semantics of a behavioral entity–such as ei-
ther a whole class or one of its (redefined) operations [10, 18]. If
M and M ′ are LFSMs denoting respectively some behavior in a
base class and its redefinition in a derivative, we seek for a relation
M ′ � M stating that “M ′ safely extends M”. To comply with
inheritance, this relation must be a preorder.

Following the substitutability principle, we say thatM ′ is a correct
extension of M , iff the alphabet of M′ (A′

M) is a superset of the
alphabet of M (AM) and every sequence of inputs that is valid 4

forM is also valid forM ′ and produces the same outputs (once re-
stricted to the alphabet of M). Thus, the behavior of M′ restricted
to the alphabet of M is identical to the one of M . Formally,

M ′ �M ⇔ AM ⊆ AM′ ∧M Rsim (M ′\AM)

where M ′\AM is the restriction of M ′ to the alphabet of M and
Rsim the behavioral simulation relation. Both are defined below.

First, we define the restriction (l\A) of a label (l) over an alphabet
(A) as follows: let l = i/o,

l\A =


(i ∩A/(o ∩A) if i+ ⊆ A
undef otherwise

Intuitively, this corresponds to consider as undefined all the transi-
tions bearing a positive trigger not in A, and to strip the events not
in A from the outputs.

The restriction ofM to the alphabetA (generally withA ⊆ AM) is
obtained by restricting all the labels ofM toA, then discarding the
resulting undefined transitions. Formally, let M = (S, s0, T, AM)
be a LFSM,M\A = (S, s0, T\A,AM ∩A) where T\A is defined
as follows:

s
l′→ s′ ∈ T\A⇔ ∃ s l→ s′ ∈ T ∧ l′ = l\A �= undef

Second, we adopt a behavioral simulation relation similar to Mil-
ner’s classical simulation [16]. Let M1 and M2 be two LFSMs
with the same alphabet: M1 = (SM1 , s

M1
0 , TM1 , A) and M2 =

4A path in a LFSM M is a (possibly infinite) sequence of transi-

tions π = s0
i0/o0→ s1

i1/o1→ s2... such that ∀i(si, ii/oi, si+1) ∈ T .
The sequence i0/o0, i1/o1... is called the trace associated with the
path. When such a path exists, the corresponding trigger sequence
i0, i1, ... is said to be a valid sequence of M .

24

(SM2 , s
M2
0 , TM2 , A). A relation Rsim ⊆ SM1 × SM2 is called a

simulation iff (sM1
0 , sM2

0) ∈ Rsim and

∀(s1, s2) ∈ Rsim :

s1
l→ s′1 ∈ TM1 ⇒ ∃s2 l→ s′2 ∈ TM2 ∧ (s′1, s

′
2) ∈ Rsim

Simulation is local, since the relation between two states is based
only on their successors. As a result, it can be checked in polyno-
mial time and it is widely used as an efficient computable condi-
tion for trace-containment. Moreover, the simulation relation can
be computed using a symbolic fixed point procedure [11], allowing
to tackle large-sized state spaces.

We say that M ′ simulates M iffM ′ �M . Thus, M ′ simulates M
iff there exists a relation binding each state of M to a state of the
restriction of M ′ to the alphabet of M . Any valid sequence of M
is also a valid sequence of M′ and the output traces are identical,
once restricted to AM . As a consequence, if M ′ simulates M , M ′

can be substituted for M , for all purposes of M .

Milner’s simulation relation (Rsim) is a preorder and preserves sat-
isfaction of the formulae of a subset of temporal logic, expressive
enough for most verification tasks (namely ∀CTL∗ [12]). More-
over, this subset has efficient model checking algorithms. Obvi-
ously, relation � is also a preorder over LFSMs and any formula
that holds for M holds also for M′.

The notion of correct extension can be extended to components.
We can represent the protocol of use of a class C (see section 2.3)
by a LFSM P(C). If C and C′ are two classes, C′ � C iff (1) C ′

derives from C (according to footnote 3, this means “is a subtype
of”), (2) the protocol of use of C′ simulates the one of C, that is
P(C′) � P(C). As indicated in 2.3, we assume that the protocol
of use of a class describes not only the way the other objects may
call the class operations, but also the way the operations of the class
invoke operations on (other) objects.

With such a model, the description of behavior matches the class
hierarchy. Hence, class and operation refinements are compatible
and consistent with the static description: checking dynamic be-
havior may benefit from the static hierarchical organization.

3.2 Behavior Description Language
We need a language that makes it possible to describe complex be-
havioral entities in a structured way, particularly by means of scop-
ing and composition. Our language is very similar to Argos [15]. It
offers a graphical notation close to UML StateCharts with some re-
strictions, but with a different semantics based on the Synchronous
Paradigm [9]. The language is easily compiled into LFSMs. Pro-
grams written in this language operationally describe behavioral
entities; we call them behavioral programs. The semantics of this
language should be expressible in terms of the mathematical model,
permitting an easy translation into LFSMs.

The primitive elements from which programs are constructed are
called flat automata, since they cannot be decomposed (they con-
tain no application of any operators). They are the direct repre-
sentation of LFSMs, with the following simplified notation: only
positive (i.e., present) events appear in triggers, all other events are
considered as absent.

The language is generated by the following grammar (where A is a

flat automaton, s a state name and Y a set of events):

P ::= A | A[P/s] | P‖P | P < Y >

Parallel composition (P‖Q) is a symmetric operator which be-
haves as the synchronous product of its operands where labels are
unioned. Hierarchical composition (A[P/s]) corresponds to the
possibility for a state in an automaton to be refined by a behav-
ioral (sub) program. This operation is able to express preemp-
tion, exceptions, and normal termination of sub-programs. Scop-
ing (P < Y >) where P is a program and Y a set of local events,
makes it possible to restrict the scope of some events. Indeed, when
refining a state by combining hierarchical and parallel composition,
it may be useful to send events from one branch of the parallel com-
position to the other(s) without these events being globally visible.
This operation can be seen as encapsulation: local events that fired
a transition must be emitted in their scope; they cannot come from
the surrounding environment.

The language offers syntactic means to build programs that reflect
the behavior of components. Nevertheless, the soundness of the
approach requires a clear definition of the relationship between be-
havioral programs and their mathematical representation as LFSMs
(section 3.1). Let B denote the set of behavioral programs and M
the set of LFSMs. We define a semantic function S : B −→ M
that is stable with respect to the previously defined operators (par-
allel composition, hierarchical composition, and scoping).

S is structurally defined over the syntax of the language. Because
of lack of space, we just give here the flavor of the definition of
this semantics. For a more complete description, see [20]. A flat
automaton constitutes its own semantics. The semantics of par-
allel composition P‖Q is the synchronous product [9] of the se-
mantics of P and Q: each reaction (instant) is considered atomic;
within an instant, input and output events are matched by name,
providing instantaneous communication. The semantics of hierar-
chical composition P [Q/s] is basically the one of P where state
s has been replaced by the semantics of Q whose transitions have
been modified to respect the outgoing transitions (preemptions) of
s. More specifically, in the absence of preemption, the semantics
of Q remains the same; otherwise, the preemptions of s have pri-
ority, which may lead to unioning internal and preemption actions.
For scoping, the semantics of P < Y > is basically the one of P
where transitions triggered by local events that are not emitted are
discarded and where the occurrences of local events are removed
from the labels of the remaining transitions. Thus all events in Y
(be they triggers or actions) are encapsulated within P < Y > and
invisible from the outside, as is invisible the internal communica-
tion they support.

The following theorem expresses that relation � is a congruence
with respect to the language operators. The proof [20] is out of the
scope of the paper, and is obtained by explicit construction of the
preorder relation.

THEOREM 1. Let P , Q1 and Q2 be behavioral programs such
that S(Q1) � S(Q2) and both P , Q1 and P , Q2 are outputs
disjoint; the following holds:

S(P [Q1/s]) � S(P [Q2/s])
S(P‖Q1) � S(P‖Q2)
S(Q1 < Y >) � S(Q2 < Y >)

This compositionality property is fundamental to our approach. It

25

gives a modular and incremental way to verify behavioral programs
using their natural structure: properties of a whole program can be
deduced from properties of its sub-programs. This helps to push
back the bounds of state explosion, the major drawback of model
checking.

3.3 Modular Verification
The compositionality property is very useful, since one can deal
with highly complex global behaviors provided that they result from
composing elementary behaviors that can be verified, modified, and
understood incrementally. In particular it makes it possible to per-
form modular verification using some temporal logic.

Temporal logics are formalisms for describing sequences of tran-
sitions between states in a finite state machine model. They are
formal languages where assertions related to behavior are easily
expressed. The logic we consider (∀CTL∗) [12] is based on first-
order logic. This logic, to be efficient when deciding whether a
formula is true, does not introduce the existential path quantifier. It
offers temporal operators that make it possible to express proper-
ties holding for a given state, for the next state (operator X), eventu-
ally for a future state (F), for all future states (G), or that a property
remains true until some condition becomes true (U). One can also
express that a property holds for all the paths starting in a given
state (∀). These operators can be combined with boolean connec-
tors and nested.

The logic may be interpreted over LFSMs. One can express model-
checking algorithms and satisfaction of a formula is defined in a
natural inductive way. We say that a LFSM M satisfies a state
formula ψ (M |= ψ) if property ψ is true for the initial state of M .

In the same line as Clarke et al. [12], the main result of our approach
is the following theorem (the proof [20] is by structural induction
on formulae and from the translation of LFSMs into Kripke struc-
tures).

THEOREM 2. Let P and Q two behavioral programs with dis-
joint output sets and ψ a ∀CTL∗ formula:

if S(P) |= ψ then S(P [Q/s]) |= ψ.
if S(P) |= ψ or S(Q) |= ψ then S(P‖Q) |= ψ.

This result complements theorem 1; it expresses the compositional
stability of proofs with respect to the composition operators. This
property provides a hierarchical and incremental means to verify
properties and is the key to simplify model checking.

The properties that are preserved by our operators include substi-
tutability. This is an immediate consequence of theorems 1 and 2.
For instance, if we have proved that P1 � P2, then we can infer
that P1‖Q � P2‖Q, for any possible Q, provided that it is output
disjoint with P1 and P2.

4. PRACTICAL ISSUES
4.1 Design Rules
To guarantee a safe use of the components, we state some practi-
cal design rules that we can draw from our model and that can be
applied at the behavioral language level. When a behavioral pro-
gram P (called the base program) is extended by another behav-
ioral program P ′, respecting these rules ensures that we obtain a
new deterministic automaton for which behavioral substitutability

holds (P ′ � P). These rules correspond to sufficient conditions
that save us the trouble of a formal proof for each derived program.

At this time we have identified eight such practical rules. A for-
mal description of these rules can be found in [20]. We briefly list
them here: (1) no modification of the base program structure (no
deletion nor modification of transitions or states); (2) possibility
of adding trigger-disjoint transitions for a given state; possibility
of parallel composition with a program with (3) disjoint actions
or (4) different initial trigger or (5) with a substitutable program;
possibility of hierarchical composition with a program (6) without
auto-preemption or (7) with disjoint triggers and actions; (8) no
localization of global events.

4.2 Application to Components
To illustrate our purpose, let us consider the previously mentioned
history mechanism (section 2.1). We present on figure 3(a) the be-
havioral program for the whole Snapshot class. This program
specifies the valid sequences of operations that can be applied to
Snapshot instances. Two states correspond to execution of opera-
tions (memorize and add_child); they are to be refined by behav-
ioral programs describing these operations. Figure 3(b) presents the
expected behavioral program for BSnapshot which derives from
class Snapshot. In particular, BSnapshot necessitates a new op-
eration, regenerate, called when backtracking the history (i.e.,
when search returns success). It is clear that the new class
sports a behavior significantly different from its base class: it has
the extra possibilities to search inside a sleeping snapshot and to
call regenerate when success occurs.

The behavioral program of BSnapshot has been obtained from the
one of Snapshot after applying a combination of our design rules.
Obviously no state nor transition have been deleted from Snapshot
(rule 1). The new transition from inactive to regeneration
bears a completely new trigger (rule 2). The program that refines
state inactive has no trigger belonging to the preemption trig-
ger set of this state (rule 7). Finally, the local event success was
not part of the Snapshot program (rule 8). Thus, by construction,
BSnapshot is substitutable for class Snapshot; no other verifica-
tion is necessary to assert that BSnapshot � Snapshot.

Therefore, even though BSnapshot extends Snapshot behavior,
the extension has no influence when a BSnapshot is used as a
Snapshot. As a result, every trace of Snapshot is also a trace
of BSnapshot.

4.3 Stability of Properties
Continuing with the previous example, BSnapshot � Snapshot
implies that every temporal property in ∀CTL∗ true for Snapshot
is also true for its extension BSnapshot. For instance, suppose we
wish to prove the following property: “It is possible to add a child
to a snapshot (i.e., to call the add_child() operation) only after
memorization has been properly done”. Looking at the behavioral
program (figure 3(a)), we can decompose Pchild into two specifi-
cations:

∀G(add_child()&∀G(¬error)) ⇒ ∀Fstate = inactive

∀G(error ⇒ ∀G(¬state = inactive))

Intuitively, the first formula corresponds to memorization success:
if add_child() is received and if no error occurs, then state
inactive is reached. The second formula corresponds to mem-
orization failure: error occurred, and state inactive will never
be reached. A model-checker can verify automatically that these

26

dead

error

open

sleep

sleep

Snapshot

active

inactive

memorize()

do:memorize()

memorization

add_delta()

add_child()

do:add_child()

(a) Behavioral program of class
Snapshot.

dead

open

error
BSnapshot

sleep

sleepy

searched

inactive

do:search()

do:regenerate()

success

active

memorize()

add_delta()

do:memorize()

memorization

regeneration

success/regenerate()

local:success

sleep

search() search_ko

search_ok/

add_child()

do:add_child()

end_regenerate

(b) Behavioral program of class BSnapshot. It is similar
to Snapshot with a refined inactive state, a local event
success, and the possibility of launching regenerate from
the inactive state. Restriction BSnapshot \ASnapshot
is obtained by removing states and transitions displayed with
thick lines.

Figure 3: Behavioral programs of classes Snapshot and
BSnapshot.

two formulae are true. Conversely, if a formula is false, the model
checker usually gives a counter-example.

5. RELATED WORK AND DISCUSSION
Modeling component behavior and protocols and ensuring correct
use of component frameworks through a proof system is a recent
research line. Most approaches concentrate on the composition
problem [14, 1, 8] whereas we are focusing this paper on the sub-
stitutability issue.

Most works in the field of Software Architecture for modeling be-
havior [3] address component compatibility and adaptation in a dis-
tributed environment and are often based on process calculi [18, 22,
19]. Some authors put a specific emphasis on the substitutability
problem [13]. For instance [4] proposes static subtype checking
relying on Nierstrasz’s notion of regular types [18]. As another
example, in [5], the authors focus on inheritance and extension of
behavior, using the π-calculus as their formal model. These works
also consider a distributed environment. The problems of compat-

ibility and substitutability are also significant in fields other than
Software Engineering, such as hardware modeling and design. As
a matter of example, [6] proposes a “game view” of (hardware)
components, relying on deterministic automata.

As far as the objectives (well-formedness, verification, compati-
bility, and refinement) and models (deterministic automata, non-
distributed environment) are concerned, our work is close to the
one in [6], although our target applications are similar to the Soft-
ware Architecture community ones. Another approach introduces
behavioral compatibility relying on type-theory [2]. It is more gen-
eral than ours in its objectives, although quite similar as far as
behavioral description is concerned; it is also more general theo-
retically speaking, while we focus on providing operational tools.
In contrast with these works, we restrict to the problem of substi-
tutability in a non-distributed world. Indeed this is what we needed
for BLOCKS. Again, this restriction allows us to adopt models
more familiar to software developers (UML StateCharts-like), eas-
ier to handle (deterministic systems), efficient for formal analysis
(model-checking and simulation), and for which there exist effec-
tive algorithms and tools. The Synchronous Paradigm [9] offers
good properties and tools in such a context. This is why we could
use it as the foundation of our model.

As already mentioned our notion of substitutability guarantees the
stability of interesting (safety) properties during the derivation pro-
cess. Hence, at the user level as well as at the framework one, it
may be necessary to automatically verify these properties. To this
end, we have chosen model checking techniques. Indeed, model
checkers rely on verification algorithms based on the exploration
of a state space and they can be made automatic since tools are
available. They are robust and can be made transparent to frame-
work users. The problem with model checkers is the possible ex-
plosion of the state space. Fortunately, this problem has become
less limiting over the last decade owing to symbolic algorithms.
Furthermore, taking advantage of the structural decomposition of
the system allows modular proofs on smaller (sub-)systems. This
requires a formal model that exhibits the compositionality property,
which is the case for our model (theorems 1 and 2).

6. CONCLUSION AND PERSPECTIVES
The work described in this paper is derived from our experience
and aims at simplifying the correct use of a framework. We have
adapted framework technology to the design of knowledge-based
system engines and observed a significant gain in development time.
For instance, once the analysis completed, the design of a new plan-
ning engine based the BLOCKS framework took only two months
(instead of about two years for a similar former project started from
scratch) and more than 90 % of the code reused existing compo-
nents [17]. While performing these extensions, we realized the
need to formalize and verify component protocols, especially when
dealing with subtyping. The corresponding formalism, the topic of
this paper, has been developed in parallel with the KBS engines. As
a consequence of this initial work, developing formal description of
BLOCKS components led us to a better organization of the frame-
work, with an architecture that not only satisfies our design rules
but also makes the job easier for the framework user to commit to
these rules.

Our behavioral formalism relies on a mathematical model, a spec-
ification language, and a semantic mapping from the language to
the model. The model supports multiple levels of abstraction, from
highly symbolic (just labels) to merely operational (pieces of code).

27

Moreover, this model is original in the sense that it can cover both
static and dynamic behavioral properties of components. To use
our formalism, the framework user has only to describe behavioral
programs, by drawing simple StateCharts-like graphs with a pro-
vided graphic interface. The user may be to a large extend obliv-
ious of the theoretical foundations of the underlying models and
their complexity. The model has also a pragmatic outcome: it al-
lows simulation of resulting applications and generation of code, of
run-time traces, and of run-time assertions.

Our aim is to accompany frameworks with several kinds of dedi-
cated tools. We are working on tools for manipulating behavioral
programs. Currently, we provide a graphic interface to display ex-
isting descriptions and modify them. In the future, the interface
will watch the user activity and warn about possible violation of
the design rules. Since these rules are just sufficient, it is possi-
ble for the user not to apply them or to apply them in such a way
that they cannot be clearly identified. To cope with this situation,
we shall also provide a static substitutability analyzer, based on our
model (section 3.1) and a usual partitioning simulation algorithm.

At the present time we have designed a complete interface with
NuSMV [7], in both directions. First, our description language can
be translated into NuSMV specifications, and our tool provides also
a user friendly way to express the properties the users may want
to prove. Second, NuSMV diagnosis and return messages are dis-
played in a readable form: users can browse the hierarchies of be-
havioral derivations and follow the steps of the proofs. It took us
a few weeks to connect our behavioral description language to the
NuSMV model-checker. The next step is to implement the substi-
tutability analysis tool.

Another interesting feature would be to provide an automatic code
generation facility as well as run-time checks. Indeed the behav-
ioral description is rather abstract and may be interpreted in a va-
riety of ways. In particular, automata and associated labels can
be given a code interpretation. The generated code would provide
skeletal implementations of operations. This code will be correct,
by construction–at least with respect to those properties which have
been previously checked. Furthermore, the generated code can also
be instrumented to provide run-time traces and assertions built in
the components.

Developing such tools is a heavy task. Yet, as frameworks are be-
coming more popular but also more complex, one cannot hope us-
ing them without some kind of active assistance, based on formal
modeling of component features and automated support.

7. REFERENCES
[1] F. Achermann and O. Nierstrasz. Applications =

Components + Scripts - A Tour of Piccola. In Mehmet Aksit,
editor, Software Architectures and Component Technology,
pages 261–292. Kluwer, 2001.

[2] S. Alagic and S. Kouznetsova. Behavioral Compatibility of
Self-Typed Theory. In B. Magnusson, editor, ECOOP 2002,
number 2374 in LNCS, pages 585–608, Malaga, Spain,
2002. Springer.

[3] R. Allen and D. Garlan. A formal basis for architectural
connection. ACM Trans, on Software Engineering and
Methodology, 6(3):213–249, 1997.

[4] S. Butkevich, M. Renedo, G. Baumgartner, and M. Young.
Compiler and Tool Support for Debugging Object Protocols.
In Proc. 8th ACM SIGSOFT Int. Symp. Foundations of

Software Engineering, pages 50–59, San Diego, CA, USA,
2000. ACM Press.

[5] C. Canal, E. Pimentel, and J. M. Troya. Compatibility and
inheritance in software architectures. Science of Computer
Programming, (41):105–138, 2001.

[6] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and Freddy
Y. C. Mang. Synchronous and Bidirectional Component
Interfaces. In Ed Brinksma and Kim Guldstrand Larsen,
editors, Proc. CAV, number 2404 in LNCS, pages 214–227.
Springer, 2002.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV 2: an OpenSource Tool for Symbolic Model
Checking. In Ed Brinksma and Kim Guldstrand Larsen,
editors, Proc. CAV, number 2404 in LNCS, pages 359–364.
Springer, 2002.

[8] J. Costa Seco and L. Caires. A Basic Model of Typed
Components. In Elisa Bertino, editor, ECOOP 2000, number
1850 in LNCS, pages 108–128. Springer, 2000.

[9] N. Halbwachs. Synchronous Programming of Reactive
Systems. Kluwer Academic, 1993.

[10] D. Harel and O. Kupferman. On object systems and
behavioral inheritance. IEEE Trans. Software Engineering,
28(9):889–903, 2002.

[11] M.R. Henzinger, T.A. Henzinger, and P.W. Kopke.
Computing simulation on finite and infinite graphs. Proc.
IEEE Symp. Foundations of Computer Science, pages
453–462, 1995.

[12] E. M. Clarke Jr., O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2000.

[13] B. Liskov and J. Wing. A behavioral notion of subtyping.
ACM Trans. on Programming Languages and Systems,
16(6):1811–1841, November 1994.

[14] K. Mani Chandy and M. Charpentier. An experiment in
program composition and proof. Formal Methods in System
Design, 20(1):7–21, January 2002.

[15] F. Maraninchi. Operational and Compositional Semantics of
Synchronous Automaton Composition. In Proc. Concur.
1992, number 630 in LNCS. Springer, 1992.

[16] R. Milner. An algebraic definition of simulation between
programs. Proc. IJCAI, pages 481–489, 1971.

[17] S. Moisan, A. Ressouche, and J-P. Rigault. BLOCKS, a
Component Framework with Checking Facilities for
Knowledge-Based Systems. Informatica, 25:501–507, 2001.

[18] Nierstrasz O. Object-Oriented Software Composition,
chapter Regular Types for Active Objects, pages 99–121.
Prentice-Hall, 1995.

[19] F. Plasil and S. Visnovsky. Behavior protocols for software
components. IEEE Trans. on Software Engineering, 28(11),
Nov 2002.

[20] A. Ressouche and S. Moisan. A Behavior Model of
Component Frameworks. Technical report, INRIA, August
2003. to appear.

[21] C. Szyperski. Component Software - Beyond
Object-Oriented Programming. Addison Wesley, 1998.

[22] D. M. Yellin and R. E. Strom. Protocol specifications and
component adaptors. ACM Trans. on Programming
Languages and Systems, 19(2):292–333, March 1997.

28

An Assertion Checking Wrapper Design for Java

Roy Patrick Tan
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA

rtan@vt.edu

Stephen H. Edwards
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA

edwards@cs.vt.edu

ABSTRACT
The Java Modeling Language allows one to write formal
behavioral specifications for Java classes in structured com-
ments within the source code, and then automatically gen-
erate run-time assertion checks based on such a specifica-
tion. Instead of placing the generated assertion checking
code directly in the underlyling class bytecode file, placing
it is a separate wrapper component offers many advantages.
Checks can be distributed in binary form alongside the com-
piled class, and clients can selectively include or exclude
checks on a per-class basis without recompilation. In this
approach, when checks are excluded the underlying code is
just as efficient as if assertions were “compiled out.” In
addition, a flexible mechanism for enabling or disabling as-
sertion execution on a per-class or per-package basis is also
included. This paper presents a design for separating as-
sertion checking code into wrapper classes and discusses the
issues arising from this design.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—programming by contract, assertion checkers, class
invariants; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—
pre- and post-conditions, invariants, assertions; D.2.3 [Soft-
ware Engineering]: Coding Tools and Techniques—object-
oriented programming ; D.2.5 [Software Engineering]:
Testing and Debugging—debugging aids; D.3.2 [Program-
ming Languages]: Language Classifications—JML

General Terms
Languages

Keywords
JML, run-time checking, design by contract, interface viola-
tion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAVCBS ’03 Helsinki, Finland

1. INTRODUCTION
The Java Modeling language (JML) [6] is a behavioral

specification language for Java that allows programmers to
add model-based specifications to their code. Specifications,
including preconditions, postconditions, and invariants, are
placed in specially-formatted, structured comments. The
JML tool set allows run-time checks to be generated from
such specifications and embedded directly in the generated
class file, to be checked at run-time [1]. JML’s design-
by-contract support provides specific syntactic slots that
clearly separate the implementation details from the asser-
tion checks. Its support for model-only fields and methods
cleanly supports reasoning about a component’s abstract
state [2].

The benefits of checking design-by-contract assertions are
well known [3, 7]. However, due to performance concerns, it
is current practice to include run-time assertion checks dur-
ing testing, but then remove them when distributing pro-
duction components. This benefits the original implemen-
tor, but does little for the clients of that component. As
commercial components become more prevalent, and new
designs more frequently make use of classes and subsystems
purchased from other sources, it is important to consider
how such assertion checks can be of use to component clients,
as well as how they might add value to a component being
offered for sale.

JML-based assertion checks, like those produced by most
other techniques, can be left in the compiled, binary version
of a class that is distributed to customers. As with other
techniques, execution of these checks at run-time can be
controlled through a global switch. However, even when
checks are not being executed, the resulting code still suffers
a performance penalty, both due to the code bloat imposed
by the inactive checks and to the cost of constantly looking
up whether or not to perform each check.

This paper discusses ongoing work that will address these
issues. The goals of this work include:

• Allowing binary distribution of compiled checks along-
side the underlying class, so that checks can be in-
cluded or excluded without source code access or re-
compilation.

• Imposing no additional overhead when code is run di-
rectly, without including the assertion checking wrap-
pers.

• Supporting per-class or per-package run-time enabling
or disabling of assertion check execution.

29

Client

Component

Check method
postconditions and
class invariants

Check method
preconditions

and class
invariants

Violation Checking Wrapper

Figure 1: The wrapper implements assertion checks
and delegates other work to the wrapped compo-
nent.

• Maintaining transparent compatibility–JML users will
not have to change any existing JML source code or
the way they compile their code.

2. A DESIGN FOR ASSERTION CHECK-
ING WRAPPERS

Our approach adopts a wrapper design [4] that begins
with a simple idea: move assertion checking code to a sep-
arate class, such that we now have two classes that have
the same externally visible features: an unwrapped original
class, and the wrapper class that performs the checks but
delegates actual computation to the wrapped component.
Figure 1 illustrates this approach.

In principle, the concept of using a wrapper to separate
assertion checks from the underlying component is simple.
Following the decorator pattern [5], the wrapper provides
the same external interface as the underlying component,
and just adds extra features transparently. One can then
extract a common interface capturing the publicly visible
features of the underlying component, and set up the wrap-
per and the original component as two alternative imple-
mentations of this interface. By using a factory method [5],

public class List

{

private /*@ spec_public @*/ int elementCount;

//@ requires elementCount > 0;

public Object removeFirst() {

// implementation here ...

}

// ...

}

Figure 2: A List class, abbreviated for simplicity.

List

chx_Orig_Listchx_Wrap_List

$chx_Factory_List

Figure 3: The original list class will be transformed
into four components.

the decision of which implementation object to instantiate
at any given point can be separated from the object request-
ing the instance. Using a factory shifts control over which
instance to create into another component. With the right
support, this also allows users to enable or disable assertion
checks on a per class basis, at run-time.

The implementation details are probably best illustrated
with an example. Figure 2, shows a snippet of code for a
simple List class. For this paper, we are not interested in
how the methods (such as removeFirst) are implemented,
so we do not show implementation code. What we are in-
terested in is how to separate the assertions (as illustrated
by the requires clause) from the implementation code.

As shown in Figure 3, the wrapper-based design involves
automatically generating four different class files from the
source shown in Figure 2:

• The original class that contains the actual implemen-
tation.

• The wrapper class that contains the assertion checks.

• An interface that both the original and wrapper classes
implement.

• A factory class that is called to create an instance of
List.

public interface List

{

// ...

public int $chx_get_elementCount();

public void $chx_set_elementCount(int count);

public Object removeFirst();

}

Figure 4: Instead of a class, there is now a List inter-
face that both the wrapper and nonwrapper classes
implement.

30

public class Wrapper

{

public Wrappable wrappedObject = null;

public static CheckingPrefs isEnabled = null;

}

public class $chx_Wrap_List extends Wrapper

implements List

{

// ...

public int $chx_get_elementCount() {

return wrappedObject.elementCount();

}

public Object removeFirst() {

// ...

if (isEnabled.precondition()) {

// checkPre performs the actual

//precondition check.

checkPre$RemoveFirst$List();

}

return (($chx_Orig_List)wrappedObject)

.removeFirst();

}

}

Figure 5: The Wrapper class, from which all wrappers
inherit, and the generated wrapper class for List.

Both the wrapper and the original class perform the same
essential operations—both export the same (behavioral) in-
terface. In our design, we make this explicit by making List

an interface and having both the wrapper class and the orig-
inal class implement it. Figure 4 shows a snippet of this
automatically generated List interface. The List interface
redeclares the public methods of the original class. Also,
accessor method declarations for public fields are added so
that the fields accessible in the original class are also acces-
sible through the interface.

The wrapper class “wraps” or decorates an instance of the
original component, but adds checking code before and after
every method. To do this, every wrapper component has a
wrappedObject field to hold a reference to the wrapped in-
stance of the original component. This is achieved by having
every wrapper component be a subclass of Wrapper. Then,
each method defined in the original component is also de-
fined in the wrapper, where it is implemented by perform-
ing any pre-state checks, delegating to the wrapped object
for the core behavior, and then performing any post-state
checks.

Figure 5 shows the Wrapper class from which all wrap-
pers inherit. It contains just two fields, wrappedObject and
isEnabled. The isEnabled member can be queried to deter-
mine whether or not particular checks should be performed
at run-time. Both members are initialized by the factory
method that creates instances of the corresponding wrapper
class.

Figure 5 also illustrates the basic structure of the wrapper

public class $chx_Statics_List

{

public static CheckingPrefs isEnabled = null;

public static List newObject() {

List result = new $chx_Orig_List();

Wrappable wrappable = (Wrappable)result;

if (isEnabled != null && isEnabled.wrap())

{

result = new

$chx_Wrap_List(result, isEnabled);

}

wrappable.$chx_this = result;

return result;

}

}

Figure 6: A factory is used to create List instances.

class for List; it shows the output of our wrapper genera-
tor tool for JML, simplified for brevity. Before every asser-
tion check is performed, the isEnabled field is queried by
calling the appropriate method. In Figure 5 for example,
isEnabled.precondition() is tested and the precondition
is checked only if the method returns true. An exception is
thrown if an executed check fails.

The factory method that is invoked to create new Lists
is shown in Figure 6. For every constructor in the original
class, there is a corresponding factory method in the fac-
tory class. If every List object is instantiated using the
factory instead of a call to new, we can transfer the deci-
sion of whether to create a wrapped or unwrapped version
of the object to a separate component. In this case, the fac-
tory method queries the static member isEnabled to decide
whether to return a wrapped or unwrapped object.

So far, our discussion has dealt with transforming only one
class. So how is inheritance addressed in this technique? For
example, if List inherits from Bag, what relationship(s) ex-
ist between the generated wrapper classes, generated inter-
faces, and original classes? The solution is straightforward:
let each of List’s interface, wrapper, and original class ex-
tend the corresponding interface or class from Bag. That is,
the List wrapper extends the Bag wrapper, the List inter-
face extends the Bag interface, and the original List class
extends the original Bag class. Figure 7 illustrates this idea.

At the highest level of the inheritance hierarchy, instead of
the wrapper class inheriting directly from Object, the wrap-
per class inherits from Wrapper. Similarly, the non-wrapper
class inherits from Wrappable. A practical implication of
this design is that if a class has JML specifications, all of its
superclasses must be transformed by our tool regardless of
whether they have specs or not. This process can be han-
dled automatically by extending the JML tool set. Even if
source files for the superclass(es) without specifications are
unavailable, we can obtain the needed signature of the class
through reflection or inspection of the bytecode.

3. ELIMINATING THE CHANGES NEEDED
IN CLIENT CODE

Placing assertion checks in wrappers provides several ad-
vantages: assertion checks can be selectively included or ex-
cluded without requiring recompilation, and when they are

31

Figure 7: Dealing with inheritance: List inherits
from Bag.

excluded there is no additional overhead imposed. On the
other hand, the design presented in Section 2 requires some
changes to basic coding practices in both the client code and
in component being checked.

3.1 Changes to Client Code
The changes needed in client code fall into three areas:

object creation, data member access, and static method in-
vocation. Rather than calling new to create a new object,
client code must now call the corresponding factory method.
For example:

List l = new List();

now should be phrased this way

List l = $chx_Statics_List.newObject();

In addition, the way public fields are accessed changes.
Current Java design practices discourage the use of publicly
accessible data members. However, for code that violates
such practices, within this framework there can never be
direct access to such fields. Instead, automatically generated
accessor methods must be used:

a = l.length;

now should be phrased this way

a = l.$chx_get_length();

Finally, static method calls to the class being checked
must also be transformed. The $chx Statics List class
generated by the tool set will also contain a dispatch stub
for each static method in the class being wrapped. The stub
will, depending on whether or not wrapper usage is enabled,
forward the call to a corresponding static method in either
the wrapper or in the underlying class.

public class $chx_Orig_List extends Wrappable

{

private int elementCount;

public int $chx_get_elementCount() {

return elementCount;

}

// ...

public Object removeFirst() {

// implementation here ...

}

// ...

}

Figure 8: The original class is modified.

3.2 Changes to the Original Class
The original class also needs modification to work within

this framework. First, since we’ve appropriated the name
List for the interface, we rename the original List class to
$chx Orig List. Second, private methods within the class
are promoted to package level access so that the wrapper can
have access to these methods (to adding checks to them).
Third, accessor methods for all data members must be gen-
erated. Figure 8 illustrates these modifications on the orig-
inal List class.

One problem with this approach is that when the un-
wrapped object calls another method of its own, that call
will not go through the wrapper so its behavior will not be
checked. That is, if removeFirst calls a method belonging
to this, the method must be checked for contract viola-
tions as well. The solution is for the original class to inherit
from an object called Wrappable, which contains one field:
$chx this. The $chx this field is a reference to either the
associated wrapper if the non-wrapper object is contained
inside one, or to this if it is not wrapped. Each time the
original class invokes one of its own methods, instead of us-
ing this (e.g. this.m()), the modified version of the original
class uses $chx this (e.g. $chx this.m()).

A related problem is calling non-public methods. If a
method has a call to some private method this.p(), the
call would be translated to $chx this.p() where $chx this

might be a wrapper object. However, to perform the actual
computation, the wrapper object must also be able to ac-
cess the wrapped object’s original method. Thus, private
methods must be elevated to at least package level access.
A similar problem exists for protected methods, but they
must be promoted to public access, since superclasses may
not be in the same package as the subclass. This means that
certain access control violations may not be caught at run-
time. Violations should still be detectable at the compile
phase, however.

3.3 Removing the Need for Source-Level Mod-
ifications

All of these modifications, both to the client code and to
the component being checked, add clutter and complexity.
Further, if we wish for wrapper-based objects to be used by

32

existing code, perhaps code distributed in binary-only form,
then how can we impose stylistic modification requirements
on that code? Finally, changes to both the client code and
the component code to adopt this framework will necessarily
impose additional overhead, even when check execution is
disabled.

To address these concerns, we are designing a custom class
loader for the JML tool set. Rather than requiring the client
code and the underlying component to have modifications
transformed into them at compile time, instead the class
loader can dynamically transform the original bytecode se-
quences at load time if the wrapper framework is being used.

In essence, the JML compiler generates bytcode for the
original List class in the file List.class, just as if no as-
sertions were being used. The bytecode for the three other
wrapper support classes are generated in *.chx files. One
can run the resulting Java program normally using the java

command, which has the effect of completely ignoring all of
the wrapper-related files and running the original unmodi-
fied bytecode. Alternatively, by adding the assertion check-
ing class loader at the start of the command line, the nec-
essary modifications to both client and component code are
made on-the-fly at load time. This class loader knows about
the special file name extension used by the wrapper sup-
port classes so that it can detect and load wrapper-enabled
classes differently than code without JML assertions. This
approach allows the wrappers to be distributed in binary
form along with the original component, but still maintain
zero additional overhead when wrappers are not being used.

We have designed such a class loader and are in the pro-
cess of implementing it. After exploring the critical secu-
rity issues, it also appears possible to use this technique to
retroactively add wrapper-based assertion checking features
even within protected packages, such as java.util.

4. RUN-TIME CONTROL OF ASSERTION
BEHAVIOR

As with most competing techniques, JML allows embed-
ded assertion checks to be enabled or disabled when the
code is run. Effectively, JML uses a single global switch
for each family of assertions—so postconditions can be dis-
abled independently of preconditions, for example. Some
tools provide more fine-grained control. iContract provides
a graphical interface for selectively enabling or disabling the
generation and inclusion of assertion checks on a per-class
basis at build time.

With the wrapper approach, inclusion or exclusion of as-
sertion checks is deferred until load time. As a result, it
would be more preferable to allow fine-grained control over
which wrapper-enabled classes should use wrappers, as well
as which families of assertion checks should actually be exe-
cuted at program startup or even during run-time. We have
devised an approach that allows this control at the individ-
ual class level, as well as at the Java package level.

As discussed in Section 2, every wrapper is given a refer-
ence to a CheckingPrefs object called isEnabled. Rather
than using a single global object for this purpose, there is one
such CheckingPrefs object for every wrappable class. Fur-
ther, there is a similar object for each Java package, and the
package-level and class-level preferences objects are linked
together into a tree structure that mirrors the Java package
nesting structure. In this tree, the preferences objects for

individual classes are the leaves. The custom class loader
takes care of incrementally constructing this tree as classes
are loaded. Note that when an individual wrapper checks
a preference setting via isEnabled, it retrieves the setting
directly from that object and no tree traversal is needed.

Using a graphic control panel at program startup, one
can use a collapsible/expandable tree view to set prefer-
ences about what whether or not wrappers should be used
on wrappable classes, and if wrappers are used, which as-
sertions should be executed and which should be skipped.
Tree nodes in this graphical view map directly to the tree-
structured network of preferences objects. If one changes an
option, that change is stored in the corresponding prefer-
ences object and also propagated down through its children
all the way to the leaves. Thus, tree traversal happens when
the user makes an option setting, rather than when settings
are looked up inside each assertion test.

In addition to making such changes at program startup,
the same control panel could also be used to modify prefer-
ences during run-time by executing it in a separate thread.
Further, preference settings could also be saved to or read
from properties files. The result is a flexible approach to
fine-grained control of assertion checking options that scales
well.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have outlined a strategy for extending

JML assertion checking using wrappers. Using wrappers al-
lows checking code to be distributed in compiled form along-
side the original code, eliminates the associated overhead of
checking code when it is unused, and allows run-time control
over contract checking on a per-class basis.

This approach is not without challenges, however. Two
of the more troublesome are dealing with inline assertion
checks and dealing with super calls. The wrapper approach
deals only with assertions that can be checked before and
after a method is called. Assertions within methods need to
be handled in a different manner. One possible solution is
to place additional functionality into the custom classloader
such that it can inject the appropriate assertion checks into
the bytecode when the class is being loaded.

The problem with super calls is that when within a com-
ponent it calls a method of its superclass, there is not an easy
way to call the superclass of the wrapper component instead,
and so in our current design these calls go unchecked. JML
currently solves a similar problem by renaming methods and
using reflection to call the superclass methods. The disad-
vantage of this approach is the high performance overhead
of reflection in Java.

We are in the process of completing the three parts needed
to make this framework viable. First, the JML compiler has
been extended to take in JML-annotated Java source code
and produce the four corresponding files described in Sec-
tion 2. The original class’s bytecode should be the same as
if it were compiled with javac. Second, the custom class-
loader for incorporating load-time modifications to client
and component code has been designed and must be com-
pleted. Third, a controller that allows users to manage as-
sertion execution preferences in a convenient way has been
prototyped and must be completed.

33

Acknowlegements
We gratefully acknowledge the financial support from the
National Science Foundation under the grant CCR-0113181.
Any opinions, conclustions or recommendations expressed in
this paper do not necessarily reflect the views of the NSF.

6. REFERENCES
[1] Y. Cheon. A runtime assertion checker for the java

modeling language. Technical Report 03–09,
Department of Computer Science, Iowa State
University, April 2003.

[2] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. H.
Edwards. Model variables: Cleanly supporting
abstraction in design by contract. Technical Report
03–10, Department of Computer Science, Iowa State
University, March 2003.

[3] S. H. Edwards. Black-box testing using flowgraphs: an
experimental assessment of effectiveness and
automation potential. Software Testing, Verification &
Reliability, 10(4):249–262, 2000.

[4] S. H. Edwards. Making the case for assertion checking
wrappers. In Proceedings of the RESOLVE Workshop
2002, pages 95–104. Dept. of Computer Science,
Virginia Tech, 2002.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[6] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A
notation for detailed design. In H. Kilov, B. Rumpe,
and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer
Academic Publishers, 1999.

[7] J. M. Voas. Quality time: How assertions can increase
test effectiveness. IEEE Software, 14(2):118–119, 1997.

34

An Approach to Model and Validate Publish/Subscribe
Architectures

Luca Zanolin, Carlo Ghezzi, and Luciano Baresi
Politecnico di Milano

Dipartimento di Elettronica ed Informazione
P.za L. da Vinci 32, 20133 Milano (Italy)

{zanolin|ghezzi|baresi}@elet.polimi.it

ABSTRACT
Distributed applications are increasingly built as federations
of components that join and leave the cooperation dynam-
ically. Publish/subscribe middleware is a promising infras-
tructure to support these applications, but unfortunately
complicates the understanding and validation of these sys-
tems. It is easy to understand what each component does,
but it is hard to understand what the global federation
achieves.

In this paper, we describe an approach to support the
modeling and validation of publish/subscribe architectures.
Since the complexity is mainly constrained in the middle-
ware, we supply it as a predefined parametric component.
Besides setting these parameters, the designer must provide
the other components as UML statechart diagrams. The re-
quired global properties of the federation are then given in
terms of live sequence charts (LSCs) and the validation of
the whole system is achieved through model checking using
SPIN. Instead of using the property language of SPIN (lin-
ear temporal logic), we render properties as automata; this
allows us to represent more complex properties and conduct
more thorough validation of our systems.

1. INTRODUCTION
The publish/subscribe paradigm has been proposed as a

basis for middleware platforms that support software ap-
plications composed of highly evolvable and dynamic fed-
erations of components. According to this paradigm, com-
ponents do not interact directly, but their communications
are mediated by the middleware. Components declare the
events they are interested in and when a component pub-
lishes an event, the middleware notifies it to all components
which subscribed to it.

Publish/subscribe middleware decouples the communica-
tion among components. The sender does not know the
receivers of its messages, but it is the middleware that iden-
tifies them dynamically. As a consequence, new components

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

can dynamically join the federation, become immediately ac-
tive, and cooperate with the other components without any
reconfiguration of the architecture.

The gain in flexibility is counterbalanced by the difficulty
for the designer to understand the overall behavior of the
system. It is hard to get a picture of how components co-
operate and understand the global data and control flows.
Although components might be working correctly when they
are examined in isolation, they could provide erroneous ser-
vices in a cooperative setting.

These problems motivate our approach to model and val-
idate publish/subscribe architectures. Modeling the mid-
dleware is the most complex task, since we must consider
how components communicate in a distributed environment.
The complexity of such a model is partially counterbalanced
by the fact that the middleware is not application-specific.
We can use the same (model of a) middleware for several
different architectures. This is why we provide a ready-to-
use parametric model of the middleware. The designer has
to configure it and provide the other components as UML
statechart diagrams [17]. Following this approach, designers
trust the middleware and validate the cooperation of com-
ponents.

The designer describes the global properties of the fed-
eration in terms of live sequence charts (LSCs) [6] and the
validation of the whole system is achieved through model
checking using SPIN [10]. LTL (linear temporal logic), the
property language of SPIN, is not enough to render what we
want to prove. We by-pass this limitation by transforming
LSCs in automata. Both the model and properties are then
translated into Promela [9] and passed to SPIN.

The paper is organized as follows. Section 2 presents
our approach to model publish/subscribe architectures and
exemplifies it through a simple example of a hypothetical
eHouse. Section 3 discusses validation and shows how to
model the properties for our case study and how to trans-
form them into automata. Section 4 surveys the related
work, and Section 5 concludes the paper.

2. MODELING
In publish/subscribe architectures, components exchange

events through the middleware. Thus, any model of these
architectures must explicitly consider the three main ac-
tors: events, middleware, and components. The next three
sections describe how to model them using our approach
and exemplify all concepts on a fragment of a hypothetical
eHouse. We focus on a simple service that allows users to

35

take baths. When the user requires a bath, the service re-
acts by warming the bathroom and starting to fill the bath
tub. When everything is ready, the user can take the bath.
Lack of space forbids us to present all models, but interested
readers can refer to [13] for the complete set.

2.1 Events
Publish/subscribe architectures do not allow components

to exchange events directly. The communication is always
mediated by the middleware through the following opera-
tions: subscribe, unsubscribe, publish, and notify. Com-
ponents subscribe to declare the interest for some specific
events, and, similarly, they unsubscribe to undo their sub-
scriptions. Components publish events to the middleware
that notifies them to the other components.

Events have a name and a (possibly empty) set of param-
eters. When components subscribe/unsubscribe to/from ev-
ents, they can specify them fully or partially. For instance:

subscribe(“bath”, “ready”)

means that the component wants to know only when the
bath is ready, but:

subscribe(“bath”, $)

means that it wants to know all bath events.

2.2 Middleware
As we have already said, the developer does not model

the middleware explicitly, but has to configure the middle-
ware component that we supply with our approach. Unfor-
tunately, the term middleware is not enough to fully charac-
terize its behavior. The market offers different alternatives:
standards (e.g., Java Message Service (JMS) [19]) and imple-
mentations from both university (i.e., Siena [1], Jedi [4]) and
industry (i.e., TIBCO [20]). All these middleware platforms
support the publish/subscribe paradigm, but with different
qualities of service.

Given these alternatives, the definition of the parameters
that the middleware component should offer to developers
is a key issue. On one hand, many parameters would allow
us to specify the very details of the behavior, but, on the
other hand, they would complicate the model unnecessar-
ily. The identification of the minimal set of parameters is
essential to verify the application: the simpler the model
is, the faster verification would be. Since our goal is the
verification of how components cooperate, we can assume
that the model must describe what is seen by components
and we can get rid of many internal details. For instance,
the middleware can be distributed on several hosts, but this
is completely transparent to components and provided ser-
vices are the same. Important differences are on the quality
of service, thus we model how services are provided, instead
of modeling how the middleware works.

After several attempts, we have selected the following
three characteristics as the key elements that concur in the
definition of the behavior of a generic middleware:

Delivery Some middleware platforms are designed to cope
with mobile environments or with strong performance
on the delivery of events. Due to these requirements,
the designer can choose to lower the warranties on de-
livery of events and not to guarantee that all published
events are notified to all components. On one hand,

this reduces the reliability of the system, but, on the
other hand, it increases its performance. Thus, event
delivery can be characterized by two alternatives: (a)
all events are always delivered, or (b) some events can
be lost.

Notification If a middleware behaves correctly, it notifies
events by keeping the same order in which they were
published. Nevertheless, this behavior is not always
respected due to the environment in which the mid-
dleware executes. If we want to relate the order of
publication to the order of notification, we can iden-
tify three alternatives: (a) they are the same, (b) the
order of publication and notification are the same only
when we refer to the events published by the same
component, or (c) there is no relationship and events
may be notified randomly.

For instance, if component A publishes events x1 and
x2, and component B publishes y1 and y2, the mid-
dleware could notify these events to component C as
follows:

• case (a), x1 < x2 < y1 < y2

• case (b), x1 < x2 , y1 < y2

• case (c), any permutation.

where x < y means that x is notified before y.

Note that the first hypothesis only works in general in
a centralized setting. It can be used as an idealized
approximation in other practical cases.

Subscription When a component declares the events in
which it is interested, that is, it subscribes to these
events, it starts receiving them. However, the dis-
tributed environment can make the middleware not to
react immediately to new subscriptions. Once more,
our characterization identifies two alternatives: (a) the
middleware immediately reacts to (un)subscriptions,
or (b) these operations do not have immediate effects
and are delayed.

The actual middleware comes from choosing one option
for these three main characteristics. These characterizations
cover most of the warranties that a middleware should sat-
isfy. If this is not the case, developers can always get rid
of parametric middleware, elaborate their particular model
of the middleware, as a UML statechart diagram, integrate
it in the architecture, and validate the whole system. They
lose the advantages as to modeling, but keep the validation
approach.

To increase the confidence in the parametric model of the
middleware, we validated it by applying the same approach
that we are proposing in this paper. We built a federation
of simple – dummy – components to stress all the possible
configurations of our middleware. The ease of components
allowed us to state that any misbehavior was due to the
middleware itself.

Referring to the eHouse example, we assume that the ar-
chitecture is built on a middleware that delivers all events,
keeps the same order of publication and notification, and
reacts immediately to all (un)subscriptions.

36

2.3 Components
The designer provides a UML statechart diagram for each

component, where transitions describe how the component
reacts upon receipt of an event. Transition labels comprise
two parts separated by /. The first part (i.e., the precondi-
tion) describes when the transition can fire, while the sec-
ond part defines the actions associated with the firing of the
transition. For instance, the label:

consume(“bath”,“full”) / publish(“bath”,“ready”)

states that the transition can fire when the component is
notified that the bath tub is full of water and publishes an
event to say that the bath is ready.

Notified events are stored in a notification queue. The
component retrieves the first event and if it does not trigger
any transition exiting the current state, the component dis-
cards it and processes the following one. This mechanism
allows components to evolve even if they receive events in
which they are not interested in their current state.

Moving to our running example, besides the middleware
described in the previous section, we have five components
that cooperate to provide the service: User, Bathroom, Heat-
ing, Bath, and PowerManager.

User publishes events to notify that she/he wants to take
a bath. Bathroom is in charge of setting the bath and in-
creasing the temperature in the bathroom. The bath and
heating system are described by Bath and Heating, respec-
tively. When Bath receives the event from Bathroom, it
starts operating and publishes another event when the bath
tub is full. At the same time, Heating turns on the electric
heating and increases the temperature of the bathroom.

Finally, PowerManager manages the provision of electric-
ity. If there is a blackout, this component notifies this failure
and switches from primary to secondary power supplier. The
secondary power supplier is less powerful than the primary
one and some electric devices must be turned off. For in-
stance, the electric heating turns itself off as soon as there is
a blackout. Thus, the user cannot take a bath: The temper-
ature in the bathroom cannot be increased since the electric
heating does not work.

Figure 1 shows the statechart diagram of Bathroom. It
starts in state Idle waiting for some events. At this stage, it
is only subscribed to events that ask for a bath. When the
user notifies that she/he needs a bath, Bathroom evolves and
notifies Heating that the temperature should be increased
and Bath should start to run. At the same time, the compo-
nent updates its subscriptions by adding those about tem-
perature, heating, and bath.

This component exploits two variables that are used to
store the status of the bath, bathStatus, and of the tempera-
ture, temperatureStatus. For instance, the variable bathSta-
tus set to true means that the bath tub is full of water.

When the bath tub is full of water and temperature is
hot, the bath is Ready. In this state, the component is not
interested in the events about bath and heating anymore,
thus it unsubscribes from them. Finally, after the user takes
the bath, Bathroom restores temperature to cold1.

Figure 2 shows the statechart diagram of Heating. For
simplicity, we suppose that, when this component starts, the
power supplier is working correctly and temperature is cold.
When Heating receives an event that asks for increasing the

1Temperature can only assume two values: cold and hot.

Idle

consume(“need”,“bath”)/
publish(“bath”,“start”),publish(“bathroom”,”warm”),

subscribe(“heating”,$),subscribe(“bathroom”,$),subscribe(“bath”,$),
bathStatus=false,temperatureStatus=false

Ready

[bathStatus=true and temperatureStatus=true]/
publish(“bath”,“ready”),

unsubscribe(“heating”,$),
unsubscribe(“temperature”,$)consume(“bath”,“finished”)/

publish(“bathroom”,“freeze”)

Bathroom

consume(“heating”,“off”)/
publish(“bath”,“notAvailable”),

unsubscribe(“heating”,$),
unsubscribe(“temperature”,$)

subscribe(“need”,”bath”)

consume(“bath”,”full”)/
bathStatus=true

consume(“bathroom”,”hot”)/
temperatureStatus=true

Waiting

Figure 1: Bathroom

consume(“bathroom”,”warm”)/

consume(“bathroom”,”freeze”)/

Warming

Freezing

/publish(“bathroom”,”hot”)

consume(“bathroom”,”warm”)/
publish(“bathroom”,”hot”)

/publish(“bathroom”,”cold”)

consume(“power”,“alarm”) off consume(“power”,“ok”)

consume(“bathroom”,”warm”)/
publish(“heating”,”off”)

Heating

on

HotCold

Figure 2: Heating

temperature, it moves to an intermediate state to say that
the bathroom is warming. When the temperature in the
bathroom becomes hot, Heating moves to the next state,
i.e., Hot.

3. VALIDATION
Validation comprises two main aspects: the definition of

the properties to validate the cooperation of components
and the transformation of both the model and properties
into automata (i.e., Promela).

3.1 Properties
Our goal was to provide an easy-to-use graphical language

to specify properties, which would allow designers to work
at the same level of abstraction as statechart diagrams. For
these reasons, we did not use any temporal logic formalisms,
like linear temporal logic [16] (LTL), since they work at a dif-
ferent level of abstraction and, thus, developers can find it
difficult to use. We chose live sequence charts (LSCs) [6]
since they are a graphical formalism powerful enough to de-
scribe how entities exchange messages, that is, the properties
that we want to analyze.

37

(“bathroom”, “warm”)

(“bathroom”, “hot”)

(“bath”, “full”)

(“bath”, “start”)

par

Bathroom Heating Bath

LSC:BathSetting

User

(“need”, “bath”)

(“bath”, “ready”)

Figure 3: A basic LSC: Bath Setting

Briefly, a basic LSC diagram describes a scenario on how
the architecture behaves. LSCs allow us to render both exis-
tential and universal properties, that is, scenarios that must
be verified in at least one or all the evolutions of the archi-
tecture.

Entities are drawn as white rectangles with names above.
The life-cycle of an entity is rendered as a vertical line and
a black rectangle: The entity is created when we draw the
white rectangle and dies when we draw the black one. Mes-
sages exchanged between entities are drawn as arrows and
are asynchronous by default. Each message is decorated
with a label that describes the message itself.

In our approach, we assume publish/subscribe as the un-
derlying communication policy and we omit the middleware
in the charts. When we draw an arrow between two enti-
ties, we implicitly assume that the message is first sent to
the middleware and then routed to the other entity. The
arrow means that the target entity receives the notification
of the message and that the message triggers a transition
inside the entity (i.e., inside its statechart).

After introducing LSCs, let us define some properties on
how our bath service should behave. For instance, we want
to state that, when the user requires the bath, the temper-
ature in the bathroom increases and the bath tub starts to
fill. This two tasks are done in parallel and after the termi-
nation of both, the user is notified that the bath is ready.
This property is described in Figure 3, which shows a basic
LSC scenario. User requires the bath and Bathroom reacts
notifying that Heating must start to warm the bathroom
and Bath to fill the bath tub. The two tasks are performed
in parallel without any constraint on their order. This par-
allelism is described through the par operator that states
that its two scenarios (i.e., warming the bathroom and fill-
ing the bath tub) evolve in parallel without any particular
order among the events they contain. When the bath tub
is full and the bathroom is warm, User is notified that the
bath is ready.

This chart describes only a possible evolution since we
cannot be sure that Bathroom always notifies that the bath
is ready. In fact, if we had a blackout, User would receive an
event to inform her/him that the bath cannot be set. We do
not require that the application always complies with this
scenario, but, that there are some possible evolutions that
are compliant with it. In LSCs, these scenarios are called
provisional or cold scenarios and are depicted in dashed rect-

alt

LSC: bath

User Bathroom

(“need”, “bath”)

(“bath”, “ready”)

(“bath”, “notAvailable”)

Figure 4: LSC: Bath Ready

LSC: BathReady

(“bath”, “ready”)

PowerSupply

(“power”, “alarm”)

Bath correct

(“bathroom”, “warm”)

(“bathroom”, “hot”)

(“bath”, “full”)

(“bath”, “start”)

par

Bathroom Heating BathUser

(“need”, “bath”)

not

ok

Figure 5: LSC: Bath Ready (revised)

angles, as shown in Figure 3.
To fully specify the bath service, the designer also wants to

describe the possible evolutions of the service, that is, when
the user requires a bath, she/he always receives a positive or
negative answer. This property is shown in Figure 4. LSCs
allow us to define such a property through a mandatory or
hot scenario. In general, it is difficult to identify global prop-
erties that must be satisfied in all evolutions. For this rea-
son, LSCs support the definition of pre-conditions, that is,
the property must hold in all the evolutions for which the
precondition holds. Preconditions are drawn in dashed poly-
gons, while the hot part of the scenario is depicted in a solid
rectangle. For clarification, we can say that the precondition
implies the hot scenario. The chart in Figure 4 states that,
for all the evolutions in which User requires a bath, Bath-
room notifies two possible events, that is, the bath is ready
or the bath is not available. In this chart, we exploit alt
(alternate), which is another operator supported by LSCs.
This operator says that one of its two scenarios must hold.
Thus, Figure 4 describes that, when we require a bath, we
must receive an event to know if the bath is ready or not.

Finally, we can redefine the previous property (Figure 3)
to define when the bath must be available: The bath must
always become ready if in the meanwhile we do not have

38

blackouts. This property is described in Figure 5. If we
have no blackouts while Heating warms the bathroom, the
bath must always become available. In this chart, we in-
troduce the not operator that is not part of standard LSCs.
This operator has two scenarios as parameters and states
that while the first evolves, the second cannot happen si-
multaneously: If we have no blackouts while the bath sets
itself, User always receives a positive answer, i.e., the bath
is ready.

3.2 Transformation
So far, we have shown how to model the architecture and

define the properties. After these steps, we can start the
analysis. We decided to use the SPIN model checker [10]
as verifier, but as we have already explained we do not use
LTL to describe the properties that we want to prove. Ev-
erything is transformed into automata and then translated
into Promela [9].

We customize the middleware according to the parame-
ters set by the developer. Each alternative corresponds to a
Promela package and the tool selects the right packages and
assembles the model of the middleware directly.

Translating of statechart diagrams in Promela is straight-
forward. We do not need to describe this translation since
it has been done by others before (e.g., vUML [14] and veri-
UML [2]) and to implement our translation we have bor-
rowed from these approaches.

Properties are translated in two ways: They are described
through automata and, if necessary, through auxiliary LTL
formulae. This translation is rather complex since SPIN
does not support the verification of existential properties
natively. It can verify LTL formulae, which define universal
properties, but not existential ones.

To state an existential property through LTL, we could
negate the LTL formula and verify that the system violates
it: This means that there is at least one evolution in which
the LTL formula is satisfied (i.e., its negation is violated).
However, this approach would require that SPIN be run sev-
eral times for each property that we want to verify. Instead
of using LTL formulae and their translation into Büchi au-
tomata, we investigate a different solution based on simple
automata rendered as Promela processes.

We verify if LSC hold by reasoning on the state reacha-
bility feature provided by SPIN. However, automata are not
enough to describe all the LSC features, and, when required,
we introduce LTL formulae to overcome this problem. The
transformation of an LSC into an automaton (and LTL) goes
through these four steps:

1. We simplify the property by downgrading all the hot
scenarios to cold ones;

2. We translate the simplified property into an automa-
ton that recognizes the sequence of events described
by the LSC. This task is quite easy since the structure
of the automaton replicates the one of the LSC;

3. We reintroduce the fact that the scenario is hot by
identifying the states in the automaton in which the
hot scenario starts and ends;

4. We describe the hot scenario through constraints ex-
pressed as LTL formulae. These constraints state that
if an automaton has reached the state that corresponds

b1 b2

LTL

(“bathroom”, “warm”)
(“bathroom”, “hot”)

c1 c2

(“bath”, “start”)
(“bath”, “full”)

a1
(“need”, “bath”)

parnot

d1

(“power”, “allarm”)

a3 a4

(“bath”, “ready”)

X

Figure 6: The automaton that corresponds to the
LSC of Figure 5

to the first message of the hot scenario, it must always
reach the state that corresponds to the last message
of the hot scenario. In other words, if the automaton
recognizes the first message of the hot scenario, it must
always recognize all the messages that belong to the
same hot scenario.

The combination of the automaton and LTL formulae al-
lows us to translate any LSC into Promela and verify it
through SPIN.

For space reasons, we omit the details of this algorithm
and we illustrate the translation informally through an ex-
ample. Let us consider the LSC of Figure 5 and the corre-
sponding automaton of Figure 6. This automaton has three
types of arrows: solid, solid with a cross, and dashed. Solid
arrows describe standard transitions and are decorated with
labels that describe recognized events. For instance, if the
automaton evolves from state b1 to state b2, this means that
the event (“bathroom”,“warm”) has been published and con-
sumed by the component2. This type of arrow can end in a
state or in a fork/join bar. Besides recognizing events as the
previous kind, solid arrows with a cross disable the join bar
in which they end. For instance, when the transition leaving
d1 fires, the join bar in the right-hand side of the figure is
disabled. Finally, dashed arrows do not define transitions
between states, but describe constraints on the evolution of
the automaton. The constraint – described by an LTL for-
mula – is always the same: If the automaton reaches a state
(i.e., the source state of the arrow), it must always reach the
other state (i.e., the target state of the arrow).

The automaton of Figure 6 has the same structure as the
LSC of Figure 5. This means that when the middleware
notifies the first event (i.e.,(“need”,“bath”)), the fork bar is
enabled and the automaton splits its evolution in three dif-
ferent threads. Moving top-down, the first thread describes
the warming of the bathroom, the second thread the fill-
ing of the bath tub, and the last thread corresponds to the
blackout.

2For the sake of clarity, in Figure 6 we do not describe who
publishes or consumes events.

39

If the first two threads evolve completely while the third
thread does not, the join bar is enabled and the automa-
ton evolves to state a3. This means that we do not have a
blackout while the bathroom is warming and the bath tub
is filling. Then, if the middleware notifies the last event, the
automaton reaches state a4.

Reasoning on state reachability, we can argue that, if state
a4 is reachable, then there is at least one evolution that com-
plies with the simplified property (i.e., the cold scenario).
The property described by this automaton – with no LTL
formula – states that there exists an evolution in which we
have no blackout, after setting, the bath becomes available
to the user.

Nevertheless, the property of Figure 5 states that, if we
have no blackout, the bath must be always available. This is
why we must refine the automaton and add the last arrow.
In the example, the hot scenario only concerns the last event,
that is the transition between states a3 and a4. The hot
constraint means that, if the precondition holds (i.e., all
the previous events have already happened), then this event
must always occur. This constraint is described by an LTL
formula:

2(In(a3) ⇒ 3In(a4))

where we require that when the automaton is in state a3

(i.e., In(a3) holds), it must always reach state a4.
We can verify this property by reasoning on the reacha-

bility of states. In particular, we require that the final state
a4 be reachable, thus there is at least an evolution that is
compliant with this property. Finally, if the model checker
does not highlight any evolution in which the LTL formula
is violated, we can say that when the precondition is veri-
fied, it is always the case that the post-condition is verified
in the same evolution.

The whole translation – middleware, components, and
properties – creates a specification that can be analyzed by
SPIN. If it finds misbehaviors in the way components coop-
erate, they are rendered back to the designer as an evolution
of the trace that highlights the error. Unfortunately, this is
not always the case: Some misbehaviors cannot be simply
described through execution traces. For instance, if a cold
scenario is not respected, that is, no evolution is compliant
with the scenario, it is meaningless to show an execution of
the system.

The validation of the bath service has been performed
by assuming a middleware that delivers all events, keeps
the same order of publication and notification, and reacts
immediately to all (un)subscriptions. The validation process
shows that the service is incorrectly designed since it violates
the property shown in Figure 4. For example, if we consider
the following scenario: User asks for a bath and Bath starts
to fill the bath tub. At the same time Heating increases the
temperature, but before becoming hot, we have a blackout
that turns the heating off. At this point, Bathroom and
User wait forever since Heating does notify neither that it is
switched off nor that temperature is hot.

This misbehavior can be avoided by modifying the arrows
between states on and off in Heating (Figure 2) to introduce
the publication of an event to notify the failure of Heating.

4. RELATED WORK
Software model checking is an active research area. A

lot of effort has been devoted to applying this technique to

the validation of application models, often designed as UML
statechart diagrams, and the coordination and validation of
the components of distributed applications based on well-
defined communication paradigms.

vUML [14], veriUML [2], JACK [7], and HUGO [18] pro-
vide a generic framework for model checking statecharts.
All of these works support the validation of distributed sys-
tems, where each statechart describes a component, but do
not support any complex communication paradigm. JACK
and HUGO only support broadcast communication, that is,
the events produced by a component are notified to all the
others. vUML and veriUML support the concept of channel,
that is, each component writes and reads messages on/from
a channel. These proposals aim at general-purpose applica-
tions and can cover different domains. However, they are
not always suitable when we need a specific communication
paradigm. In fact, if we want to use them with the pub-
lish/subscribe paradigm, we must model the middleware as
any other component. Moreover, the communication be-
tween components, thus between the middleware and the
other components, is fixed: It depends on how automata
are rendered in the analysis language. For instance, vUML
would not allow us to model a middleware which guarantees
that the order of publication is kept also during notification.
These approaches also impose that channels between com-
ponents be explicitly declared: vUML and veriUML do not
allow us to create or destroy components at run-time and
the topology of the communication is fixed.

The proposals presented so far do not support a friendly
language to define properties. With vUML we can only state
reachability properties, while with veriUML, JACK, and
HUGO we can also define complex properties on how the
application evolves, but in all cases they must be declared
directly in the formalism supported by the model checker,
that is, CTL, ACTL and LTL, respectively. All these for-
malisms are based on temporal logic and are difficult to use
and understand by designers with no specific background.

Two other projects try to overcome these limitations (i.e.,
definition of properties and communication paradigm). In-
verardi et al. [11] apply model checking techniques to au-
tomata that communicate through channels. In this ap-
proach, properties are specified graphically through MSCs.
They support two kinds of properties: (a) the application
behaves at least once as the MSC, or (b) the application
must be always complaint with the MSC. MSCs are directly
translated into LTL, the property language supported by
SPIN.

Kaveh and Emmerich [12] exploit model checking tech-
niques to verify distributed applications based on remote
method invocation. Components are described through stat-
echart diagrams where if a transition fires, some remote
methods are invoked. Only potential deadlocks can be dis-
covered by this tool.

Garlan et al. [5] and the Cadena project [8] apply model
checking techniques on distributed publish/subscribe archi-
tectures. Both of these proposals do not deal with UML
diagrams, but define the behavior of components through
a proprietary language [5] or using the CORBA IDL-like
specification language [8].

Garlan et al. provide different middleware specifications
that can be integrated into the validation tool. The proper-
ties are specified in CTL, which is the formalism provided
by the SMV [15] model checker. Although the ideas in this

40

proposal and in our approach are similar, there are some
differences: (a) we provide a complete graphical front-end
for the designer that does not have to deal with any partic-
ular textual and logical formalism, (b) the set of warranties
supported by our middleware is wider (e.g., [5] does not
deal with subscriptions), and (c) LSCs provide the opera-
tors for describing the communication among components in
a graphical and natural way, while CTL is a general-purpose
temporal logic.

Cadena, which is the other proposal that supports pub-
lish/subscribe architectures, only deals with the CORBA
Component Model (CCM). In Cadena, the communication
is established explicitly, that is, each component declares
the components from which it desires to receive events. This
particular implementation of the publish/subscribe paradigm
does not allow the use of Cadena with other middleware
platforms. Cadena supports the Bandera Specification Lan-
guage [3] to specify properties against which the system
must be validated.

5. CONCLUSIONS AND FUTURE WORK
In this paper we present an approach to model and vali-

date distributed architectures based on the publish/subscribe
paradigm. Application-specific components are modeled as
UML statechart diagrams while the middleware is supplied
as a configurable predefined component. As to validation,
properties are described with live sequence charts (LSCs)
and transformed into automata. Components, middleware,
and properties are translated into Promela and then passed
to SPIN to validate the architecture.

Our future work is headed to different directions. We are
extending the approach to model time and probabilities as-
sociated with publication/notification of events. But we are
also trying to understand how these analyses can be per-
formed in an incremental way: do properties remain valid?
What about results?

Finally, we are studying how to better support the de-
signer while modeling applications, the adoption of different
model checkers to understand the impact they have on ob-
tained results, and the possibility of automatically coding
the infrastructure of these architectures by means of the
analysis models.

6. REFERENCES
[1] A. Carzaniga and D. S. Rosenblum and A. L. Wolf.

Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer
Systems, 19(3):332–383, Aug 2001.

[2] K. Compton, Y. Gurevich, J. Huggins, and W. Shen.
An automatic verification tool for UML. Technical
Report CSE-TR-423-00, 2000.

[3] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A
language framework for expressing checkable
properties of dynamic software. In Proceedings of the
SPIN Software Model Checking Workshop, volume
1885 of LNCS, August 2000.

[4] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transaction
on Software Engineerings, 27(9):827–850, September
2001.

[5] D. Garlan and S.Khersonsky and J.S. Kim. Model
Checking Publish-Subscribe Systems. In Proceedings
of the 10th SPIN Workshop, volume 2648 of LNCS,
May 2003.

[6] W. Damm and D. Harel. LSCs: Breathing life into
message sequence charts. Formal Methods in System
Design, 19(1):45–80, 2001.

[7] S. Gnesi, D. Latella, and M. Massink. Model Checking
UML Statecharts Diagrams using JACK. In Proc.
Fourth IEEE International Symposium on High
Assuarance Systems Enginering (HASE), pages 46–55.
IEEE Press, 1999.

[8] J. Hatcliff, W. Deng, M.D. Dwyer, G. Jung, and
V. Ranganath. Cadena: An integrated development,
analysys, and verification environment for
component-based systems. To appear in Proc. of the
International Conference on Software Engineering
(ICSE 2003),IEEE Press,2003.

[9] G.J. Holzmann. Design and Validation of Network
Protocols. Prentice Hall, 1991.

[10] G.J. Holzmann. The model checker SPIN. IEEE
Trans. on Software Engineering, 23(5):279–295, May
1997.

[11] P. Inverardi, H. Muccini, and P. Pelliccione.
Automated check of architectural models consistency
using SPIN. In Proc. Automated Software Engineering
conference (ASE2001), pages 349–349. IEEE Press,
2001.

[12] N. Kaveh and W. Emmerich. Deadlock detection in
distributed object systems. In Proc. of the Joint 8th
European Software Engineering Conference (ESEC)
and 9th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-9), pages
44–51, Vienna, Austria, 2001. ACM Press.

[13] L. Zanolin and C. Ghezzi and L. Baresi. Model
Checking Pusblish/Subscribe Architectures. Technical
report, 2003.

[14] J. Lilius and I.P. Paltor. vUML: a tool for verifying
UML models. In Proc. 14th IEEE International
Conference on Automated Software Engineering
(ASE), pages 255–258, Cocoa Beach, Florida, October
1999.

[15] K.L. McMillan. Symbolic Model Checking. Kluwer
Academic Publ., 1993.

[16] A. Pnueli. The temporal logic of programs. In Proc.
18th IEEE Symp. Foundations of Computer
Science(FOCS-77), pages 46–57, Providence, Rhode
Island, October 1977.

[17] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison
Wesley Lognman, 1999.

[18] T. Schäfer, A. Knapp, and S. Merz. Model checking
UML state machines and collaborations. Electronic
Notes in Theoretical Computer Science, 55(3):13
pages, 2001.

[19] Sun Microsystem. Java Message Service Specification.
Technical report, Sun Microsystem Technical Report.

[20] TIBOC. The Power of now. Tibco hawk.
http://www.tibco.com/solutions/.

41

Timed Probabilistic Reasoning on UML Specialization
for Fault Tolerant Component Based Architectures

Jane Jayaputera, Iman Poernomo and Heinz Schmidt
{janej,ihp,hws}@csse.monash.edu.au

CSSE, Monash University, Australia

ABSTRACT

Architecture-based reasoning about reliability and fault tolerance
is gaining increasing importance as component-based software ar-
chitectures become more widespread. Architectural description
languages (ADLs) are used to specify high-level views of software
design. ADLs usually involve a static, structural view of a system to-
gether with a dynamic, state-transition-style semantics, facilitating
specification and analysis of distributed and event-based systems.
The aim is a compositional syntax and semantics: overall compo-
nent behavior is understood in terms of subcomponent behavior.
ADLs have been successful in understanding architecture function-
ality. However, it remains to be investigated how to equip an ADL
with a compositional semantics for specification and analysis of
extra-functional properties such as reliability and fault-tolerance.

This paper combines architecture definition with probabilistic fi-
nite state machines suitable to model reliability and fault-tolerance
aspects. We present a compositional approach to specifying fault
tolerance through parameterization of architectures. Using Proba-
bilistic Real Time Computational Tree Logic (PCTL) we can specify
and check statements about reliability of such architectures.

1. INTRODUCTION

In distributed systems, fault-tolerance can be aided by
replication mechanisms. Central to these mechanisms is the
notion of fail-over: a backup server takes over the job from
a crashed server after a short timeout period and sends data
back to the client directly, without human reconfiguration,
as if the original server is still operating. There is a range
of possible replication algorithms for achieving fail-over. We
would like to systematically apply similar kinds of fail-over
to design more reliable component-based software architec-
tures. Given particular client and server components, we
wish to create a fault tolerant architecture by associating a
replication algorithm with calls to the server from the client.

Architectural description languages (ADLs) are used to
specify high-level views of software design. ADLs usually
involve a static, structural view of a system with a dy-
namic, state-transition style semantics, facilitating specifi-
cation and analysis of distributed and event-based systems.
The implementation is compositional: component behavior
is understood in terms of subcomponent behavior.

However, the compositionality of component specifications
cannot be taken for granted, especially when extra func-
tional properties of the dynamic behavior are modeled [18].
In previous work [14] we have developed a compositional
ADL-based approach to reliability using Markov chains.

In this paper, we extend some of those ideas, focusing on
representing a range of fail-over replication strategies in the

syntax and semantics of a compositional ADL. The novelty
of our approach is the combined use of

• parameterization of architectures to treat replication
strategies systematically, and

• a probabilistic semantics to facilitate fault-tolerance
analysis of resulting architectures.

We can then use our work to reason about reliability prop-
erties of software component architectures. Our approach is
simple, combining three formalisms:

1. We define an ADL with probabilistic finite state ma-
chine (PFSM) semantics. The semantics tells us about
the dynamic behavior of a component. Specifically, it
permits us to define how a call to a component inter-
face method will result in calls to other required com-
ponents. Our semantics is probabilistic, so it permits
our models to relate usage profiles of method calls (the
probability that particular sequences of methods will
be called), and also to model method reliability (i.e.,
the probability of method execution success). Over-
all component reliability is then given as a cumulative
function of method reliability over all component in-
terfaces.

2. We apply a parameterization mechanism to add fault
tolerant features automatically into the ADL. The pa-
rameterization involves choosing one of the provided
replication algorithms. These algorithms replicate the
server process to enable fail-over.

3. We use Probabilistic Real Time Computational Tree
Logic (PCTL) to specify and check statements about
such architectures. This is possible because PCTL
statements have truth values that are determined ac-
cording to the ADLs probabilistic finite state machine
semantics, if we associate logical properties with par-
ticular states. To check statements against architec-
tures, we use the compositional semantics to build a
machine for the architecture, preserving the logical
properties known to hold for subcomponents. This
yields a larger PFSM over which PCTL statements
may be checked.

2. FAULT TOLERANCE IN DISTRIBUTED SYSTEMS
Reliability and fault-tolerance are some of the key issues of

current distributed systems. Large scale, widely distributed
systems contain large numbers of network nodes and connec-
tions. There is a likelihood that some nodes or some con-
nections will be unavailable. Because many connections and

42

intermediate nodes are needed to enable a client-server com-
munication, this temporary unavailability can significantly
decrease the overall reliability of a system. This is of par-
ticular concern in distributed enterprise systems.

Replication combined with a fail-over logic is a common
fault tolerance mechanism, overcoming some of these prob-
lems and hence increasing overall availability and reliability.

Replication mechanisms try to overcome system failure by
duplicating processes and resources. Then clients can access
resources without having to worry about server crashes and
unpredicted downtime. This is possible because requests
made to a crashed server are now diverted to another server
(or replica). The replica then sends information back to
clients directly, as if the original server itself was performing
the data transfer.

A range of fail-over replication algorithms has been pro-
posed. Passive replication (also known as primary-backup)
[2] and active replication (also known as state machine) [20]
approaches are probably the most important and well-used
ones. Most of the remaining approaches are extension of
these two replication methods. There are several important
extensions. Active client in passive replication approach, ab-
breviated here as active client replication) [3], extends the
primary-backup approach by making a client actively choose
a server to contact. Recently, [4, 17] specified a new repli-
cation technique known as semi-passive replication mecha-
nism. For reasons of scope, we only describe passive repli-
cation and active client replication algorithms in this paper.
Interested parties are referred to, for example, [7] for details
on the other algorithms.

The passive replication approach mainly works as follows.
At any one time, there is at most one primary server to serve
requests from clients. Other servers act as backups. These
backups receive the updated data from the primary server
and do not interact directly with clients. If the primary
server fails, one of the backups takes over the serving role
and acts as the new primary server [2].

In order to overcome the main drawback of passive repli-
cation approach, active client replication was invented. It
extended the passive replication algorithm by allowing client
to contact a backup server directly if the primary server does
not function correctly (crash) [3]. One of the current au-
thors has extended the approach by allowing busy server to
be handled as well as crashed primary server and message
omission failure [7].

Our probabilistic fail-over model uses the following prob-
abilities (illustrated in Fig. 1).

• Pprimary(S) is the probability of server S to be chosen
as primary server when a client makes a request.

• Pbusy(S) is the average probability of server S being
busy for a call at any time.

• Pbottleneck(S) is the failure probability of server S.

• Ptransfer(S, S′) gives the probability of server S′ being
chosen as backup server in lieu of server S.

Without loss of generality, for simplicity of the examples,
we assume that these probabilities are independent of S.

3. ARCHITECTURAL DESCRIPTION LANGUAGE

Architectural Description Languages (ADLs) are used to
specify coarse-grain components and their overall intercon-
nection structure. ADLs are compositional, permitting the

S0 PRIMARY

S0 BUSY

S0 IDLE

S0 FAILED

S0 RECOVERED

S1

S(n-1)

...

S(n-1)

...

[P
primary

]
[Pbusy]

[P
bottleneck

]

[1-P
bottleneck-

]
[Ptransfer]

[1-P
busy

]

Figure 1: Probabilities.

specification of components in terms of smaller components.
Examples of ADLs are Darwin [10], Wright [1] and radl [19].

In this section, we define a simplified version of radl, a
language for describing and analyzing both functional and
nonfunctional properties of architectures. Like many ADLs,
radl consists of a visual and textual notation for defining
the static composition of a system, and a state transition
semantics for analysis of dynamic aspects. We describe the
former and then the latter.

The basic elements of our language are components – re-
ferred to as kens in radl.1 The functionality of a component
is defined by a set of provided and required ports. The ports
are referred to as gates in radl. Gates are to be regarded as
interfaces of the component, which can be accessed by an
external client. The internal functions of a ken are speci-
fied by internal ports, which can be thought of as internal
methods used to implement an interface, not available to
an external client. Provided and required gates express the
external functionality that a ken provides and needs to use,
respectively.

Ken A Ken B

Provides-gate 1

Provides-gate 2

Requires-gate 1

Requires-gate 2

Provides-gate 3

Provides-gate 4

Figure 2: Example of radl.

4. FAULT TOLERANCE PARAMETERIZATION IN ADL

Replication is usually described as communications be-
tween a client with some servers in distributed systems. We
propose a method to abstract over these communications
in component-based software architecture. We encapsulate
the detailed design of server replications using an abstrac-
tion concept, added into the ADL. Instead of expecting a
software designer to know the details of a particular algo-
rithm, we provide a mechanism to automatically produce
a fault tolerant architecture, given client and server com-
ponents and a chosen algorithm. The mechanism is called
Parameterized Replication.

1We use the term ken to specify the elements of our ADL, as
these elements are often more general than traditional sys-
tem components, representing a range of other architectural
building blocks, such as transactional boundaries or, in our
case, parameterized fault-tolerant architectures.

43

We allow kens to be parameterized by different replica-
tion strategies, through use of the ParRepl construct. Like
UML template classes (and template components), we draw
a parameter as a box in the corner of a ken to illustrate the
parameterized replication notation.

The first abstraction represents a black-box of parame-
terized replication. The parameterization shows the name
of the replication algorithm that is used (see for example
Fig. 3). In this abstraction, an architect does not have to
know the algorithm details. The architect need only specify
a name of replication algorithm that will be used (in this
case AR stands for active replication).

AR

Ken A Ken B

Figure 3: Abstraction 1.

In radl, the first abstraction corresponds to a new con-
struct

ParRepl(C, S, algo, probs, n)

This element wraps all interactions between a client C and
server S according to a replication algorithm defined by
algo. The algorithm ranges over fail-over mechanisms, repli-
cating n copies of the server S by n. We assume that
{S0, S1, ..., Sn−1} are a set of servers. We denote the algo-
rithms mentioned above by PassiveReplAlgo,
ActiveReplAlgo, SemiPassiveReplAlgo,
ActiveClientReplAlgo with their obvious meaning. We use
probabilities probs specified at the end of section 2 for reli-
ability measurement of fault tolerant architecture.

Fig. 2 presents two basic kens Ken A and Ken B with two
bindings between required and provided gates (shaded and
white rectangles, respectively). Ken A is a client of Ken B,
a server. Fig. 4 shows a variation of Fig 2. Ken B has
been parameterized by the formal parameter of the replica-
tion algorithm. A particular replication algorithm, Passive
Replication, has been chosen as an actual parameter.

DBWS
Login

GetWebPage

DBQuery

FindDetails

DBQuery

FindDetails

PassiveReplication

Figure 4: Example of syntax for fault tolerant radl.

The second abstraction is concerned with the actual com-
munication of client and servers according to a particular al-
gorithm. The active replication algorithm is shown in Fig. 5
(a), where a client communicates with all servers. Fig. 5 (b)
shows passive replication algorithm, where a client can con-
tact a primary server only. This abstraction is elaborated
in section 5.

5. SEMANTICS FOR DYNAMIC ANALYSIS

Architectures of radl are equipped with probabilistic finite
state machine (PFSM) semantics. Our semantics is compo-
sitional, in the following sense. Each basic ken is associated
with a set of PFSMs, defining how calls to provided gates

CLIENT

S1

S2

S3

S1

S2

S3

ACTIVE REPLICATION (AR)

(a)
(b)

PASSIVE REPLICATION (PR)

CLIENT

Figure 5: Abstraction 2.

result in internal gate calls and outgoing signals to required
gates. Then, our semantics defines how larger compositions
of kens result in larger PFSMs from the individual kens’
PFSMs.

A PFSM may be formally defined:

Definition 5.1 (PFSM). A Probabilistic Finite State
Machine (PFSM) is a tuple

D = 〈ED, AD, ZD, δD, P robD, initialD, F inalD, failedD〉
ED is called event alphabet, AD is the action alphabet, ZD

denotes the set of states. initialD, failedD ∈ ZD are desig-
nated initial and fail state, respectively and FinalD ⊂ ZD is
the set of final states.

δD : ZD × ED ∪ AD → ZD

and

ProbD : ZD × ED ∪ AD → [0, 1]

are the transition function and the transition probability, re-
spectively, where for all z ∈ ZD:

1 =
X

x∈ED∪AD

ProbD(z, x)

In other words ProbD induces a probability distribution on
the set of transitions for each state.

For the sake of conformance to standards for interchange-
ability within CASE tools, our visual notation for PFSMs
borrows from UML statechart diagrams and extends them
with probabilities. Initial, failed and final states are marked
using a solid circle, a solid rectangle and a circle marked
with a dot, respectively. In our extension, a transition from
state s1 to s2 is of the form:

s1
e[p]/a−→ s2

where

• e is an optional event. We use events to denote calls
to a ken’s provided or internal gates, resulting in the
state transition

• a is an optional action. We use actions to denote in-
ternal activity or calls to a ken’s required gates.

• p is a probability value (the probability of the given
transition). ¿From a practical viewpoint, p is often
the product u · r where u is the usage probability (of

44

the event e) and r the reliability of the action a. For
details see [14].

A PFSM D then gives rise to a (finite-state discrete-time)
Markov chain (transition probability matrix) M by sum-
ming the (multi-edge) probabilities between a given pair of
states and solving the resulting model analytically [14].

Composing Fault Tolerant PFSM

Our ADL has been defined as a Meta Object Facility (MOF)
meta-model through UML specialization [12]. The details
are topic for another paper. Here it suffices to mention that
the MOF/UML permits to treat architectural and behav-
ioral considerations in tandem. Kens are treated as meta-
classes that contain a meta-method semantics() which re-
turns a PFSM model (as a first class object) accessible to
other methods in our implementation.

We define a fault tolerant parameterization semantics as
follows:

1. There is a UML meta-model for describing our ADL
and its semantics, mainly defined by StateMachine,
Transition, and State [11]. They are similar to PFSM,
δD and ZD in Def. 5.1, respectively.

2. The replication algorithms are given by a metaclass
ReplAlgo, used to generically compute semantics for
a given replication choice. This metaclass is equipped
with a virtual (meta-)method execAlgo that denotes
the algorithm. The range of replication algorithms
may then be represented by subclassing ReplAlgo and
redefining this function.

Some algorithms inherit properties of ReplAlgo ab-
stract class: PassiveReplAlgo, ActiveReplAlgo, Semi-
PassiveReplAlgo, and ActiveClientReplAlgo. This ap-
proach is efficent from a meta-modeling perspective,
because it enables us to treat all algorithms as of the
metaclass type ReplAlgo.

3. A ParRepl is given as a parameterized (meta-)class
that takes four arguments. Given client PFSM and
server PFSM, it calls an abstract class called ReplAlgo
and outputs a combined PFSM as the result.

Another novelty of this approach is that we use MOF and
UML meta-modeling to generically treat architectures over
particular replication algorithms.

We outline a compositional semantics for fault tolerant
architectures, based upon PFSMs. We refer the interested
reader to [13] for a detailed formal description of a similar
semantics using deterministic finite state machines without
probabilities and [8] with probabilities. We define passive
replication algorithm in this paper to illustrate composition
of fault tolerant architectures.

Binding. Given ken C with required gate pp connected
to ken S with provided gate pp,

Bind(C, S, pp)

we build a larger set of PFSMs associated with the provided
gates of Bind(C, S, pp)

[[Bind(C, S, pp)]]

according to the following algorithm. First, let

Sem0 = [[S]] − {PFSMpp}

1. Set i := 0.

2. For each

PFSMepp ∈ [[C]]

3. If PFSMepp does not involve pp as an action, then let
Semi+1 = Semi ∪{PFSMepp}, let i := i +1, take the
next PFSMepp ∈ [[C]] and go to step 3.

Otherwise, go to step 4.

4. Take every transition in PFSMepp that involves pp as
an action,

s1
e[call∗rel]/pp−→ s2 (1)

and let RPFSMpp be the PFSM for the provided
gate pp in [[S]]. We define Change(RPFSMpp, s2)
to be RPFSMpp with its initial state replaced by
s2.pp.start and final state with s2.pp.end. Then, we
insert Change(RPFSMpp, s2) between s1 and s2, in
the sense that we delete the transition 1 and replace it
with

s1
e[call∗rel]/pp−→ s2.pp.start

and add the transition

s2.pp.end
pp.end[1]−→ s2

We call the resulting machine PFSM ′
epp.

5. We let Semi+1 = Semi ∪ {PFSM ′
epp}, take the next

PFSMepp ∈ [[C]], set i := i + 1 and go to step 3.

ParRepl. We define the semantics of the fault-tolerant
replication

[[ParRepl(C,S, algo, probs, numServers)]]

according to the algorithm defined in algo. Here we only give
a sketch of the semantics. The probabilities primary(S)
are added in the transition between client PFSM to the
PFSM for each servers S, by defining a new state S.current
which intercedes calls from the client with primary(S) as
the probability of transition from the client call. Proba-
bility busy(S) is added in the transition after S.current, by
defining transition busy(S) to a new state S.BUSY . idle(S)
is the probability of server S being idle (does not fail). The
probability bottleneck(S) is added in the transition between
S.BUSY to the root PFSM. Probabilities transfer(S,S′)
are added in the transition between S1.transferControl to
other servers’ PFSM starting state S′.current. Probability
otherFailures(S) is being added in the transition between
S.BUSY to a new state S.transferControl.

ReplAlgo. As an illustration, we define the semantics
for ParRepl where algo is set to PassiveReplAlgo.

1. Set n := 0 and do all steps in Bind(C, S, pp) up to
step 3. Instead of calling step 4, refer the call to this
algorithm in step 2.

Let us add some probabilistic transitions to each of
ken S’s PFSMs in steps 3 for correct processes and 4
for busy processes.

2. For each PFSMn

s.t. n < numServers and PFSMpp ∈ [[S]]:

45

3. Go to step 4 in Bind(C, S, pp) to compose a larger
PFSM in normal case (no failure). After that, we
do a composition for failure cases. We define a new
function Add(FTPFSMpp, s1, s2) to add a new state,
namely s2.pp.current, so that we can put a probabil-
ity in choosing a primary server probs[n][primary] for
all numServers servers. Then, we insert the function
Add(FTPFSMpp, s1, s2) so that two more transitions
are added between s1 and s2 (besides the transitions
in step 4 of Bind(C, S, pp)) with

s1
probs[n][primary]−→ s2.pp.current

and

s2.pp.current
probs[n][idle]−→ s2.pp.start

4. Add a transition to a new state Sn.BUSY if busy pro-
cesses happen:

s2.pp.current
probs[n][busy]−→ Sn.BUSY

In the case of bottleneck (crashes) without having a
chance to transfer the control to a new primary:

Sn.BUSY
probs[n][bottleneck]−→ final

Add a transition in the case of failures other than bot-
tleneck:

Sn.BUSY
probs[n][other]−→ Sn.transferControl

And add other transitions to the starting state of other
backup servers:
For ((0 ≤ backup < numServers) ∧ (backup �= n)):

Sn.transferControl
probs[n][transfer][backup]−→ s2.pp.current

Then set n := n + 1 and repeat step 3 until n =
numServers.

5. We call the resulting machine PFSM ′
epp and go to step

5 in Bind(C, S, pp).

6. PROBABILISTIC COMPUTATIONAL TREE LOGIC

Probabilistic Computational Tree Logic (PCTL) (see for
instance [6]) is used to specify and check timing and prob-
abilistic properties on our architectures. We define PCTL
in terms of structures comprising PFSMs and associating
additional atomic propositions with states:

Definition 6.1 (Structure). A structure is a tuple

S = 〈DS, P ropS, hS〉
where DS is a PFSM, PropS is a finite set of atomic propo-
sitions and h : ZDS → P(PropS) is a function decorating
states with propositions sets.

The idea is to extend each basic ken PFSM by associating
atomic propositions with states. We use the architectural se-
mantics of the previous section, so that compositions of kens
have appropriately expanded structures. Formulae can then
be specified about the provided gates of any given architec-
tural composition, and then checked against the associated
structures.

We extend the traditional definition of PCTL which uses
transition probabilities without associated events or actions.

To this end we use finite sequences in (E ∪ A)∗, infinite se-
quence in (E∪A)ω and bounded sequences in (E∪A)n<k for
some bound k. Such a sequence a0 . . . an−1 is also called a fi-
nite, infinite or bounded trace, respectively, of the PFSM D,
if there is an associated sequence of states s0, . . . , sn−1 ∈ ZD

such that initialD = s0
a0→ s1

a1→ · · · sn−1 are legitimate tran-
sitions, i.e., if δD(si, ai) = si+1 for all for the respective step
i. The probability of this trace is the product of the single
transition probabilities: p(a0 . . . an−1) =

Q
i ProbD(si, ai).

The trace is also called accepted if sn−1 ∈ FinalD.
As computation tree paths in PCTL are sequences of

states without transition symbols, in order to forget the
transition symbols we map a given trace t = a0 . . . an−1 to
its underlying state sequence s = s0 . . . sn−1. We denote by
st the underlying state sequence of t. Since different sym-
bols can make different transitions between the same pair of
states, then different traces can have the same underlying
state sequence. By Ts = {t | st = s} we denote the set of
traces with the same underlying state sequence s.

Now the paths in the sense of traditional PCTL are the
underlying state sequences of the traces in TD. Their prob-
ability can be computed as

p(s) =
X

t∈Ts

p(t)

This means we sum the trace probabilities given in the
PFSM over all traces with the same underlying state se-
quence to derive the probability of the state sequence.

PCTL now permits model checking with temporal formu-
lae that are composed from atomic propositions and include
modal operators with optional lower reliability bounds and
upper time bounds. Regarding the time bounds, such op-
erators are interpreted over all traces (and state sequences)
up to the given length in a time bound. Bounded reliability
is defined using the probabilities above, where we sum the
probabilities over all traces (implicitly over all underlying
state sequences) satisfying the given formulae, i.e. over a
corresponding state ’computation tree’.

Login.1

Login [0.99 * 1] / GetWebPage

[0.74 * 0.9] / Logout

[0.87 * 0.3] / Display

Login.2

FindDetails [0.88 * 0.2]

DBQuery [0.77 * 0.3]

FindDetails.1

[0.01] / failed

[0.739] / failed

[0.334] / failed

(a) (b)

Figure 6: PFSMs associated with basic kens of our example:
(a) PFSMLogin ∈ [[WS]], (b) PFSMFindDetails ∈ [[DB]], and
The failed state and its incoming transitions are displayed
in chart (a) and are left implicit in the other chart.

Without loss of generality and for the sake of simplicity
in the following examples, we now assume that the above
probabilities are all independent of the chosen server(s). In

46

Login.1

S1.transferControl

S2.transferControl

S3.transferControl

Login [0.99 * 1] / GetWebPage

[0.66]

[0.66]

[0.66]

[0.4]

[0.6]

[0.6]

[0.4]

[0.6]

[0.4]

[0.3] [0.7]

[0.3] [0.7]

[0.3] [0.7]

S1.FindDetails.current

S1.FindDetails.start

[0.7]

S1.BUSY[0.7]

[0.3] / FindDetails

S2.BUSY

S3.BUSY
[0.7]

S3.FindDetails.start

[0.3] / FindDetails

S2.FindDetails.start

[0.3] / FindDetails

S2.FindDetails.current

S3.FindDetails.current

server crashes

server crashes

server crashes

S2.FindDetails.current

S2.FindDetails.current

S1.FindDetails.current

S1.FindDetails.current

S3.FindDetails.current

S3.FindDetails.current

[0.88 * 0.2]

[0.77 * 0.3]

S.FindDetails.end

S.FindDetails.1

S.FindDetails

[1]

[0.87 * 0.3] / Display

S.FindDetails.start

Login.2

[0.74 * 0.9] / Logout

S1.FindDetails.start = S2.FindDetails.start = S3.FindDetails.start = S.FindDetails.start

Figure 7: Fault tolerant PFSM using passive replication.

other words, we assume a homogeneous pool of servers with
symmetric fail-over policy.

Example 6.1. Using PassiveReplAlgo, let NewDBReq be
an atomic proposition, standing for the fact that a new database
connection that fault tolerant needs to be added to the pool in
our example. Assume that hDB(F indDetails.1) = hWS(Login.2) =
{NewDBReq}, so that

hARCH(S1.F indDetails.1) = hARCH(C.Login.2) = {NewDBReq}

We make the following specification about the behavior of a call
to the Login gate of ARCH. In the best case, there is a probability
of at least 0.2% that we will require a new database connection
in less than or equal to 7 times steps in server S1.

True U t≤7
p≥0.002 NewDBReq (2)

After the third attempt, we get a probability of at least 0.37% that
we will require a new database connection in less than or equal
to 14 times steps in server S3, using the same formulae above.

For the overall architecture, we get a reliability of at least 82%
if we use one server only. The reliability is increased by 16.3%
if we use three servers instead.

True U t≤8
p≥0.82 final (3)

Using the algorithms of [6], we can verify that this specification

is true of ARCH.

Example 6.2. Assuming active client replication algorithm
is used, we use the same atomic proposition as in Example 6.1.
For the best case, we have probability of at least 0.2% that we will
require a new database connection in less than 7 times steps in
server S1 using Equation (2). After the third attempt, we get a
probability of at least 0.38% that we will require a new database
connection in less than or equal to 17 times steps in server S3,
using the same formulae.

For the overall architecture, at least 60% reliability is achieved

if we use one server only. By replicating the number of servers

to three, we get a greater reliability of at least 98.2%. We use the

formulae in Equation (3) for both measurements.

The PFSM in Fig. 7 is the result of combining individ-
ual PFSMs in Fig. 6, using the composition algorithm for
passive replication defined in Section 5.

In relation to composing PFSMs using the active client
approach in Example 6.2, more states need to be used com-
pared to Example 6.1. This is due to the need to choose a
new primary server in case the old primary fails. Thus, the
client has to resend a request to the new primary and the
corresponding client PFSM has to be included again in the
composition. As the number of states increases, the number
of steps also increases (21 steps in Example 6.1 compared to
30 in Example 6.2).

Updating backup servers (as part of the passive replica-
tion algorithm) is not included in the PFSM composition.
We can avoid this because our reliability measurements are
only the sequences leading to the client receiving a response
regardless of server replication. It can be seen from Exam-
ple 6.1 and Example 6.2 that reliability of architecture is
increased by around 0.01% if we use three servers instead of
one server only. Since a crashed server can often be restarted
after a failure, there is an additional element of availability
‘built-in’ that we are not even accounting for, since our sim-
plified model treats failure as terminal.

7. IMPLEMENTATION

The compositional semantics for our version of radl have
been implemented. The software, called FSMComb [5], im-
plements our methods in Java. FSMComb interfaces to
the PRISM [9] model checking tool which permits to check
PCTL specifications against our architectures. Generally,
FSMComb combines two or more PFSMs for individual kens
into one for the given architecture. The PFSMs are read
from text files and then extended by fault-tolerance con-
structs as described. Finally the composite models are ex-
ported to the PRISM checker together with fault-tolerance
assertions. PRISM then verifies these models and reports
the results.

47

8. RELATED WORK AND CONCLUSIONS

Little work has been done in using ADLs to specify and
analyze fault tolerant properties.

In [16], non-functional properties such as dependability,
safety, reliability and availability are defined formally using
a predicate logic with some extensions. Then, components
and replication methods are also defined formally using the
non-functional properties that have formally been defined
previously. However, that work does not relate a compo-
sitional ADL-style view of architecture to replication tech-
niques. The relation of fault tolerance to executable archi-
tectures was investigated in [15]. The approach adds fault
tolerant supports into SOFA component framework. The
SOFA framework is based on component oriented program-
ming. Thus, SOFA is similar to OMG’s CORBA, Sun’s En-
terprise Java Beans and Microsoft’s COM. Although they
use replication methods such as active and passive replica-
tion as our approach, there are some differences.

The approach does not replicate a component automati-
cally. Also, the primary goal of that work is to implement
fail-over algorithms directly in SOFA source code, without
describing it abstractly in architecture.

In [14], we developed a compositional approach to reli-
ability models where PFSMs are associated to hierarchical
component definitions and to connectors. Markov chain se-
mantics permits hierarchical composition of these reliabil-
ity models. However the paper does not develop a fault-
tolerance model. The work presented here is in part based
on that semantics.

This paper presented a compositional approach to fault-
tolerant component-based architectures. We modeled fail-
over mechanisms in a pool of replicated servers. PFSMs
were associated with components and connectors to define
the behavior of hierarchical component-based architectures.
We sketched a formal semantics using PCTL.

Parameterized architectural patterns are used in our ap-
proach, in which the chosen fault-tolerance mechanisms be-
comes a parameter. The actualization of the parameter in-
cludes probabilities for weaving the PCTL fault-tolerance
model into the PCTL models of the client-server interface
functionality.

Finally, the paper developed an example for the special
case of a pool of symmetric servers - although our approach
is more general. The example also illustrated our prototype
implementation of the PCTL architecture weaver.

9. REFERENCES
[1] R. Allen. A Formal Approach to Software Architecture.

PhD thesis, Carnegie Mellon University, May 1997.

[2] N. Budhiraja, K. Marzullo, F. B. Schneider, and
S. Toueg. The primary-backup approach. In
S. Mullender, editor, Distributed Systems, chapter 8,
pages 199–215. ACM Press, 2nd edition, 1993.

[3] P. Chundi. Protocols for Achieving Consistency and
Reliability in Replicated Database Systems that Utilize
Asynchronous Updates. PhD thesis, Department of
Computer Science, University of Albany - State
University of New York, August 1996.

[4] X. Défago and A. Schiper. Specification of replication
techniques, semi-passive replication and lazy
consensus. Technical Report IC/2002/007, École
Polytechnique Fédérale de Lausanne, Switzerland,
Feb. 2002.

[5] Fsmcomb - finite state machine combinator. See
http://www.csse.monash.edu.au/~janej.

[6] H. Hansson and B. Jonsson. A logic for reasoning
about time and reliability. Formal Aspects of
Computing, 6(5):512–535, 1994.

[7] J. Jayaputera. Fault Tolerance in Active
Client/Passive Replication: Tolerating Faulty or Slow
Servers and Handling Network Partitions. Honours
Thesis, School of CSIT, RMIT University, Oct 2001.

[8] J. Jayaputera, I. Poernomo, R. Reussner, and
H. Schmidt. Timed probabilistic reasoning on
component based architectures. In H. Sondergaad,
editor, Third Australian Workshop on Computational
Logic. ANU, Canberra, Dec 2002.

[9] M. Kwiatkowska, G. Norman, and D. Parker. Prism:
Probabilistic symbolic model checker. In
PAPM/PROBMIV’01 Tools Session, 2001.

[10] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In
W. Schafer and P. Botella, editors, Proc. 5th European
Software Engineering Conf., volume 989, pages
137–153, Sitges, Spain, 1995. Springer-Verlag, Berlin.

[11] OMG. UML Specification v1.5, March 2003.

[12] OMG. UML Superstructure v2.0, April 2003.

[13] R. Reussner, I. Poernomo, and H. Schmidt. Using the
TrustME Tool Suite for Automatic Component
Protocol Adaptation. In P. Sloot, J. Dongarra, and
C. Tan, editors, Computational Science, ICCS 2002,
The Netherlands, 2002, volume 2330 of LNCS, pages
854–862. Springer-Verlag, Berlin, Germany, Apr. 2002.

[14] R. Reussner, H. Schmidt, and I. Poernomo. Reliability
prediction for component-based software architectures.
Journal of Systems and Software – Special Issue of
Software Architecture - Engineering Quality Attributes,
66(3):241–252, 2003.

[15] J. Rovner. Fault tolerant support for sofa. Technical
report, Dept. of CSE, University of West Bohemia in
Pilsen, Czech Republic, 2001.

[16] T. Saridakis and V. Issarny. Developing dependable
systems using software architecture. In Proceedings of
the 1st Working IFIP Conference on Software
Architecture, pages 83–104, San Antonio, TX, USA,
Feb 1999.

[17] A. Schiper. Failure detection vs. group membership in
fault-tolerant distributed systems: Hidden trade-offs.
In PAPM-PROBMIV 2002, LNCS 2399, pages 1–15,
Denmark, July 2002. Springer Verlag. Invited talk.

[18] H. Schmidt. Trustworthy components –
compositionality and prediction. Journal of Systems
and Software – Special Issue of Software Architecture -
Engineering Quality Attributes, 65(3):215–225, 2003.

[19] H. Schmidt, I. Poernomo, and R. Reussner.
Trust-By-Contract: Modelling, Analysing and
Predicting Behaviour in Software Architectures. In
Journal of Integrated Design and Process Science,
volume 4(3), pages 25–51, 2001.

[20] F. B. Schneider. Replication management using the
state-machine approach. In S. Mullender, editor,
Distributed Systems, chapter 7, pages 169–197. ACM
Press, 2nd edition, 1993.

48

Modelling a Framework for Plugins

Robert Chatley
Department of Computing
Imperial College London

180 Queen's Gate, London
SW7 2AZ

rbc@doc.ic.ac.uk

Susan Eisenbach
Department of Computing
Imperial College London

180 Queen's Gate, London
SW7 2AZ

sue@doc.ic.ac.uk

Jeff Magee
Department of Computing
Imperial College London

180 Queen's Gate, London
SW7 2AZ

jnm@doc.ic.ac.uk

ABSTRACT
Using pluginsasa mechanismfor extendingapplicationsto pro-
vide extra functionality is appealing,but currentimplementations
arelimited in scope.We have designeda framework to allow the
constructionof flexible andcomplex systemsfrom plugin compo-
nents. In this paperwe describehow the useof modelling tech-
niqueshelpedin the exploration of designissuesand refine our
ideasbefore implementingthem. We presentboth an informal
modelandaformalspecificationproducedusingAlloy. Alloy’sas-
sociatedtoolsallowedusto analysetheplugin system’s behaviour
statically.

Keywords
plugins,components,modelling,specification

1. INTRODUCTION
Maintenanceis a very importantpartof thesoftwaredevelopment
process.Almost all softwarewill needto go throughsomeform of
evolution over thecourseof its lifetime to keeppacewith changes
in requirementsandto fix bugsandproblemswith thesoftwareas
they arediscovered.

Traditionally, performingupgrades,fixesor reconfigurationson a
software systemhasrequiredeither recompilationof the source
codeoratleaststoppingandrestartingthesystem.Highavailability
andsafetycritical systemshavehighcostsandrisksassociatedwith
shuttingthemdown for any periodof time[14]. In othersituations,
althoughcontinuousavailability maynotbesafetyor businesscrit-
ical, it is simply inconvenientto interrupttheexecutionof a piece
of softwarein orderto performanupgrade.

Unanticipatedsoftware evolution tries to allow for the evolution
of systemsin responseto changesin requirementsthat werenot
known at the initial designtime. Therehave beena numberof
attemptsatsolvingtheseproblemsatthelevelsof evolving methods
andclasses[5, 7], components[11] andservices[15]. In thispaper
we consideranapproachto softwareevolution at thearchitectural
level, in termsof plugin components.

We believe thatit is possibleto engineera generalisedandflexible
pluginarchitecturewhichwill allow applicationstobeextendeddy-
namicallyat runtime.Herewepresentamodelof how components
may be assembledin suchan architecturebasedon the interfaces
that they present. This modelwill be usedat run-timeby a plu-
gin framework to determinetheconnectionsthatcanandshouldbe
madebetweenplugins(our implementationof sucha framework is
detailedin [3]).

Thebenefitsof building softwareoutof a numberof moduleshave
long beenrecognised.Encapsulatingcertainfunctionality in mod-
ules and exposingan interfaceevolved into componentoriented
softwaredevelopment[2]. Componentscanbecombinedto create
systems.An importantdifferencebetweenplugin basedarchitec-
turesandothercomponentbasedarchitecturesis that pluginsare
optionalratherthanrequiredcomponents.Thesystemshouldrun
regardlessof whetheror not plugin componentshave beenadded,
but offer varyingdegreesof functionalitydependingon whatplug-
insarepresent.Pluginscanbeusedto addressthefollowing issues:

� theneedto extendthefunctionalityof a system,� thedecompositionof largesystemssothatonly thesoftware
requiredin a particularsituationis loaded,� the upgradingof long-runningapplicationswithout restart-
ing,� incorporatingextensionsdevelopedby third parties.

Pluginshave previously beenusedto addresseachof thesedif-
ferentsituationsindividually, but the architecturesdesignedhave
generallybeenquitespecificallytargetedandthereforelimited. In
existingsystems,eitherthereareconstraintsonwhatcanbeadded,
or creatingextensionsrequiresalot of work onthebehalfof thede-
veloper, for examplewriting architecturaldefinitionsthatdescribe
how componentscanbecombined[13]. Webelieve thatit is possi-
ble to engineera moregeneralisedandflexible plugin architecture
not requiringtheconnectionsbetweencomponentsto beexplicitly
stated.

Herewedescribehow formal specificationtechniqueshelpedusin
developingageneralisedpluginmodelthatcanbeusedto dealwith
any of thesituationsdescribedabove. Unlike otherplugin models
(for examplethat usedby Eclipe [13]), in our modelcomponents
arematchedpurelybasedon informationthatis availablefrom the
code,ratherthanusingmeta-datasuchasan IDL description. In
the remainderof thepaperwe presentour modelboth informally,

49

extendingthemainapplication extendingpluginsto form a chain connectingto multiple components

Figure1: Somepossibleconfigurationsof plugins

basedon a familiar analogy, and formally usingthe specification
languageAlloy.

2. AN INFORMAL MODEL
We think of theway thatcomponentsfit togetherin a plugin archi-
tectureasbeingsimilar to theway thatpiecesof a jigsaw puzzlefit
together. As long asa jigsaw piecehastheright shapedpeg, it can
connectto anotherpiecethathasa correspondinghole.

Themainapplicationprovidesanumberof holes,into whichcom-
ponentsproviding extrafunctionalitycanplug. Pluginsareoptional
componentscontainingcollectionsof classesandinterfaces. The
holes representan interfaceknown to the main application,and
thepegsrepresentclassesin theplugincomponentsthatimplement
this interface. The interfacedefinesthe signaturesof methodsin
theclass.If anapplicationhasaninterfacethatallows othercom-
ponentsto extendit, anda plugin containsa classthat implements
this interface,a connectioncanbe madebetweenthem. The peg
will fit into thehole.Thissituation,addingcomponentsto acentral
application,is shown in thefirst exampleFigurein 1.

Thinkingaboutpluginsin thisway, it becomesclearthatsomeother
more sophisticatedconfigurationswould be possibleif we allow
plugin componentsto have holesaswell aspegs, i.e. if we allow
pluginsto extendotherpluginsratherthanonly allowing themto
extendthemainapplication.Wecanthenhave chainsof pluginsas
shown in themiddleexamplein Figure1. An exampleof thissitua-
tion mightbeif themainapplicationwereawordprocessor, which
wasextendedby plugging in a graphicseditor, and this graphics
editorwasin turnextendedby pluggingin a new drawing tool.

It is possiblethat a componenthasseveral holesandpegs of dif-
ferentshapes(probablythe mostcommonsituationin traditional
jigsaw puzzles).This canleadto morecomplicatedconfigurations
of components,suchasthoseshown in the rightmostexamplein
Figure1. Suchaconfigurationmightbeusefulin asituationwhere
themainapplicationwas,say, an integrateddevelopmentenviron-
ment,thefirst plugin wasa helpbrowser, andtheseconda debug-
ging tool. Thedebuggingtool plugsinto thethemainapplication,
but alsointo thehelpbrowsersothatit cancontributehelprelevant
to debugging. In this way the help browsercandisplayhelp pro-
vided by all of the differenttools in the IDE, with the help being

storedlocally in eachof theseparatetools. It is clearthatwecannot
representall possibleconfigurationsof pluginsusingthesesimple
planarjigsaw representations,but they provide a usefulmetaphor
for thinking aboutwhatmightbepossible.

If we think onceagainaboutthe first case,thenit seemsthat we
should be able to keep on adding plugins to the applicationas
longasthey implementtheright interface,but theremightbecases
wherewewantto put limits onthenumberof pluginsthatcanbeat-
tached.Thismightbethecasewheneachplugin thatis addedcon-
sumesa resourceheldby themainapplication,of which a limited
quantityis available.Cardinalityconstraintscanalsobeemployed
to constraintheshapesthattheconfigurationcantake.

To seetheeffect of usingcardinalities,considera mainapplication
whichacceptsacertaintypeof plugin,withoutarestrictiononhow
many pluginscanbeadded.If threecompatiblepluginsareadded,
all threewill be loadedandconnectedto thesystem.If, however,
wechangethecardinalityof theinterfaceto be

���
, i.e. any number

upto amaximumof two,aftertwo pluginshavebeenadded,athird
cannotbe. It might be possibleto remove plugin 1 or 2, and to
replaceit with plugin 3, but it is not possibleto plug in all threeat
thesametime. In practicethoughit seemsthatthetwo cardinalities
usedmostoftenwill probablybe

���
and“any number”.

Revisiting thechainingpatternsthatwesaw earlier(seethesecond
examplein Figure 1), but employing cardinalities,we can chain
togethera numberof different componentsof the sametype, by
having eachprovide andacceptonepeg of thesameshape(limit-
ing thenumberof pegsacceptedrequiresa cardinalityconstraint-
seeFigure2). This is almostlike a Decoratorpattern[6] for com-
ponents.A decoratorconformsto theinterfaceof thecomponentit
decoratessothatit addsfunctionalitybut its presenceis transparent
to thecomponent’s clients.Sucha situationmight beusefulif, for
instance,we wantedto chaintogethervideofilters, eachof which
took a videostreamasaninput andprovidedanotherstreamasan
output.Eachfilter couldperformadifferenttransformation(for ex-
ampleconvertingtheimageto blackandwhite,or invertingit) but
thecomponentscouldbecombinedin any order, regardlessof the
numberin thechain. Pluginswould allow this configurationto be
changeddynamicallyover time.

50

1
 1
 1

Figure2: Chaining with cardinality constraints

It is our aim to provide the describedplugin architecturesin self-
assemblingsystems[8]. It shouldbe possibleto introducenew
componentsover time. For eachadditionalcomponentthesystem
shouldmake connectionsto join it to the existing systemin ac-
cordancewith its acceptedandprovided interfaces. It shouldnot
be necessaryfor the useror developer to provide extra informa-
tion abouthow or wherethe componentshouldbe connected,as
they may not have total informationaboutthe currentconfigura-
tion, or they mayjust wantto delegateresponsibilityfor managing
theconfigurationto thesystemitself. Thepluginframework should
be ableto assemblethe componentsaccordingto the typesof the
classesthey contain.

Figure 3 shows a possibleconfigurationof a video replay appli-
cation. The main applicationdisplaysvideo streamswhich are
suppliedby plugin components.Themixer componentmixestwo
video streamsinto one,so canbe usedto addsubtitlesto a film.
In thefigurea mixer anda setof subtitleshave beenaddedto the
application,andafilm sourceis aboutto beadded.Thefilm source
couldconnecteitherto themixer or directly to thevideoplayer. In
the first case,the subtitleswill be appliedto the film, in the sec-
ondcasethefilm andthesubtitleswill bedisplayedseparately. We
would like to be able to ensurethat the behaviour desiredby the
provider of thefilm componentis implementedor at very leastto
predictwhat will happenin this case. We needto know that the
samething will happenif the samecomponentsarecombinedon
differentoccasions.

It is desirablethatthebehaviour of self-assemblingsystemscanbe
madeto bedeterministic:it shouldbepossibleto determinewhat
connectionswill be madewhena certaincomponentis addedto
a certainconfiguration. To ensurethat this is the case,provision
needsto bemadefor definingastrategy to decidebetweendifferent
possiblebindingsin a predictableway. The techniquewe usefor
this is to allow strategies for decidingbetweendifferentpossible
bindingsto beprovidedin theform of preferencefunctionswritten
by plugindevelopers.

3. A FORMAL MODEL
Beforeimplementinga framework to supportapplicationsthatare
extensiblewith plugins, we developeda formal specificationfor
the systemin Alloy [9]. Alloy is a lightweight notationthat sup-
portsthedescriptionof systemsthathaverelationalstructures.The
systemsthatwe wish to describeareconcernedwith setsof linked
components,so Alloy is a particularlyappropriatelanguage.The
notationallows us to write any first-orderlogical expressionplus
transitiveclosure.In additionto providing languageconstructsthat
fit our domain,Alloy hastheadvantagethatspecificationsareable
to be analysedautomatically. Analysisis supportedby, theAlloy

Video Player

Film

Subtitles

�Mixer

�

Figure3: Non-determinism

ConstrainAnalyser(ACA) [4]. This tool allows us to checkour
Alloy modelsfor consistency and to generateexamplesituations
which we maynot have considered.Uncovering thepossibilityof
suchunexpectedbehaviour early in the developmentprocessal-
lowsusto refinethespecificationto dealwith it, ratherthanhaving
to do muchmoreexpensive maintenance,aswould be the caseif
problemswerediscoveredafterimplementation.

UsingAlloy allows usto representformally theway in which plu-
gin componentscan fit together, and what happenswhen a new
componentis addedto the system.In thecasethatwe have writ-
ten inconsistentconstraints,the analyserwill report that it could
not generateanexamplethatsatisfiestheconstraintsthatwe have
specified.

The ACA tool provides a visualiserwhich will display example
structuresgraphically. This representationis easyto interpret.We
canseehow the componentshave beenjoined togetherto form a
system.Thefiguresin this paperweregeneratedby this visualisa-
tion tool (with minor handeditingof labelsto make theexamples
easierto understand).Thevisualisationtool is quiteflexible,allow-
ing us to omit partsof themodelandto show labelseitherwithin
an objector with an arrow from the object. In Figure4 we have
usedbothtechniques,purelyfor clarity.

In thetext of thispaperwepresentthemodelin first orderlogic for
readability, andagainin Alloy in theAppendix.

Oneof theideasdescribedin theprevioussectionis that thenum-
ber of eachtype of plugin componentallowed may be explicitly
defined.This is quiteacomplicatedpropertyandsowefirst model
pluginswithout it andthenextendthemodelto includecardinality
constraints.

3.1 A basicmodel
Theartifactswemodelcouldbecreatedby acompilerfor anobject
orientedlanguagewith nameequivalence.Sothey couldbecreated
by a Java or C# compiler.

Classesaredefinedin termsof the interfacesthey implementand
whetheror not they are �
	���
�������
 . The type interface� is atomic.1

Weusethenotation‘ � ’ to mean��	���
�������
 mayoptionallybepresent
1For a declaredtype � , ����� and ���
� will beusedinterchange-
ably.

51

App

Interface

holes

System
start: App

Plugin

Binding
to: Plugin
from: App

Class
pegs

implements

hole

peg

Figure4: Onecomponentadded

in a givenclass.As they have alreadybeensuccessfullycompiled
we know thatclassesmustimplementthe interfacesthey saythey
implement.

DEFINITION 1. A class�! "�$#�% is definedas:�� '&)(�*,+.-
/ 0�+10�23
4�5�$687,�59�:;�
	���
�������
;�<�
=>�4?�@BADCFE
Components# arejust setsof classesandsetsof interfaces.The
classesconstitutewhat thecomponentprovidesandthe interfaces
arewhatthecomponentcanaccept.2

DEFINITION 2. A component�G��# is definedas:�H&I(
-$0�J$���$687K#�%L9�:!M�NO/ 0��P�Q687,�59;E
Componentsneedto beconnectedor boundtogether. Bindings R
connectclassesto interfaces.Thecomponentcontainingtheinter-
facehasto be different from the componentcontainingthe class,
sothatcomponentscannotplug in to themselves.Theneedfor this
constraintwasnot originally apparent.Consideringexamplespro-
ducedby theanalyserthatdid not follow this constraintcausedus
to addit to themodel(seeSection4 for morediscussion).

DEFINITION 3. A binding SG�$R is definedas:S�&I(Q-Q0�JT��#�%U:4
4NV�$#W:!M�NX/ 0G�3��:4Y��ZNX+[�$#>E
such that:7K
�N]\&^Y��ZNO+_9'`a74-Q0�Jb�c
4NXd,-Q0�J��e9'`a74M�NO/ 0G�fY��ZNO+gd,M�NO/ 0��;9

A Systemh consistsof a setof components,a setof bindingsbe-
tweeninterfacesandclassesof thecomponentsanda specialcom-
ponent,designated�i
j�$�,
 . The ��
j�$�,
 componentmust containat
leastoneinterfaceor therewould be no way of ever extendinga
systemcontainingit asthefirst component.All othercomponents
mustcontainsomeclassesin orderthatthey canprovide someex-
tra functionality to thesystem.An interfacecannotbeboundto a
givenclassmorethanonce(thesameclassin adifferentcomponent
is takento beadifferentclass).
2In theimplementationof thismodel,componentsalsoincludesets
of resources,but thesewould addnothingto ourmodelsowehave
omittedthem.

DEFINITION 4. A systemk_�$h is definedas:kG&)(���NX+.-��H�$687K#'9�:�	$*,2�lX*m2�J$�5�$687nRP9�:4��
j�$�,
P��#>E
such that:��
4�$�,
P����NX+.-��o SG�QRHdZ7n��
j�$�,
5&�S�d Y��ZNX+<9qpr7tsu��NO+.-��5& � 9v �G����NX+.-���dZ7n��d,-Q0�J$�.\&�wUpT�U&x�i
j�$�,
;9v S�y!:jS!zG�QRHd�7j7j7nS�y3d Y��ZNO+x&�S!z�d Y��ZNO+_9'`r7nS�y!d,M�NO/ 0H&xS!z�d,M�NO/ 039j`7nS�y!d
4Ng&�S!z�d
�N
9q`{7nS�y�dZ-$0�JV&�S3z�d,-$0�JX9j9}|~7nS�yP&�S!z39j9

Figure4 shows a systemwith an applicationanda singleplugin.
In this systemthe startingcomponentis App, which hasa single
interfacewith onemethodheader. Pluginis addedanda bindingis
formedfrom App to PluginbecausePlugincontainsClass,which
implementsInterface.

Classesand interfacescannotexist in isolation. Every classand
every interfaceis associatedwith acomponent.Similarly, bindings
andcomponentsarealwaysassociatedwith systemsandall com-
ponents(with thepossibleexceptionof whenasystemcontainsex-
actly onecomponent)areboundto othercomponents.Thesecon-
straintswerenot thoughtaboutexplicitly beforewe startedmod-
elling ourproposedsystems.Eachpropertyhasto bebuilt into any
framework that implementsour model so that we createsystems
thatbehave in theway predictedby ourmodel.

PROPERTY 1 (NO ORPHANS IN ANY k_�$h).v @��!�Hd o �_��#WdZ7n@��c��d,M�NO/ 0��;9v �! "��#�%1d o �_��#WdZ7n�! "�f��d,-$0�J$��9v SG�QRHd o k_�$hGdZ7nSU�ak$d,	$*,2�lX*,2�J$��9v �G��k$d ��NO+.-��!dZ7 o S1�QRHd �U&�S�d
�NUpf�H&�S�d Yi��NX+.9pP7tsbk$d ��NO+.-��L& � 9
The additionof a plugin componentto an existing systemneeds
to be modelled. A componentcanonly be addedif it hasa class
thatis not abstractthatimplementsaninterfacein theexistingsys-
tem.But beforewe look ata functionto adda new componentto a
system,we first will needto testwhethertwo componentswith an
associatedinterfaceandclasscanbeboundatall.

DEFINITION 5 (����2��>*,2�l).����2��>*,2�l���#�%^��#{�u����#����2��>*,2�l�7n�! i:;���t:;@j:j�!9��u|�7n@��c��d,M�NO/ 0��;9q`r7n�! "�f���tdZ-$0�J��!d 9j`7n���L\&��39'`r7B�
	���
�������
4��>�� n9>`T@5�f�! id *,+.-
/ 0�+10�23
��
52

Ext2

Intf2
n: 2

holesClass2

pegs

Ext1

holes Class1

pegs

App

Intf1
n: 0

holes

System
start: App

Binding2
to: Ext2
from: Ext1

Binding1
to: Ext1
from: App

implementsimplements

hole

peg

hole

peg

Figure5: Several componentsforming a system

If a componentcanbe boundto anothercomponentin a system,
thenit canbeaddedto thatsystem.Otherwisetrying to addsucha
componentwill have no effecton thesystem.

DEFINITION 6 (ADDITION FUNCTIONS).

A function ��l
lu��7Kh1:�#'9L�D��h is an additionfunctioniff��l
lO7tkQ:4�39}&�k � |7 o � � �ak$d ��NX+g-���d o @5�!�Hd o �� "��#�%1d �!�
2��>*,2�lF7n�! t:;��:j@j:j� � 9|�k � &)(�k$d ��NX+g-��"�](3��E
:�k$d,	$*,2�lX*,2�J�����(3�! i:;��:j@j:j� � E
:�k$d ��
j�$�,
eE�9p7 v � � �ak$d ��NX+g-���d �W�!�
2��>*,2�l�7 :j� � : :j�39�|�k � &�k�9
If thereis more than one candidatefor � � then therecould be a
setof possibleadditionfunctionseachcapableof performingthe
appropriateoperation.In orderfor thesystemto bedeterministic,
so that behaviour holdsno surprises,we needto choosea single
additionfunctionanduseit. In section3.3weshow how to dothis.

3.2 ExtendingtheModel with Cardinality Con-
straints

In the modeldescribedso far, the numberof plugins that canbe
boundto a particularinterfacesimultaneouslyis not prescribed.A
given interfacemayhave any numberof classesboundto it. This
is not alwayswhat is required. Sometimesthe numberof classes
that canbe boundto an interfaceis fixed. Perhapsfor a specific
interfaceonly oneclassshouldbeboundto it. At theotherextreme
an interfacemay let any numberof classesbe boundto it. For
this modelthe numberswill be definedto be the naturalnumbers
(including0) extendedwith aninfinite number.3

3In a finite Alloy modela naturalnumberlargerthanthescopefor
which themodelis analysedwill have thesameeffect on binding
asaninfinite numberwould.

DEFINITION 7. Thenumbers � are definedas:

��&��a���'�c(���E
Interfacesneedto beextendedwith thenumberof classesthatcan
beboundto them.

DEFINITION 8. A numinterfaceA�@��3�.� is definedas:

Aq@"&)(�@5�!�H:;Aa�3�xE
Numinterfacesneedto replaceinterfacesthroughoutthedefinitions
andin theNO ORPHANSproperty. Moreimportantly, thedefinition
of ��l
l needsto be changedto take the numberinginto account.
Firstly, a classcanonly beboundto aninterfaceif thenumberas-
sociatedwith thatinterfaceis notzero.Secondly, whenanew com-
ponentis added,thenumberassociatedwith therelevant interface
shouldbedecremented.

DEFINITION 9 (l
0��).
l
0!�G�F7K#W:B�.�L9P�F��#
l
0!�$7n��:37n@j:;A'9j9�&

����� ����
(���d,-Q0�J��!:(3��d,M�NO/ 0��"�G7n@j:;A'9�P7n@j:jAc� � 9;EE �¡ �A¢\&x£� �¡ �A]&x£

53

DEFINITION 10 (ADDITION FUNCTIONS).

A function ��l
lb�O7KhG:�#'9L���¤h is anadditionfunctioniff��l
l�7tk$:4�39�&�k � |7 o � � �]k$d ��NO+.-��!d o 7n@j:jA'9����.�Ud o �� "��#�%1d �!�
2��>*,2�lF7n�! t:;��:j@j:j� � 9|�k � &)(¥k$d ��NX+g-��>�U(�� � EP�](�l
0!�Q7n� � :37n@j:;A'9j9;EP�](3��E
:k$d,	$*,2�lX*,2�J��q�](3�! i:;��:j@j:;� � E
:k$d ��
4�$�Z
;E�9p7 v � � �]k$d ��NO+.-��!d �}����2��>*,2�lF7 :j� � : :j�39}|¦k � &)k�9
Figure5 wasproducedby theAlloy modelin theAppendix. This
is the Alloy versionof our model including numbers.The figure
shows anapplicationextendedby a chainof components,asin the
secondexamplein Figure1. Wheren : 0 appearsin thediagramit
meansthatnomoreclassescanbeboundto this interfaceandn : 2
meansthattwo moreclassescanbeboundto this interface.

3.3 Removing the Nondeterminism
Thefinal stepin producingamodelthatis suitablefor implementa-
tion is to removethenondeterminismcausedbynothavingaunique
additionfunction.Weneedsomehow to only bind to thebestcom-
ponentif thereis a choiceof severalcomponentsto which thenew
plugin couldbebound.

Only thedesignerof theplugin will know, given two components
that it is possibleto plug in to, which would be the bestchoice.
We needa function -$��0�YK0�� , which theplugin developercanimple-
ment sayingfor every suitablepair of components,which of the
two componentsshouldbeboundto. If thedeveloperdoesnotcare
(it doesnotmatterwhichcomponentaplugin is connectedto) then
they do not needto specifya preferfunction,andthebindingwill
happennon-deterministicallyasin thepreviouscase.

DEFINITION 11 (-���0�Yn0��).-��¡0eYn0��"�F7K#W:4#W:4#'9L���¤#-��¡0eYn0���7n§X¨
¨
��:4�j©O@�k$:4�4©F§
�;9W&«ª �j©O@�k�¬O­�®Q­!¯,°$±D­�² ��³"´eµ °$¶ ´ ­�j©O§��·¬O­�®Q­!¯,°$±D­�² � ³"´eµ °$¶ ´ ­
such that for each �Q¸$¸Q¹r��#�-$��0�YK0�� inducesa total order on the
bindingcandidates.

We next find thesetof componentsthata givencomponentcould
possiblybeboundto.

DEFINITION 12 (+1�3
j��M).+1��
4��M.��7KhG:i#'9L�D�¤687K#'9+1��
4��M�7tk$:j�39}&)(�� �Wº � � �ak$d ��NO+.-���d o �! "�$#�%Ud o 7n@;:;A'9L�3�.��d����2��>*,2�lX7n�! i:;��:j@j:j� � 9;E
Given -$��0�YK0�� we can find the bestcomponent,amongstall those
thatarepossible(+1�3
j��M), to bind thenew plugin to.

DEFINITION 13 ($0���
).	Q0���
P��7Kh1:�#'9L���¤#	$0���
�7tk$:j�39}&�����&q| v ��� �>�r+G�3
j��M�7tkQ:��39�d7n��� �5\&x���n9}&q|~7n���D&»-���0�Yn0���7n��:j���t:4��� �K9j9

Given 	$0���
 , we cannow rewrite ��l
l so that it is deterministic.If
thereis no componentto bind to thenew componentthenthesys-
temwithout theplugin is returned.If thereis oneor morecompo-
nentsthatcanbeboundthenthebestoneis chosen.

DEFINITION 14 (��l
l).��l
lb��7Kh1:�#'9L���¤h
��l
l�7tk$:4�!95&

������� ������
(¥k$d ��NO+.-��>�H(�� � E��](�l
0��$7n� � :37n@j:jA'9j9;EH�c(��3E$E
:k$d,	$*,2�lX*,2�J$�D��(��� i:j��:;@j:j���BEQ:k$d ��
j�$�,
E �¡ >¼�?$½k ¾�¿!À>Á�Â�Ãb�KÄ!ÁÃ8À'ÁXÂ�ÁP¼F?$½1& o ���>�]kQd ��NX+.-��!d o 7n@j:jA'9��!�g��d o �� W��#�%Hd7j7n���5\&x�!9'`a7nA�\&x£Q9j`�!�
2��>*,2�lF7n�� i:j��:;@j:j� � 9q`r7n� � &[Q0��i
!7tk$:j�39j9

4. DISCUSSION
By writing anAlloy specificationincrementally, andusingtheACA
tool to generateexamplesof thesystem’s behaviour at eachstage,
severalsituationswereuncoveredwherewehadnotconstrainedthe
specificationstrictly enough,resultingin undesirablebehaviour.

Initially we hadnot explicitly statedthat pluginscannotfill their
own holes.Theanalyserproducedanexamplewhereonecompo-
nenthada hole andalsoa matchingpeg which wasboundto the
hole. This sparkeda discussionasto whethersuchbehaviour was
desirableor not. As the intentionof holesis that they provide ex-
tensionpointswhereothercomponentscanbebound,we addeda
constraintto the model that the two componentsconnectedby a
binding must not be the samecomponent. In this way, working
with a formal specificationandan analysistool led us to discuss
issuesthatwe hadnotconsideredwhenworking with our informal
model.

Anothersituationthatcameup earlyon,wasonein which several
separategroupsof componentswereproduced. Eachgroupwas
connectedinternally, but not connectedto theothergroups.As ex-
ecutionstartsin the first component,only thosecomponentsthat
aretransitively connectedto thestartingcomponentwill extendthe
baseapplication.We thereforeamendedthe NO ORPHANS prop-
erty, so that therecanbeno componentsin thesystemthatdo not
have a transitive link backto thestartcomponent.

In the model we have presentedhere,we have assumedthat the
languagein which pluginsareimplementedwill be in thestyleof
Java or C# wheretheinterfacesimplementedby a classareexplic-
itly named,andmatchedby name.Thereforein themodela class
canjustcontainasetof interfaceswhich it implements,ratherthan
usmodellingall of themethodsin theclassandthe interface.We
assumethatthecodein pluginshaspassedthrougha compilerand
soany classthatsaysit implementsaninterfacedoesin factdefine
thenecessarymethods.

If wewantedto modeltheimplementationof pluginsin a language
with structuraltyping, whereimplementedinterfacesare not ex-
plicitly named,but classesandinterfacesarematchedbasedon the
methodsthat they contain,we couldsimply changethedefinitions
of classesand interfaces,and write a propertyimplements to
checkoneagainsttheother. Otherwisethebehaviour of themodel
andthesystemshouldbeunaffected.

54

5. RELATED WORK
ThereÅ are several systemscurrently in existencethat useplugin
componentsasan extensionmechanism.Java Applets [1] allow
codeto bedownloadeddynamicallyandrun in aJava-enabledweb
browser. Thesystemis not particularlyflexible, asall appletshave
to havebederivedfrom aparticularsuperclass,andthesystemcan-
notbeusedfor extendingapplicationsin general.

The Eclipseplatform for IDEs [13] usesplugins to allow for the
additionof extra functionality. However, pluginsareonly detected
on start-upandcannotbeaddedto thesystemwhile it is running.

Thework describedby Mayeron LightweightApplicationDevel-
opment[12] involvesatechniquefor usingpluginswith avarietyof
applications,but only dealswith connectingextensionsdirectly to
themainapplication,ratherthanthemorecomplex configurations
thatwe consider.

The PluggableComponent[16] architecturefeaturesa registry to
managethe different typesof PluggableComponent.The registry
is usedby a configurationtool to provide a list of availablecom-
ponentsthatadministratorscanuseto configuretheir applications,
soconfigurationis humandriven,whereour approachaimsat au-
tomaticconfigurationwithout total knowledgeof the system. As
with Applets,all PluggableComponentsarederivedfrom thePlug-
gableComponentbaseclass,limiting flexibility of whatcanbeused
asa plugin.

Therehave beenvariousattemptsat formalisingcomponentbased
systems,for instanceJacksonand Sullivan’s modelling of COM
in Alloy [10]. ThePACC groupat theSEI have beenworking on
PredictionEnabledComponentTechnologies(PECT[17]). Their
work aimsto enablethe predictionof propertiesof compositions
of componentssuchas latency, and to constrainthe assemblyof
systemsto configurationswherecertainpropertieshold.

6. CONCLUSIONS
We have presenteda model for a systemof plugin components.
Developingandformalisingthe modelcausedus to considersev-
eral issuesrelatingto whatsortsof behaviours andconfigurations
of pluginsshouldandshouldnotbeallowed.UsingtheAlloy anal-
yserhelpedusby allowing us to visualisedifferentconfigurations
that could occurwith our currentmodel. This helpedus to make
designdecisionsandrefinethemodelfurther.

We have implementeda framework in Java thatusesthemodelde-
scribedhere,andusedit to build several applicationsthat canbe
configuredandextendedusingplugin technology. Detailsof the
implementationcanbefoundin [3].

In [14] Oreizyetal identify threetypesof architecturalchangethat
aredesirableat runtime: componentaddition,componentremoval
andcomponentreplacement.In the future we hopeto extendthe
modelpresentedhereto cover all of thesecasesandto implement
sucha system.

7. ACKNOWLEDGMENTS
We gratefullyacknowledgethesupportof theEuropeanUnionun-
der grantSTATUS (IST-2001-32298).We would also like to ac-
knowledgethe SLURP group at Imperial College London,espe-
cially SophiaDrossopoulouandMatthew Smithfor theirhelpwith
theformal model,andMatthew againfor his helpin producingthe
diagramsthatappearin this paper.

8. REFERENCES
[1] Applets.Technicalreport,SunMicrosystems,Inc.,

java.sun.com/applets/,1995-2003.

[2] C. Szyperski.ComponentSoftware: BeyondObject-Oriented
Programming. Addison-Wesley PubCo,1997.

[3] R. Chatley, S.Eisenbach,andJ.Magee.PainlessPlugins.
Technicalreport,ImperialCollegeLondon,
www.doc.ic.ac.uk/r̃bc/writings/pp.pdf,2003.

[4] D. Jackson,I. Schechter, andI. Shlyakhter.Alcoa: theAlloy
Constraint Analyzer, pages730–733.ACM Press,Limerick,
Ireland,May 2000.

[5] M. Dmitriev. HotSwapClient Tool. Technicalreport,Sun
Microsystems,Inc.,
www.experimentalstuff.com/Technologies/
HotSwapTool/index.html, 2002-2003.

[6] E. Gamma,R. Helm,R. Johnson,JohnVlissides.Design
Patterns:Elementsof ReusableObject-OrientedSoftware.
Addison-Wesley PubCo,1995.

[7] P. S.G. Bierman,M. HicksandG. Stoyle. Formalising
dynamicsoftwareupdating.In SecondInternational
WorkshoponUnanticipatedSoftware Evolutionat ETAPS
’03, 2003.

[8] D. Garlan,J.Kramer, andA. Wolf, editors.Proc.of theFirst
ACM SIFGOSFTWorkshoponSelf-HealingSystems. ACM
Press,November2002.

[9] D. Jackson.Micromodelsof Software:Lightweight
ModellingandAnalysiswith Alloy. Technicalreport,M.I.T.,
sdg.lcs.mit.edu/dng/,February2002.

[10] D. JacksonandK. Sullivan.COM Revisited: Tool Assisted
ModellingandAnalysisof SoftwareStructures.In In proc.
ACM SIGSOFTConf. Foundationsof Software Engineering,
2000.

[11] J.KramerandJ.Magee.Theevolving philosophersproblem:
Dynamicchangemanagement.IEEE TSE,
16(11):1293–1306,November1990.

[12] J.Mayer, I. Melzer, andF. Schweiggert.Lightweight
plug-in-basedapplicationdevelopment,2002.

[13] ObjectTechnologyInternational,Inc. EclipsePlatform
TechnicalOverview. Technicalreport,IBM,
www.eclipse.org/whitepapers/eclipse-overview.pdf, July
2001.

[14] P. Oriezy, N. Medvidovic, andR. Taylor. Architecture-based
runtimesoftwareevolution. In ICSE’98, 1998.

[15] M. Oriol. Luckyj: anasynchronousevolution platformfor
component-basedapplications.In SecondInternational
WorkshoponUnanticipatedSoftware Evolutionat ETAPS
’03, 2003.

[16] M. Völter. PluggableComponent- A Patternfor Interactive
SystemConfiguration.In EuroPLoP’99, 1999.

[17] K. C. Wallnau.A technologyfor predictableassemblyfrom
certifiablecomponents(pacc).Technicalreport,Software
EngineeringInsitute,
http://www.sei.cmu.edu/pacc/publications.html,2003.

55

Appendix: The Model in Alloy
moduleÆ Plugins

open std/ord

sig String {}
sig Number {}
sig Interface{}

sig Class {
implements : set Interface,
abstract : option String

}

sig NumInterface extends Interface{
n : Number

}

sig Component {
pegs : set Class,
holes : set NumInterface

}

sig Binding {
hole : NumInterface,
from : Component,
peg : Class,
to : Component

}{
to != from
hole in from.holes
peg in to.pegs

}

sig System {
components : set Component,
bindings : set Binding,
start : Component

}{
one start
start in components
some start.holes
some bindings => some b in bindings { start = b.from }
all c in components { c != start => some c.pegs }

}

fact noOrphans {
all i : Interface | some c : Component { i in c.holes }
all cl : Class | some c : Component { cl in c.pegs }
all b : Binding | some s : System { b in s.bindings }
all c : Component | #Component = 1 || some b : Binding { c = b.to || c = b.from }
all c : Component | some s : System {c in s.components}

}

fun dec(c, c’ :Component, i : NumInterface){
i in c.holes && i.n != Ord[Number].first
some i’ : NumInterface {
i’.n = OrdPrev(i.n)
c’.pegs = c.pegs && c’.holes = c.holes - i + i’
}

}

56

fun add(s, s’ : System, c : Component) {
someÇ c’ in s.components | some i in c’.holes | some cl in c.pegs {

(c != c’) && no cl.abstract && i in cl.implements
s’.start = s.start
some c’’ : Component {

dec(c’,c’’,i)
s’.components = s.components + c + c’’

}
one b : Binding {b.hole = i && b.from = c’ && b.peg = cl && b.to = c &&

s’.bindings = s.bindings + b
}

}
}

57

Form-based Software Composition

Markus Lumpe
Iowa State University

Department of Computer Science
113 Atanasoff Hall

Ames, USA

lumpe@cs.iastate.edu

Jean-Guy Schneider
School of Infomation Technology

Swinburne University of Technology
P.O. Box 218

Hawthorn, VIC 3122, AUSTRALIA

jschneider@swin.edu.au

ABSTRACT
The development of flexible and reusable abstractions for
software composition has suffered from the inherent prob-
lem that reusability and extensibility are limited due to
position-dependent parameters. To tackle this problem, we
have defined forms, immutable extensible records, that al-
low for the specification of compositional abstractions in a
language-neutral and robust way. In this paper, we present
a theory of forms and show how forms can be used to rep-
resent components based on software artifacts developed for
the .NET framework.

1. INTRODUCTION
In recent years, component-oriented software technology has
become the major approach to facilitate the development of
evolving systems [9, 17, 24, 28]. The objective of this tech-
nology is to take elements from a collection of reusable soft-
ware components (i.e., components-off-the-shelf) and build
applications by simply plugging them together.

Currently, component-based programming is mainly carried
out using mainstream object-oriented languages. These lan-
guages seem to offer already some reasonable support for
component-based programming (e.g. encapsulation of state
and behavior, inheritance, and late binding). Unfortunately,
object-oriented techniques are not powerful enough to pro-
vide flexible and typesafe component composition and evo-
lution mechanisms, respectively. We can identify especially
(a) a lack of abstractions for building and adapting class-
like components in a framework or domain specific way, (b)
a lack of abstractions for defining cooperation patterns, and
(c) a lack of support for checking the correctness of compo-
sitions.

In order to address the key problems, various researchers
have argued that it is necessary to define a language specially
designed to compose software components and to base this
language on a well-defined formal semantic foundation [2, 9,

12, 13, 18, 19]. But what kind of formalism should be used
as a semantic foundation?

There are several plausible candidates that can serve as
computational models for component-based software devel-
opment. The λ-calculus, for example, has the advantage
of having a well-developed theoretical foundation and be-
ing well-suited for modeling encapsulation, composition and
type issues [5], but has the disadvantage of saying nothing
about concurrency or communication. Process calculi such
as CCS [15] and the π-calculus [16] have been developed to
address just these shortcomings. Early work in the mod-
eling of concurrent objects [20, 21] has proven CCS to be
an expressive modeling tool, except that dynamic creation
and communication of new communication channels cannot
be directly expressed and that abstractions over the process
space cannot be expressed within CCS itself, but only at a
higher level. These shortcomings have been addressed by
the π-calculus, which allows new names to be introduced
and communicated much in the same way the λ-calculus
introduces new bound names.

Unfortunately, even though both the λ-calculus and the π-
calculus can be used to model composition mechanisms [27],
they are inconvenient for modeling general purpose compo-
sitional abstractions due to the dependence on positional
parameters. In fact, the need to use position dependent pa-
rameters results in a limited reusability and extensibility of
the defined abstractions.

Dami has tackled a similar problem in the context of the
λ-calculus, and has proposed λN [6, 7], a calculus in which
parameters are identified by names rather than by positions.
The resulting flexibility and extensibility can also be seen,
for example, in XML/HTML forms, whose fields are encoded
as named (rather than positional) parameters, in Python
[30], where functions can be defined to take arguments by
keywords, in Visual Basic [14], where named arguments can
be used to break the order of possibly optional parameters,
and in Perl [32] where it is a common technique to pass
a map of name/value pairs as argument to a function or
method.

Forms are immutable extensible records that define finite
mappings from keys to values. They address the inherent
problem that reusability and extensibility of abstractions
are limited due to position-dependent parameters [11]. We
argue that forms provide the means for a unifying concept

58

to define robust and extensible compositional abstractions.
Unlike classical records, however, forms are abstract, that
is, forms are used to define mappings from keys to abstract
values. This is a generalization of an earlier work on forms
[11, 26] and will allow us to study forms as an environment-
independent framework. In order to actually use these com-
positional abstractions, they have to be instantiated in a
concrete target system like the πL-calculus [11] or the .NET
framework [22]. In this paper, we will outline the basic ideas
and formalisms for first-order forms, sketch some of the im-
portant issues in relation to form equivalence and normal-
ization, and illustrate how forms can be used as a semantic
foundation for component composition.

The remainder of this paper is organized as follows: in sec-
tion 2, we present first-order forms. In section 3, we develop
a semantics of forms. In section 4, we illustrate, how forms
can be used to represent component interfaces and com-
ponent interface composition of components written in the
.NET-aware language C#. We conclude with a summary of
the main observations and a discussion about future work
in section 5.

2. FORMS
Forms are finite variable-free mappings from an infinite set
of labels denoted by L to an infinite set of abstract values
denoted by V. The set of abstract values is a set of dis-
tinct values. We do not require any particular property ex-
cept that equality and inequality are defined for all abstract
values. In fact, programming values like Strings, Integers,
Names, and even Objects and Classes are elements of V.

The set V contains a distinguished element E – the empty
value. In the context of software composition, the empty
value denotes the lack of a component service. That is, if a
given label, say l, is bound to the empty value, then the cor-
responding component service is either currently unavailable
or not defined at all.

We use F, G, H to range over the set F of forms, l, m, n to
range over the set L of labels, and a, b, c to range over the
set V of abstract values. The set F of forms is defined as
follows:

F ::= 〈〉 empty form
| F 〈l=V 〉 abstract binding extension
| F · F polymorphic extension
| F\F polymorphic restriction
| F → l form dereference

V ::= S abstract scalar value
| F nested form

S ::= E empty value
| a abstract value
| Fl abstract projection

Every form is derived from the empty form 〈〉, which de-
notes an empty component interface (i.e., a component that

does not define any service). The abstract binding extension
F 〈l=V 〉 extends a given form F with exactly one binding
〈l = V 〉 that either adds a fresh service, named l, or rede-
fines an existing one. Using polymorphic extension, we can
add or redefine a set of services. Polymorphic extension is
similar to asymmetric record concatenation [4]. In fact, if
the forms F and G both define a binding for the label l,
then only G′s binding will be accessible in the polymorphic
extension F ·G. The polymorphic restriction F\G denotes a
form that is restricted to all bindings of F that do not occur
in G with the exception that all bindings of the form 〈l=E〉
and 〈l = 〈〉〉 in G are ignored. Finally, the form dereference
F → l denotes the form that is bound by label l in F . Form
dereference can be used to extract a form that occurs nested
within an enclosing form.

In form expressions, an abstract binding extension has prece-
dence over a polymorphic extension, a polymorphic exten-
sion has precedence over a polymorphic restriction, which in
turn has precedence over form dereference. A sequence of
two or more polymorphic extensions is left associative, that
is, F1 · F2 · F3 is equivalent to (F1 · F2)· F3. The same applies
to polymorphic restriction. Parenthesis may be used in form
expressions in order to enhance readability or to overcome
the default precedence rules.

Forms denote component interfaces and component inter-
face composition. A component offers services using pro-
vided ports, and may require services using required ports. If
a component offers a service, then this service is bound by a
particular label in the form that represents the component
interface. For example, if a component can provide a ser-
vice A and we want to publish this service using the port
name ServiceA, then the corresponding component interface
contains a binding 〈ServiceA=A〉. In the component inter-
face, the service A is abstract. Therefore, the client and the
component (service provider) have to agree on an interpre-
tation of service A prior to interaction. From an external
observer’s point of view, the interaction between the client
and the component involves an opaque entity.

Required services are denoted by abstract projections. Given
a form F , used as a deployment environment [1], and a com-
ponent, which requires a service named l, we use Fl to denote
the required service bound by l in the deployment environ-
ment F .

Using binding extension and projection, it is possible to con-
struct “flat” data structures that denote both provided and
requires services. However, the composition of two or more
components often results in a name clash of their port names.
Moreover, it is sometimes desirable to maintain the original
structure of the components in the composite. To solve these
kinds of problems, it is necessary to define auxiliary abstrac-
tions that encapsulate components as services. For example,
a component ComponentA can be represented by an auxil-
iary service ServiceComponentA. Using a binding extension
〈ServiceA=ServiceComponentA〉, we can publish this ser-
vice. However, this approach requires that clients have to
define an additional abstraction to extract ComponentA en-
capsulated by ServiceComponentA.

To facilitate the specification of structured component in-

59

terfaces, forms can also contain nested forms. Like abstract
values, nested forms are bound by labels. However, a pro-
jection of a nested form yields E . The reason for this is that
forms represent sets of key-value bindings and not abstract
values. To extract a nested form bound by a label l in a
form F , we use F → l. Note that if the binding involving
label l does not denote a nested form, then the actual value
of F → l is 〈〉 – the empty form.

3. SEMANTICS OF FORMS
The underlying semantic model of forms is that of a record
data structure. Forms are generic extensible records, where
field selection is performed from right-to-left.

The interpretation of forms is defined by an evaluation func-
tion [[]]F : F → F̂ , which is a total function from forms to
form values. Like forms, form values are finite mappings
from an infinite set of labels denoted by L to an infinite set
of abstract values denoted by V. However, form values do
not contain any projections or form dereferences.

We use F̂ , Ĝ, Ĥ to range over the set F̂ of form values, l, m, n
to range over the set L of labels, and a, b, c to range over
the set V of abstract values. The set F̂ of form values is a
subset of F , i.e., F̂ ⊂ F , and is defined as follows:

F̂ ::= 〈〉 empty form value

| F̂ 〈l= V̂ 〉 binding extension value

| F̂ · F̂ polymorphic extension value

| F̂\F̂ polymorphic restriction value

V̂ ::= Ŝ abstract scalar value

| F̂ nested form value

Ŝ ::= E empty value
| a abstract value

In order to define [[]]F , we need to define two mutually depen-
dent functions to evaluate projections and form dereferences.
The function [[]] : F̂ × L → V, called projection evaluation,

is a total function from pairs (F̂ , l) ∈ F̂ × L to abstract

values a ∈ V, whereas the function 〈〈〉〉 : F̂ × L → F̂ , called
form dereference evaluation, is a total function from pairs
(F̂ , l) ∈ F̂ × L to form values Ĝ ∈ F̂ . We define projection
evaluation first.

Definition 1. Let F̂ ∈ F̂ be a form value and l be a
label. Then the application of the function [[]] : F̂ × L → V
to the projection F̂l, written [[F̂l]], yields an abstract value
a ∈ V and is inductively defined as follows:

[[〈〉l]] = E
[[(F̂ 〈m= V̂ 〉)l]] = [[F̂l]] if m �= l

[[(F̂ 〈l= V̂ 〉)l]] =


V̂ if V̂ ∈ V
E otherwise

[[(F̂ · Ĝ)l]] =

8<
:

[[Ĝl]] if [[Ĝl]] �= E ∨
〈〈Ĝ → l〉〉 �= 〈〉

[[F̂l]] otherwise

[[(F̂\Ĝ)l]] =

8<
:
E if [[Ĝl]] �= E ∨

〈〈Ĝ → l〉〉 �= 〈〉
[[F̂l]] otherwise

To illustrate the effect of projection evaluation, consider the
following examples:

[[(〈〉〈l=a〉〈m=b〉)m]] = b
[[((〈〉〈l=a〉〈m=b〉)\(〈〉〈m=c〉))m]] = E
[[(〈〉〈l=a〉〈m= 〈〉〈n=c〉〉)m]] = E
[[((〈〉〈l=a〉〈m= 〈〉〈n=c〉〉) · (〈〉〈l=b〉〈m=d〉))m]] = d

In the form 〈〉〈l = a〉〈m = b〉 the abstract value b is bound
by label m. Therefore, [[(〈〉〈l = a〉〈m = b〉)m]] yields b. The
second projection evaluation yields E , because 〈〉〈m=c〉 re-
stricts 〈〉〈l=a〉〈m=b〉 by hiding the binding involving label
m. In the third example, the label m binds a nested form.
However, nested forms are not abstract values. Therefore,
the result of the projection evaluation is E . Finally, since the
form 〈〉〈l=b〉〈m=d〉 is used as a polymorphic extension, the
project evaluation of the whole form yields d, which is the
right-most value bound by label m.

Definition 2. Let F̂ ∈ F̂ be a form value and l be a
label. Then the application of the function 〈〈〉〉 : F̂ × L → F̂
to the form dereference F̂ → l, written 〈〈F̂ → l〉〉, yields a

form value Ĝ ∈ F̂ and is inductively defined as follows:

〈〈〈〉 → l〉〉 = 〈〉
〈〈(F̂ 〈m= V̂ 〉) → l〉〉 = 〈〈F̂ → l〉〉 if m �= l

〈〈(F̂ 〈l= V̂ 〉) → l〉〉 =

〈〉 if V̂ ∈ V
V̂ otherwise

〈〈(F̂ · Ĝ) → l〉〉 =

8<
:
〈〈Ĝ → l〉〉 if [[Ĝl]] �= E ∨

〈〈Ĝ → l〉〉 �= 〈〉
〈〈F̂ → l〉〉 otherwise

〈〈(F̂\Ĝ) → l〉〉 =

8<
:
〈〉 if [[Ĝl]] �= E ∨

〈〈Ĝ → l〉〉 �= 〈〉
〈〈F̂ → l〉〉 otherwise

To illustrate the effect of dereference evaluation, consider
the following examples:

〈〈(〈〉〈l=a〉〈m=b〉) → m〉〉 = 〈〉
〈〈((〈〉〈l=a〉〈m=b〉)\(〈〉〈m=c〉))→ m〉〉 = 〈〉
〈〈(〈〉〈l=a〉〈m= 〈〉〈n=c〉〉) → m〉〉 = 〈〉〈n=c〉
〈〈((〈〉〈l=a〉〈m= 〈〉〈n=c〉〉) · (〈〉〈m=d〉)) → m〉〉 = 〈〉

60

In the form 〈〉〈l = a〉〈m = b〉 the label m binds an abstract
value. Therefore, dereference evaluation yields 〈〉. The sec-
ond dereference evaluation also yields 〈〉 because 〈〉〈m = c〉
restricts 〈〉〈l = a〉〈m = b〉 by hiding the binding involving
label m. In the third example, label m binds a nested form.
Hence, the result of the dereference evaluation is 〈〉〈n = c〉.
Finally, since the polymorphic extension 〈〉〈l = b〉〈m = d〉
binds the right-most label m to an abstract value, the result
of the dereference evaluation of the whole form is 〈〉.

Now, we can define [[]]F . The application of [[]]F to a given

form F yields a form value F̂ .

Definition 3. Let F ∈ F be a form. The evaluation of
a form F , written [[F]]F , yields a form value F̂ ∈ F̂ and is
inductively defined as follows:

[[〈〉]]F = 〈〉
[[F 〈l=V 〉]]F = [[F]]F 〈l=[[V]]V 〉
[[F · G]]F = [[F]]F · [[G]]F

[[F\G]]F = [[F]]F \[[G]]F

[[F → l]]F = 〈〈[[F]]F → l〉〉

[[F]]V = [[F]]F

[[S]]V = [[S]]S

[[E]]S = E
[[a]]S = a

[[Fl]]
S = [[([[F]]F)l]]

The function [[]]F , while preserving all polymorphic exten-
sions and polymorphic restrictions, evaluates all projections
and form dereferences in F and replaces them by their cor-
responding value. In fact, [[F]]F yields a form value F̂ that
does not contain any projection or dereference.

The effect of form evaluation is shown in the following ex-
ample:

[[〈〉〈l= 〈〉〈m=(〈〉〈k= 〈〉〈m=w〉〉→ k)m〉〉]]F
= [[〈〉]]F 〈l=[[〈〉〈m=(〈〉〈k= 〈〉〈m=w〉〉→ k)m〉]]V 〉
= 〈〉〈l=[[〈〉〈m=(〈〉〈k= 〈〉〈m=w〉〉→ k)m〉]]F 〉
= 〈〉〈l=[[〈〉]]F 〈m=[[(〈〉〈k= 〈〉〈m=w〉〉→ k)m]]V 〉〉
= 〈〉〈l=[[〈〉]]F 〈m=[[(〈〉〈k= 〈〉〈m=w〉〉→ k)m]]S〉〉
= 〈〉〈l= 〈〉〈m=[[([[〈〉〈k= 〈〉〈m=w〉〉→ k]]F)m]]〉〉
= 〈〉〈l= 〈〉〈m=[[(〈〈[[〈〉〈k= 〈〉〈m=w〉〉]]F → k〉〉)m]]〉〉
= 〈〉〈l= 〈〉〈m=[[(〈〈[[〈〉]]F 〈k=[[〈〉〈m=w〉]]V 〉→ k〉〉)m]]〉〉
= 〈〉〈l= 〈〉〈m=[[(〈〈〈〉〈k=[[〈〉〈m=w〉]]F 〉→ k〉〉)m]]〉〉
= 〈〉〈l= 〈〉〈m=[[(〈〈〈〉〈k=[[〈〉]]F 〈m=[[w]]V 〉〉→ k〉〉)m]]〉〉
= 〈〉〈l= 〈〉〈m=[[(〈〈〈〉〈k= 〈〉〈m=[[w]]S〉〉→ k〉〉)m]]〉〉
= 〈〉〈l= 〈〉〈m=[[(〈〈〈〉〈k= 〈〉〈m=w〉〉→ k〉〉)m]]〉〉
= 〈〉〈l= 〈〉〈m=[[(〈〉〈m=w〉)m]]〉〉
= 〈〉〈l= 〈〉〈m=w〉〉 �

Even though a form may contain a binding for a label, say
l, this form may be indistinguishable from a form that does
not contain a binding for label l. In this case, we say that
the label l occurs transparent, which denotes the fact that
a particular service or component interface is not available.

Definition 4. A label l is transparent with respect to
form value F̂ , written F̂ ‖ l, iff

[[F̂l]] = E ∧ [[F̂ → l]] = 〈〉.

Transparent labels can also be used for information hiding.
For example, consider F̂ ≡ 〈〉〈l = a〉〈k = (〈〉 · Ĝ)〉. We can
hide the service located at label l by applying the binding ex-
tension 〈l=E〉, such that F̂ ′ ≡ F̂ 〈l=E〉 and F̂ ′ ‖ l. Similarly,
we can hide the component interface located at label k with
the binding extension 〈k = 〈〉〉, such that F̂ ′′ ≡ F̂ 〈k = 〈〉〉
and F̂ ′′ ‖ k. In both cases, the corresponding service and
component interface, respectively, become inaccessible just
as if the labels had never been defined.

The dual notion of F̂ ‖ l is F̂ � ‖ l, which represents the fact

that the value bound by label l in a form value F̂ is different
from E and 〈〉, respectively. The property F̂ � ‖ l does not
state, however, which feature is actually provided by the
form value F̂ ; it can be either a service or a component
interface.

Definition 5. A label l is nontransparent with respect to
form value F̂ , written F̂ � ‖ l, iff

[[F̂l]] �= E ∨ [[F̂ → l]] �= 〈〉.

An important questions in our theory of forms is when two
forms can be said to exhibit the same meaning. As in the
λ-calculus, the most intuitive way of defining an equivalence
of forms is via a notion of contextual equivalence.

A form context C[·] is obtained when the hole [·] replaces
an occurrence of a form (i.e., F) in the grammar of forms.
We say that the forms F and G are equivalent, when C[F]
and C[G] have the same “observable meaning” for each form
context C[·].

Definition 6. Let F̂ be a form value. Then the set of
nontransparent labels of a form value F̂ , written L̂‖� (F̂), is
defined as follows:

L̂‖� (F̂) = { l ∈ L | F̂ � ‖ l }

This definition gives rise to the definition of behavioral equiv-
alence of forms.

Definition 7. Two forms F and G are behaviorally equiv-
alent, written F ≈ G, if and only if, for all nontransparent
labels l ∈ L̂‖� ([[F]]F) ∪ L̂‖� ([[G]]F),

[[([[F]]F)l]] = [[([[G]]F)l]] ∧ (([[F]]F → l) ≈ ([[G]]F → l))

.

Two forms F and G are equivalent if all projection evalua-
tions of label l ∈ L̂‖� ([[F]]F) ∪ L̂‖� ([[G]]F) yield the same value
for both forms and if all their nested forms bound by label l

61

are equivalent. In the case of L̂‖� ([[F]]F) ∪ L̂‖� ([[G]]F) = ∅, two
forms F and G both evaluate to 〈〉 and they are considered
equivalent.

The relation defined by ≈ is an equivalence relation. Fur-
thermore, ≈ is preserved by all form operations, that is,
(F ≈ G) ⇒ (C[F] ≈ C[G]).

Rather than defining form equivalence over all labels in L,
we restrict the equivalence of two forms F and G to the union
of their nontransparent labels. This is an optimization, but
it can be shown that for all labels l �∈ L̂‖� ([[F]]F) ∪ L̂‖� ([[G]]F)
both forms F and G exhibit also the same behavior.

Forms are immutable data structures. Over time, a form
can grow, which results in the fact that much of its bind-
ings become potentially inaccessible. Those bindings can
be garbage collected. After garbage collection a so-called
normalized form solely contains binding extensions.

We use F̄ , Ḡ, H̄ to range over the set F̄ of normalized form
values. The set F̄ of normalized form values is a subset of
F̂ , i.e., F̄ ⊂ F̂ , and is defined as follows:

F̄ ::=

 〈〉 n = 0
〈〉〈l1 =v1〉〈l2 =v2〉 . . . 〈ln =vn〉 n > 0

where

• all labels li are pairwise distinct, that is, for all i, j ∈
{1, . . . , n} with i �= j, it holds that li �= lj , and

• each value vi with i ∈ {1, . . . , n} is either an abstract
value different from E or a non-empty normalized form.

With normalized forms, we recover classical records. How-
ever, we still maintain position independency, that is, it
holds that 〈〉〈l=a〉〈m=b〉 ≈ 〈〉〈m=b〉〈l=a〉.

For every form F there exists a normalized form F̄ , such
that F ≈ F̄ . This normalized form can be generated by the
following algorithm:

let

Normalize(F̂ , ∅) = 〈〉
Normalize(F̂ , {l} ∪ L̂) =

if [[F̂l]] �= E
then (Normalize(F̂ , L̂))〈l=[[F̂l]]〉
else

let

Ĝ = Normalize(〈〈F̂ → l〉〉, L̂(〈〈F̂ → l〉〉))
in

if Ĝ �= 〈〉
then (Normalize(F̂ , L̂))〈l= Ĝ〉
else Normalize(F̂ , L̂)

in

Normalize([[F]]F , L̂(F̂))

Using this algorithm, we can always transform a given form
F into its corresponding behaviorally equivalent normalized
form F̄ .

4. APPLICATION OF FORMS
Forms are used to represent both components and compo-
nent interfaces. This in turn requires that forms are compile-
time and run-time entities. As compile-time entities forms
are used to specify component interfaces and component in-
terface composition. At run-time, forms provide a uniform
access to component services in an object-oriented way. In
fact, being run-time entities forms may also allow for dy-
namic composition scheme or a hot-swap of components.

What is a software component? Using the characteriza-
tion defined by Nierstrasz [17], a software component is a
“static abstraction with plugs”. But this characterization
is rather vague. In this paper, we propose a new paradigm
that is based on module interconnection languages [8] and
traits [25].

In our new paradigm, a component is a collection of co-
operating objects, each representing a partial state of the
component. This approach stresses the view that, in gen-
eral, we need a set of programming entities (or objects) to
represent one component. We consider a one-to-one rela-
tionship between an object and a component (i.e., one ob-
ject completely implements the semantics of a component)
a special case. This is somewhat a departure from the ap-
proach mostly used today to represent components on top
of an object-oriented programming language or system.

The provided and required services of a component are mod-
eled by method pointers (or delegates) and forms are used to
represent component interfaces. It is also possible to spec-
ify multiple forms (i.e., component interfaces) for the same
collection of cooperating objects (i.e., the component), by
allowing that different interfaces can share the same dele-
gates. Using this approach, we can think of forms as traits
with the exception that the services specified in forms have
also an associated state. In fact, forms provide an abstrac-
tion similar to modules and the form operations can be used
to combine modules.

In order to illustrate our approach, we will use some soft-
ware artifacts developed in the .NET framework. In partic-
ular, we will show how these artifacts (i.e., C# code) can be
encapsulated by forms using delegates as instantiations of
abstract values. We can do so, because in the .NET frame-
work both (structural) equality and inequality are defined
for delegates.

Delegates are one of the most notable innovations of the C#
language and the .NET framework. Delegates are type-safe,
secure managed objects that behave like method pointers [3,
10, 29]. A delegate is a reference type that can encapsulate
a method with a particular signature and a return type. In
the .NET framework, delegates are mainly used to specify
events and callbacks.

Delegates are defined using the delegate keyword, followed
by a return type and a method signature. For example,
consider the following delegate declarations:

62

public delegate void Setter(Object aValue);

public delegate Object Getter();

These declarations define the delegates Setter and Getter,
which can encapsulate any method that takes an object as
parameter and has the return type void (Setter), or has no
parameters and returns an object (Getter).

However, while primarily being used for events and call-
backs, delegates also provide a level of abstraction that en-
ables us to use them to represent component plugs. In fact,
a plug can be considered as callback that, when notified,
provides a service or requires a service in turn.

Now, consider a generic storage cell, which represents an
updatable data structure. A storage cell maintains a pri-
vate state (i.e., its contents), and has at least two methods:
get to read its contents and set to update its contents, re-
spectively. A generic1 C# implementation is shown in the
following:

// generic reference cell

class StorageCell

{

// Contents

private Object fContents;

// Getter method

public Object get()

{ return fContents; }

// Setter method

public void set(Object aValue)

{ fContents = aValue; }

}

Now, this C# storage cell can be represented by the follow-
ing form:

StorageCell ≡ 〈〉〈get=aObjGetter〉〈set=aObjSetter〉

In the form StorageCell, both aObjGetter and aObjSetter

are delegates. The required C# code to define both dele-
gates is shown in the following code fragment:

// create a fresh storage cell object

StorageCell aObj = new StorageCell();

// create the delegates

Setter aObjSetter = new Setter(aObj.set);

Getter aObjGetter = new Getter(aObj.get);

To set the contents of our storage cell component to the
string value ‘‘A new string value’’, we can use the fol-
lowing pseudo-code expression:
1The .NET framework has a fully object-oriented data
model, where every data type is derived from Object.
Therefore, we can use this data type to enable a storage
cell to hold values of any .NET data type.

[[([[StorageCell]]F)set]](“A new string value”)

In this expression, [[([[StorageCell]]F)set]] yields the delegate
aObjSetter, which, when applied to the string argument,
invokes aObj’s set method.

Similarly, to extract the current contents from our storage
cell component, we can use

[[([[StorageCell]]F)get]]()

in which, [[([[StorageCell]]F)get]] yields the aObjGetter del-
egate that, when called, invokes aObj’s get method.

In a second example, we illustrate the composition of two
components using an approach similar to COM/ActiveX ag-
gregation [23]. Suppose we have a Multiselector and a
GUIList component. The GUIList component provides two
services paint and close whereas the Multiselector pro-
vides the services select, deselect, and close. Both com-
ponents can be represented by the following forms:

Multiselector ≡ 〈〉〈select=s〉〈deselect=d〉〈close=c〉
GUIList ≡ 〈〉〈paint=p〉〈close=c2〉

where s, d, c, p, and c2 are delegates. The required C#
code to define the delegates is shown in the following code
fragment:

// delegate type definition

public delegate void GuiOp();

// GUI objects

Multiselector aMultiselector =

new Multiselector();

GUIList aGUIList = new GUIList();

// plug delegates

GuiOp s = new GuiOp(aMultiselector.select);

GuiOp d = new GuiOp(aMultiselector.deselect);

GuiOp c = new GuiOp(aMultiselector.close);

GuiOp p = new GuiOp(aGUIList.paint);

GuiOp c2 = new GuiOp(aGUIList.close);

A composition of these two components has to offer the
union of both sets of services, and, in order to close the com-
posite component correctly, an invocation of close must be
forwarded to both components. In order to define the re-
quired dispatch of close, we have to define some glue code.
That is, we construct a new delegate dispatchClose and
register the delegates yielded by the projection evaluations
[[([[Multiselector]]F)close]] and [[([[GUIList]]F)close]]:

dispatchClose ≡
[[([[Multiselector]]F)close]] + [[([[GUIList]]F)close]];

In this glue pseudo-code, the delegate dispatchClose is ac-
tually a multicast delegate that, when called, invokes all
registered delegates.

63

Using the newly defined delegate, we can define our first
composite fixedcompose:

fixedcompose ≡
〈〉
〈select=[[([[Multiselector]]F)select]]〉
〈deselect=[[([[Multiselector]]F)deselect]]〉
〈paint=[[([[GUIList]]F)paint]]〉
〈close=dispatchClose〉

However, even though fixedcompose represents a composite
component with the required functionality, it is not flex-
ible enough. In fact, it can only work on instances like
Multiselector and GUIList. If applied to components that
provide additional services, then fixcompose will simply dis-
card them.

To address this problem, we can define a new form, called
flexcompose, that provides a generic abstraction, which,
unlike fixedcompose, can work on instances that provide
additional like resize or selectall.

flexcompose ≡
(Multiselector · GUIList)〈close=dispatchClose〉

The polymorphic extension (Multiselector · GUIList) de-
fines an aggregation of the components Mulitselector and
GUIList. Moreover, the use of polymorphic extension guara-
tees that even if Multiselector and GUIList provide addi-
tional services, flexcompose will not discard them.

The proper dispatch of close is guaranteed by the binding
extension 〈close=dispatchClose〉. Since it is the right-most
binding extension, it hides all bindings involving label close
in (Multiselector · GUIList). Therefore, an application of

the close service [[([[flexcompose]]F)close]]() will have the
desired effect.

5. CONCLUSION AND FUTURE WORK
We have presented a small theory of forms, a special notion
of immutable extensible records. Forms are the key concepts
for extensibility, flexibility, and robustness in component-
based application development. Furthermore, forms enable
the definition of a canonical set compositional abstractions
in an uniform framework.

In this paper, we have focused on the representation of
components and component interfaces based on a notion of
symbols. In fact, there exists a close relationship between
forms and XML [31]. Both forms and XML can be used as
platform-independent specifications of data types (e.g. com-
ponent interfaces). In order to provide more expressiveness
of forms, we are currently working of a notion of binding ex-
tension that also incorporate attribute specification that will
enable us to specify additional functional and non-functional
properties of services.

Forms are very similar to traits [25]. However, unlike traits
forms incorporate the notion of state, if services are repre-
sented by delegates. On the other hand, both traits and
forms do not affect the semantics of the underlying program
entities and their composition mechanisms have similar ef-
fects.

Furthermore, we have shown that forms can be used to rep-
resent components written in C#. In fact, we have presented
a new paradigm that characterizes components as collections
of cooperating objects. The main idea of this approach is
the use of delegates as component plugs. In fact, together
with the notion of forms, delegates are most useful to define
robust and reusable software abstractions.

However, forms do not exist in isolation. In fact, forms have
to be embedded into a concrete computational model like
the λ-calculus or the π-calculus. Then it will be possible to
define true, parameterized compositional abstractions.

Future work will also include the definition of an appropriate
typing scheme for forms, as types impose constraints which
help to enforce the correctness of a program [5]. The plugs
of a component constitute essentially an interface, or a con-
tractual specification. Ideally, all conditions of a contract
should be stated explicitly and formally as part of an inter-
face specification. Furthermore, it would be highly desirable
to have tools to check automatically clients and providers
against the contractual specifications and in the case of a
violation to reject the interaction of both.

The problem of inferring a contractual type for a given com-
ponent A can be stated as the problem of finding (i) a type
P that represents what component A provides, (ii) a type R
that represents what component A requires of a deployment
environment, and (iii) a set of constraints C, which must be
satisfied by provided type P due to requirements posed by
R. That is, whenever it is possible to infer (or prove the ex-
istence of) P , R, and C, software components can be safely
composed.

6. ACKNOWLEDGMENTS
We would like to thank Gary Leavens for inspiring discus-
sions on these topics as well as the anonymous reviewers for
commenting on an earlier draft.

7. REFERENCES
[1] F. Achermann and O. Nierstrasz. Explicit

Namespaces. In J. Gutknecht and W. Weck, editors,
Modular Programming Languages, LNCS 1897, pages
77–99. Springer, Sept. 2000.

[2] R. J. Allen. A Formal Approach to Software
Architecture. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, May 1997.

[3] T. Archer. Inside C#. Mircosoft Press, 2001.

[4] L. Cardelli and J. C. Mitchell. Operations on Records.
In C. Gunter and J. C. Mitchell, editors, Theoretical
Aspects of Object-Oriented Programming. MIT Press,
1994. Also appeared as SRC Research Report 48, and
in Mathematical Structures in Computer Science,
1(1):3–48, March 1991.

[5] L. Cardelli and P. Wegner. On Understanding Types,
Data Abstraction, and Polymorphism. ACM
Computing Surveys, 17(4):471–522, Dec. 1985.

[6] L. Dami. Software Composition: Towards an
Integration of Functional and Object-Oriented
Approaches. PhD thesis, Centre Universitaire
d’Informatique, University of Geneva, CH, 1994.

64

[7] L. Dami. A Lambda-Calculus for Dynamic Binding.
Theoretical Computer Science, 192:201–231, Feb. 1998.

[8] F. DeRemer and H. H. Kron. Programming in the
Large versus Programming in the Small. IEEE
Transactions on Software Engineering, SE–2(2):80–86,
June 1976.

[9] G. Leavens and M. Sitamaran, editors. Foundations of
Component-Based Systems. Cambridge University
Press, Mar. 2000.

[10] J. Liberty. Programming C#. O’Reilly, 2nd edition,
2002.

[11] M. Lumpe. A π-Calculus Based Approach to Software
Composition. PhD thesis, University of Bern, Institute
of Computer Science and Applied Mathematics, Jan.
1999.

[12] M. Lumpe, J.-G. Schneider, O. Nierstrasz, and
F. Achermann. Towards a formal composition
language. In G. T. Leavens and M. Sitaraman, editors,
Proceedings of ESEC ’97 Workshop on Foundations of
Component-Based Systems, pages 178–187, Zurich,
Sept. 1997.

[13] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In
W. Schäfer and P. Botella, editors, Proceedings ESEC
’95, LNCS 989, pages 137–153. Springer, Sept. 1995.

[14] Microsoft Corporation. Visual Basic
Programmierhandbuch, 1997.

[15] R. Milner. Communication and Concurrency. Prentice
Hall, 1989.

[16] R. Milner, J. Parrow, and D. Walker. A Calculus of
Mobile Processes, Part I/II. Information and
Computation, 100:1–77, 1992.

[17] O. Nierstrasz and L. Dami. Component-Oriented
Software Technology. In O. Nierstrasz and
D. Tsichritzis, editors, Object-Oriented Software
Composition, pages 3–28. Prentice Hall, 1995.

[18] O. Nierstrasz and T. D. Meijler. Requirements for a
Composition Language. In P. Ciancarini,
O. Nierstrasz, and A. Yonezawa, editors, Object-Based
Models and Languages for Concurrent Systems, LNCS
924, pages 147–161. Springer, 1995.

[19] O. Nierstrasz and T. D. Meijler. Research directions in
software composition. ACM Computing Surveys,
27(2):262–264, June 1995.

[20] M. Papathomas. A Unifying Framework for Process
Calculus Semantics of Concurrent Object-Oriented
Languages. In M. Tokoro, O. Nierstrasz, and
P. Wegner, editors, Proceedings of the ECOOP ’91
Workshop on Object-Based Concurrent Computing,
LNCS 612, pages 53–79. Springer, 1992.

[21] M. Papathomas. Behaviour Compatibility and
Specification for Active Objects. In D. Tsichritzis,
editor, Object Frameworks, pages 31–40. Centre
Universitaire d’Informatique, University of Geneva,
July 1992.

[22] J. Richter. Applied Microsoft .NET Framework
Programming. Mircosoft Press, 2002.

[23] D. Rogerson. Inside COM: Microsoft’s Component
Object Model. Microsoft Press, 1997.

[24] J. Sametinger. Software Engineering with Reusable
Components. Springer, 1997.

[25] N. Schärli, D. Stéphane, O. Nierstrasz, and A. Black.
Traits: Composable Units of Behavior. In L. Cardelli,
editor, Proceedings of the ECOOP ’03, LNCS 2743,
pages 248–274. Springer, July 2003.

[26] J.-G. Schneider. Components, Scripts, and Glue: A
conceptual framework for software composition. PhD
thesis, University of Bern, Institute of Computer
Science and Applied Mathematics, Oct. 1999.

[27] J.-G. Schneider and M. Lumpe. Synchronizing
Concurrent Objects in the Pi-Calculus. In
R. Ducournau and S. Garlatti, editors, Proceedings of
Langages et Modèles à Objets ’97, pages 61–76,
Roscoff, Oct. 1997. Hermes.

[28] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 1998.

[29] A. Troelsen. C# and the .NET Platform. Apress, 2001.

[30] G. van Rossum. Python Reference Manual. Technical
report, Corporation for National Research Initiatives
(CNRI), Oct. 1996.

[31] W3C Recommendation. Extensible Markup Language
(XML) 1.0 (Second Edition), Oct. 2000.
http://www.w3.org/TR/REC-xml.

[32] L. Wall, T. Christiansen, and R. L. Schwartz.
Programming Perl. O’Reilly & Associates, 2nd edition,
Sept. 1996.

65

Algorithmic Game Semantics and
Component-Based Verification

Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong

Oxford University Computing Laboratory

ABSTRACT
We present a research programme dedicated to the application of
Game Semantics to program analysis and verification. We high-
light several recent theoretical results and describe a prototypical
software modeling and verification tool. The distinctive novel fea-
tures of the tool are its ability to handle open programs and the
fact that the models it produces are observationally fully abstract.
These features are essential in the modeling and verification of soft-
ware components such as modules. Incidentally, these features also
lead to very compact models of programs.

1. INTRODUCTION AND BACKGROUND
Game Semantics has emerged as a powerful paradigm for giving

semantics to a variety of programming languages and logical sys-
tems. It has been used to construct the first syntax-independent
fully abstract models for a spectrum of programming languages
ranging from purely functional languages to languages with non-
functional features such as control operators and locally-scoped
references [4, 27, 5, 6, 3, 28].

We are currently developing Game Semantics in a new, algo-
rithmic direction, with a view to applications in computer-assisted
verification and program analysis. Some promising steps have al-
ready been taken in this direction. Hankin and Malacaria have ap-
plied Game Semantics to program analysis, e.g. to certifying se-
cure information flows in programs [21, 22]. A particularly strik-
ing development was the work by Ghica and McCusker [20] which
captures the game semantics of a procedural language in a remark-
ably simple form, as regular expressions. This leads to a decision
procedure for observational equivalence on this fragment. Ghica
has subsequently extended the approach to a call-by-value language
with arrays [16], to model checking Hoare-style program correct-
ness assertions [15] and to a more general model-checking friendly
specification framework [17].

Game Semantics has several features which make it very promis-
ing from this point of view. It provides a very concrete way of
building fully abstract models. It has a clear operational content,
while admitting compositional methods in the style of denotational
semantics. The basic objects studied in Game Semantics are games,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

and strategies on games. Strategies can be seen as certain kinds of
highly-constrained processes, hence they admit the same kind of
automata-theoretic representations central to model checking and
allied methods in computer-assisted verification. Moreover, games
and strategies naturally form themselves into rich mathematical
structures which yield very accurate models of advanced high-level
programming languages, as the various full abstraction results show.
Thus the promise of this approach is to carry over the methods of
model checking (see e.g. [10]), which has been so effective in the
analysis of circuit designs and communications protocols, to much
more structured programming situations, in which data-types as
well as control flow are important.

A further benefit of the algorithmic approach is that by embody-
ing game semantics in tools, and making it concrete and algorith-
mic, it should become more accessible and meaningful to practi-
tioners. We see Game Semantics as having the potential to fill the
role of a “Popular Formal Semantics,” called for in an eloquent pa-
per by Schmidt [39], which can help to bridge the gap between the
semantics and programming language communities. Game Seman-
tics has been successful in its own terms as a semantic theory; we
aim to make it useful to and usable by a wider community.

Model checking for state machines is a well-studied problem
(e.g. Murφ [14], Spin [25] and Mocha [8] to name a few sys-
tems). Software model checking is a relatively new direction (see
e.g. [24]); the leading projects (e.g. SLAM [9], and Bandera [12])
excel in tool constructions. The closest to ours in terms of tar-
get applications is the SLAM project, which is able to check safety
properties of C programs. This task is reduced in stages to the prob-
lem of checking if a given statement in an instrumented version of
the program in question is reachable, using ideas from data-flow
and inter-procedural analysis and abstract interpretation.

In relation to the extensive current activity in model checking
and computer assisted verification, our approach is distinctive, be-
ing founded on a highly-structured compositional semantic model.
This means that we can directly apply our methods to open pro-
gram phrases (i.e. terms-in-context with free variables) in a high-
level language with procedures, local variables and data types. This
ability is essential in analyzing properties of software components.
The soundness of our methods is guaranteed by the properties of
the semantic models on which they are based. By contrast, most
current model checking applies to relatively “flat” unstructured sit-
uations.

Our semantics-driven approach has some other additional bene-
fits: it is generic and fully automated. We do not target particular
bugs or programs. The tool has the level of automation of a com-
piler. The input is a program fragment, with very little instrumenta-
tion required, and the output is a finite-state (FS) model. The result-
ing model itself can be analyzed using third-party model-checking

66

tools, or our tool can automatically extract traces with certain prop-
erties, e.g. error traces.

Software model checking is a fast-developing area of study, driven
by needs of the industry as much as, if not more than, theoretical
results. Often, tool development runs well ahead of rigorous con-
siderations of soundness of the methods being developed. Our aim
is to build on the tools and methods which have been developed in
the verification community, while exploring the advantages offered
by our semantics-directed approach.

2. A PROCEDURAL PROGRAMMING LAN-
GUAGE

Our prototypical procedural language is a simply-typed call-by-
name lambda calculus with basic types of booleans (bool), integers
(exp), assignable variables (var) and commands (comm). We de-
note the basic types by σ and the function types by θ. Assignable
variables, storing integers, form the state while commands change
the state. In addition to abstraction (λx : σ.M) and application
(FA), other terms of the language are conditionals, uniformly ap-
plied to any type, (if B then M else N), recursion (fix x : σ.M), con-
stants (integers, booleans) and arithmetic-logic operators (M ∗N);
we also have command-type terms which are the standard imper-
ative operators: dereferencing (explicit in the syntax, !V), assign-
ment (V :=N), sequencing (C; M , note that we allow, by sequenc-
ing, expressions with side-effects), no-op (skip) and local variable
block (new x in M). We write M : σ to indicate that term M has
type σ.

This language, which elegantly combines state-based procedural
and higher-order functional programming, is due to Reynolds [38]
and its semantic properties have been the object of important re-
search [35].

If the programming language is restricted to first-order proce-
dures, (more precisely, we restrict types to θ ::= σ | σ → θ)
tail recursion (iteration) and finite data-types then the Abramsky-
McCusker fully abstract game model for this language [5] has a
very simple and appealing regular-language representation [20].
The formulation of the regular-language model in loc. cit. is very
well suited for proving equivalences “by hand,” but we will prefer a
slightly different but equivalent presentation [2] because it is more
uniform and more compact. The referenced work gives motivation
and numerous examples for the model presented below.

2.1 Abstract syntax
The typing judgements have the form Γ � M : θ where Γ =

x1 : θ1, . . . , xk : θk. The typing rules are those of the typed λ-
calculus: variables, abstraction and application:

Γ, x : θ � x : θ

Γ, x : θ � M : θ′

Γ � λx : θ.M : θ → θ′

Γ � M : θ → θ′ Γ � M ′ : θ
Γ � MM ′ : θ′

Additionally, there is a rule for block structure:

Γ, x : var � M : σ

Γ � new x in M : σ

The programming language also contains a set of constants:

n : exp true : bool false : bool skip : comm

− := − : var → exp → comm

if − then − else − : bool → σ → σ → σ

−;− : comm → σ → σ

while − do − : bool → comm → comm

For the purpose of defining the semantics, it is convenient to use
a variant of the above system, in which the application rule is re-
placed by two rules: linear application and contraction.

Γ � M : θ → θ′ Γ′ � M ′ : θ
Γ, Γ′ � MM ′ : θ′

Γ, x : θ, x′ : θ � M : θ′

Γ, y : θ � M [y/x, y/x′] : θ′

It is well known that this system has the same typing judgements
as the original system.

We also use a construct for function (or procedure) definition:

Γ � M : θ Γ, f : θ � N : σ

Γ � let f be M in N : σ

Finally, it is convenient to define a non-terminating command
div : comm.

2.2 Extended Regular Expressions
This section describes the representation of the game model us-

ing a language of extended regular expressions. Due to space con-
straints, a basic understanding of game semantics must be assumed
as background. Otherwise, the reader is encouraged to refer to the
literature mentioned in the Introduction.

Terms are interpreted by languages over alphabets of moves A.
The languages, denoted by L(R), are specified using extended reg-
ular expressions R. They include the standard regular expressions
consisting of the empty language ∅, the empty sequence ε, concate-
nation R · S, union R + S, Kleene star R∗, and the elements of
the alphabet taken as sequences of unit length. We also use the
additional constructs of intersection R ∩ S, direct image under ho-
momorphism φR and inverse image φ−1R. The languages defined
by these extensions are the obvious ones:

L(R ∩ S) = L(R) ∩ L(S)

L(φR) = {φw | w ∈ L(R)}
L(φ−1R) = {w ∈ A∗

1 | φw ∈ L(R)},
where φ :A1 → A∗

2 is a homomorphism; it lifts to strings in the
usual way, φ(a1 . . . ak) = φ(a1) · · ·φ(ak).

It is a standard result that any extended regular expression con-
structed from the operations described above denotes a regular lan-
guage, which can be recognized by a finite automaton which can
be effectively constructed from the regular expression [26].

We will often use the disjoint union of two alphabets to create a
larger alphabet:

A1+A2 = {a〈1〉 | a∈A1} ∪ {b〈2〉 | b∈A2} = A〈1〉
1 ∪A〈2〉

2 .

The tags −〈i〉 are used on a lexical level, resulting in new and dis-
tinct symbols belonging to the larger alphabet. The disjoint union
gives rise to the canonical maps:

A1

inl �� A1 + A2
outr

��
outl

�� A2

inr��

The definition of the maps is:

inl a = a〈1〉 inr b = b〈2〉

outl a〈1〉 = a outr a〈1〉 = ε

outl b〈2〉 = ε outr b〈2〉 = b

67

If φ :A → B∗ and φ′ : C → D∗ are homomorphisms then we
define their sum φ + φ′ :A + C → (B + D)∗ as

(φ + φ′)(a〈1〉) = (φa)〈1〉

(φ + φ′)(c〈2〉) = (φ′c)〈2〉.

DEFINITION 1 (COMPOSITION). If R is a regular expression
over alphabet A + B and S a regular expression over alphabet
B + C we define the composition R ◦ S as a regular expression
over alphabet A + C

R ◦ S = out
`
out−1

1 (R) ∩ out−1
2 (S)

´
,

with canonical maps

A + B
in1 �� A + B + C

out2
��

out1
��

out

��

B + C
in2��

A + C
in

��

Regular expression composition is very similar to composition of
finite state transducers [37]. Sets A and B represent, respectively,
the input and the output of the first transducer; sets B and C repre-
sent, respectively, the input and the output of the second transducer.
The result is a transducer of inputs A and output C. For example,
let A = {a}, B = {b}, C = {c}; then (ab)∗ ◦ (bcc)∗ = (acc)∗.

2.3 Alphabets
We interpret each type θ by a language over an alphabet A�θ�,

containing the moves from the game model. For basic types σ it is
helpful to define alphabets of questions Q �σ�and answers Aq �σ�
for each q ∈ Q �σ�. The alphabet of type σ is then defined as

A�σ�= Q �σ�∪ [
q∈Q�σ�

Aq �σ�.

The basic type alphabets are:

Q �exp�= {q}, Aq �exp�= N

Q �bool�= {q}, Aq �bool�= {t, f}
Q �comm�= {q}, Aq �comm�= {�}
Q �var�= {q} ∪ {w(n) | n ∈ N},

Aq �var�= N,Aw(n) = {�}.
where N = {−n, · · · ,−1, 0, 1, · · · , n}.

Alphabets of function types are defined by

A�σ → θ�= A�σ�+ A�θ�.
A typing judgement Γ � M : θ is interpreted by a regular expres-
sion R = �Γ � M : θ�over alphabet

P
xi : θi∈Γ A�θi�+ A�θ�.

For any type θ = σ1 → · · · → σk → σ, it is convenient to
define a regular language Kθ over alphabet A�θ�+A�θ�, called the
copy-cat language:

Kθ =
X

q∈Q�σ�

q〈2〉 · q〈1〉 ·
“ X

i=1,k

Ri

”∗
·

X
a∈Aq�σ�

a〈1〉 · a〈2〉,

where

Ri =
X

q∈Q�σi�

q〈2〉 · q〈1〉 ·
X

a∈Aq�σi�

a〈1〉 · a〈2〉.

This regular expression represents the so-called copy-cat strategy
of game semantics, and it describes the generic behaviour of a se-
quential procedure. At second-order [36] and above [27] this be-
haviour is far more complicated.

2.4 Regular-language semantics
We interpret terms using an evaluation function �−�mapping a

term Γ � M : θ and an environment u into a regular language R.
The environment is a function, with the same domain as Γ, mapping
identifiers of type θ to regular languages over A�Γ�+ A�θ�.

The evaluation function is defined by recursion on the syntax.

Identifiers. Identifiers are read from the environment:

�Γ, x : θ � x : θ�u = u(x).

Abstraction.

�Γ � λx : σ.M : σ → θ�u
= φ

`�Γ, x : σ � M : θ�(u | x 	→ Kσ)
´

where φ is the (trivial) associative isomorphism

φ : (A�Γ�+ A �σ�) + A�θ� �−→ A�Γ�+ (A�σ�+ A�θ�).
Application and contraction.

�Γ, ∆ � MN�u = �Γ � M�u ◦ `�∆ � N�u´∗
,

with composition − ◦ − defined as before. Contraction is

�
Γ, z : θ � M [z/x, z/x′] : θ

�
u

= (id1 + δ + id2)
`�

Γ, x : θ, x′ : θ � M : θ
�
u

´
,

where id1 and id2 are identities on A�Γ� and, respectively, A�θ�.
The homomorphism δ :A�θ�+ A�θ� → A�θ� only removes tags
from moves. Note that this interpretation is also specific to first-
order types. In higher-order types this interpretation of contraction
by un-tagging can result in ambiguities.

Block Variables. Consider the following regular expression over
alphabet A�var�

cell =
“X

n∈N

w(n) · � · (q · n)∗
”∗

.

Intuitively, one can see that this regular expression describes the
sequential behaviour of a memory cell: if a value n is written, then
the same value is read back until the next write, and so on.

We define block variables as

�Γ � new x in M : σ�u = �Γ, x : var � M : σ�u ◦ cell,

Constants. Finally, the interpretation of constants is:

�n : exp�= q · n, �true : bool�= q · t, �false : bool�= q · f�−op − : σ → σ → σ′�

=
X
p∈N

X
m,n∈N

p=m op n

q〈3〉 · q〈1〉 · m〈1〉 · q〈2〉 · n〈2〉 · p〈3〉

�− := − : var → exp → comm�
=

X
n∈N

q〈3〉 · q〈2〉 · n〈2〉 · w(n)〈1〉 · �〈1〉 · �〈3〉

�if − then − else − : bool → σ → σ → σ�
=

X
q∈Q�σ�

q〈4〉 · q〈1〉 · t〈1〉 · q〈2〉 ·
X

a∈Aq�σ�

a〈2〉 · a〈4〉

+
X

q∈Q�σ�

q〈4〉 · q〈1〉 · f〈1〉 · q〈3〉 ·
X

a∈Aq�σ�

a〈3〉 · a〈4〉

68

0 1

run
2

client.run

3
client.done

41.client.run

5

2.client.q

6
done

7

1.client.done

2.client.0

client.done

1.client.run

8

2.client.q

2.client.1

Figure 1: A simple switch

�−;− : comm → σ → σ�
=

X
q∈Q�σ�

q〈3〉 · q〈1〉 · �〈1〉 · q〈2〉 ·
X

a∈Aq�σ�

a〈2〉 · a〈3〉

�while − do − : bool → comm → comm�
= q〈3〉 ·

“
q〈1〉 · t〈1〉 · q〈2〉 · �〈2〉

”∗
· q〈1〉 · f〈1〉 · �〈3〉

�div : comm�= ∅, � skip : comm�= q · �.

The operator op ranges over the usual arithmetic-logic operators,
and op is its obvious interpretation.

2.5 A warm-up example
This simple example illustrates quite well the way the game-

based model works. It is a toy abstract data type (ADT): a switch
that can be flicked on, with implementation:

client : com -> exp -> com |-
new var v:= 0 in
let set be v := 1 in
let get be !v in
client (set, get) : com.

The code consists of local integer variable v, storing the state of
the switch, together with functions set, to flick the switch on, and
get, to get the state of the switch. The initial state of the switch
is off. The non-local, undefined, identifier client is declared at
the left of the turnstile |-. It takes a command and an expression-
returning functions as arguments. It represents, intuitively, “the
most general context” in which this ADT can be used.

A key observation about the model is that the internal state of the
program is abstracted away, and only the observable actions, of the
nonlocal entity client, are represented, insofar as they contribute
to terminating computations. The output of the modeling tool is
given in Fig. 1.

Notice that no references to v, set, or get appear in the model!
The model is only that of the possible behaviours of the client:
whenever the client is executed, if it evaluates its second argument
(get the state of the switch) it will receive the value 0 as a result;
if it evaluates the first argument (set the switch on), one or more
times, then the second argument (get the state of the switch) will
always evaluate to 1. The model does not, however, assume that
client uses its arguments, or how many times or in what order.

2.6 Full abstraction
Full abstraction results are crucial in semantics, as they are a

strong qualitative measure of the semantic model. Full abstraction

is defined with respect to observational equivalence: two terms are
equivalent if and only if they can be substituted in all program con-
texts without any observable difference. This choice of observable
is therefore canonical, and arises naturally from the programming
language itself. In practice, fully abstract models are important
because they identify all and only those programs which are obser-
vationally equivalent.

Formally, terms M and N are defined to be observationally equiv-
alent, written M ≡ N , if and only if for any context C[−] such that
both C[M] and C[N] are closed terms of type comm, C[M] con-
verges if and only if C[N] converges. The theory of observational
equivalence, which is very rich (see e.g. [20] for a discussion), has
been the object of much research [35].

THEOREM 1 (FULL ABSTRACTION [5, 20]).

Γ � M ≡ N ⇐⇒ L`�Γ � M : θ�u0

´
= L`�Γ � N : θ�u0

´
,

where u0(x) = Kθ for all x : θ in Γ.

As an immediate consequence, observational equivalence for the
finitary fragment discussed here is decidable.

It can be shown that the full abstraction result holds relative to
contexts drawn from either the restricted fragment or the full pro-
gramming language [19].

3. APPLICATIONS TO ANALYSIS AND
VERIFICATION

The game model is algorithmic, fully abstract and compositional,
therefore it provides excellent support for compositional program
analysis and verification.

The initial decidability result of the previous section was ex-
tended to higher-order (recursion and iteration-free) call-by-name
procedural programming by Ong [36] and, for call-by-value, by
Murawski [34]. This required the use of deterministic pushdown
automata [40, 41], since the associated sets of complete plays in
the game semantics are no longer regular. Various other extensions
of the programming fragment, e.g. by introducing unrestricted re-
cursion [36] or further increasing the order of the fragment [33],
lead to undecidability. The game-theoretic approach seems to offer
a useful and powerful tool for investigating the algorithmic prop-
erties of programming language fragments, e.g. the complexity of
program equivalence [32].

A different direction of research is the development of game-
based, model-checking friendly specification languages. Such spec-
ification languages are necessary in order to fully exploit the com-

69

0 1
run

2
x.q

3

x.1

4
x.0

5

x.-1

6x.q

7
x.q

8

x.q

9
x.1

10

x.0

11

x.-1

x.1

12

x.0

13

x.-1

x.1

x.0

14

x.-1

15

x.1write

x.0write

x.-1write

16

x.0write

x.-1write

17x.-1write

18

x.ok

19
x.ok

20x.ok

21

x.1write

x.0write

x.-1write
22

x.ok
23

done

Figure 2: A model of sorting

positionality of the game-based approach. It is of little use to rea-
son about program fragments if properties of the whole program
cannot be then compositionally inferred, without requiring further
model-checking. The first steps in this direction are taken in [17].

3.1 Tool support and case studies
The theoretical applications of game semantics have been very

successful. However, since the complexity of the regular-language
algorithms involved in the generation of the finite-state machines
representing the game models is exponential (both in time and in
space), it was unclear whether the technique was practicable. This
is in fact a common situation in software model checking: the
asymptotic complexity of the algorithms involved is high, but it
turns out that the worst-case scenario only happens in pathological
cases. Many programs can be in fact verified. But the only way
to make such pragmatic assessments is to implement and experi-
ment. We have implemented a prototype tool, and the results are
very positive.

Our tool converts an open procedural program into the finite-
state machine representation of the regular-language game model.
Very little user instrumentation of the source code is required. The
data-abstraction schemes (i.e. what finite sets of integers will be
used to model integer variables) for integer-typed variables need
to be supplied, using simple code annotations. The tool is imple-
mented in CAML; most of the back-end heavy duty finite-state ma-
chine processing is done using the AT&T FSM library [1]. A more
complete description of the tool is available in [18].

In the following we will present two case studies which best il-
lustrate the distinctive features of our model: a sorting program and
an abstract data type implementation.

3.2 Sorting
In this section we will discuss the modeling of a sorting program,

a notoriously difficult problem. We will focus on bubble-sort, not
for its algorithmic virtues but because it is one of the most straight-
forward non-recursive sorting algorithms. The implementation we

x:var |- 1

array a[n] in 2

new var i:=0 in 3

while !i < n do a[!i]:=!x; i:=!i+1 od; 4

new var flag:=1 in 5

while !flag do 6

new var i:=0 in 7

flag:=0; 8

while !i < n - 1 do 9

if !a[!i] > !a[!i+1] then 10

flag:=1; 11

new var temp:=!a[!i] in 12

a[!i]:=!a[!i+1]; 13

a[!i+1]:=!temp 14

else skip fi; 15

i:=!i+1 16

od 17

od; 18

new var i:=0 in 19

while !i < n do x:=!a[!i]; i:=!i+1 od : com. 20

Figure 3: An implementation of sorting

will analyze is the one in Fig. 3. Meta-variable n, representing
the size of the array, will be instantiated to several different values.
Observe that the program communicates with its environment using
non-local var-typed identifier x:var only. Therefore, the model
will only represent the actions of x. Since we are in a call-by-name
setting, x can represent any var-typed procedure, for example in-
terfacing with an input/output channel. Notice that the array being
effectively sorted, a[], is not visible from the outside of the pro-
gram because it is locally defined.

We first generate the model for n = 2, i.e. an array of only

70

Figure 4: A model of sorting: 20 element-array

2 elements, in order to generate a small enough model which we
can display and discuss. The type of stored data is integers in the
interval [−1, 1], i.e. 3 distinct values. The resulting model is as
in Fig. 2. It reflects the dynamic behaviour of the program in the
following way: every trace in the model is formed from the actions
of reading all 3 × 3 = 9 possible combinations of values from x,
followed by writing out the same values, but in sorted order.

Increases in the array lead to (asymptotically exponential) in-
creases in the time and space of the verification algorithm. On our
development machine (SunBlade 100, 2GB RAM), the duration of
the generation of the model as a function of n was: n = 2: 5 min-
utes; n = 5: 10 minutes; n = 10: 15 minutes; n = 20: 4 hours;
n = 25: 10 hours; n = 30: the computation failed. Fig. 4 gives a
snapshot of the model for n = 20.

The output is a FS machine, which can be analyzed using stan-
dard FS-based model checking tools. Moreover, this model is an
extensional model of sorting: all sorting programs on an array of
size n will have isomorphic models. Therefore, a straightforward
method of verification is to compare the model of a sorting pro-
gram with the model of another implementation which is known to
be correct. In the case of our finite-state models, this is a decidable
operation.

Something quite remarkable about the model in Fig. 4 is its very
compact size. An array of 20 (3-valued) elements can represent 320

distinct states, i.e. approximately 3.5 billion states. This is a vast
memory space, beyond the range of tools much more sophisticated
than ours. Our tool cannot only handle such a program, but it also
produces its complete model.

The key observation is the following: the fact that the state of the
array is internalized and only a purely behavioural, observationally
fully abstract model is presented leads to significant savings in re-
quired memory space. In fact, the model in Fig. 4 has only circa
6,500 states. So, even though the algorithms we use are generic,
the fact that we use a model at a maximum level of abstraction,
which internalizes the details of stateful behaviour leads to major
improvements in efficiency. It is interesting to contrast this kind
of abstraction, which comes for free with our fully abstract model,
with other, syntactic, abstraction techniques such as slicing [23].

3.3 Code-level safety specifications
We define an assertion as a function which takes as argument a

boolean, the condition to be asserted. It does nothing if the condi-
tion is true and calls an (nonlocal) error procedure if the condi-
tion is false. In the resulting model, any trace containing the actions
error.run, error.done will represent a usage of the ADT
which violates the invariant, i.e. an error trace.

The encoding of safety properties using code-level assertions is
quite standard in SMC, e.g. [9], and it is also known that every
safety property can be encoded in a regular language [31]. Using
the assertion mechanism in conjunction with modeling open pro-

grams, such as modules, offers an elegant solution to the problem
of checking equational properties or invariants of ADTs.

For example, consider an implementation of a finite-size stack,
using a fixed-size array. The interface of the stack is through func-
tions push(n) and pop. Their implementation is the obvious one
(see Fig. 5). In addition, the stack component assumes the existence
of functions overflow and empty to call if a push is attempted
on a full stack, respectively a pop is attempted on an empty stack.
These functions need not be implemented.

Suppose that we want to check, for a size 2 stack, whether it is
the case that the last value pushed onto the stack is the value at the
top of the stack. We do this by using the assertion invariant on
lines 21–24 of Fig. 5. Notice the undefined component VERIFY of
this program: it stands for all possible uses of the stack module and
the assertion to be checked. The idea of providing such a generic
closure of an open program can be traced back to [11], and several
game-like solutions have been already proposed [13, 7]. The game
model which we use provides this closure, correct and complete,
directly at the level of the concrete programming language.

empty:com, overflow:com, m:exp, error:com, 1

VERIFY : com -> exp -> com -> com |- 2

let assert be fun a : exp. 3

if a then skip else error fi in 4

array buffer[n] in 5

let size be n in 6

new var crt:=0 in 7

let isempty be !crt = 0 in 8

let isfull be !crt = size in 9

let push be fun x : exp. 10

new var temp:=x in 11

if isfull then overflow 12

else buffer[!crt]:=!temp; 13

crt:=!crt+1 fi 14

in 15

let pop be 16

if isempty then empty; 0 17

else crt:=!crt - 1; 18

!buffer[!crt] fi 19

in 20

let invariant be 21

new var x:=m in 22

push(!x); pop = !x 23

in 24

VERIFY(push(m), pop, assert(invariant)) 25

: com. 26

Figure 5: A stack module

The tool automatically builds the model for the above and ex-
tracts its shortest failure trace (see Fig. 6).

Action 1.VERIFY represents a push action. So the simplest
possible error is caused by pushing 3 times the value 1 onto the
2-element stack. Indeed, if the stack is already full, pushing a new
element will cause an overflow error.

4. CURRENT LIMITATIONS AND FURTHER
RESEARCH

The initial results of our effort to model and verify programs us-

71

0 1 run
1 2 VERIFY.run
2 3 1.VERIFY.run
3 4 m.q
4 5 m.1
5 6 1.VERIFY.done
6 7 1.VERIFY.run
7 8 m.q
8 9 m.1
9 10 1.VERIFY.done
10 11 3.VERIFY.run
11 12 m.q
12 13 m.0
13 14 overflow.run
14 15 overflow.done
15 16 error.run
16 17 error.done
17 18 3.VERIFY.done
18 19 VERIFY.done
19 20 done
20

Figure 6: Shortest failure trace of stack component

ing Game Semantics are very encouraging: this approach proves
to give compact, practicable representations of many common pro-
grams, while the ability to model open programs allows us to verify
software components, such as ADT implementations.

We are considering several further directions:

language extensions: the procedural language fragment we are cur-
rently handling only includes basic imperative and functional
features. We are considering several ways to extend it: richer
computational primitives such as concurrency and control,
which already have game semantic models; restricted recur-
sion schemes which are more expressive than iteration (i.e.
tail recursion); higher-order functional features. In addition,
we consider a version of this tool which would handle call-
by-value languages.

specifications: in order to truly support compositional verification
we intend to expand the tool to model specifications of open
programs, rather than just open programs. A theoretical basis
for that is already provided in [17], which is in turn inspired
by the game-like ideas of interface automata [13].

tools and methodology: enriching the features of the tool and mak-
ing it more robust and user friendly. For example, the defin-
ability result in [5] guarantees that any trace in the model can
be mapped back into a program. Using this, we can give the
user code rather than trace counterexamples to failed asser-
tions. We would also like to investigate applying the tool to
the modeling and verification of a larger, more realistic case
study.

scalable model checking: our methods so far apply only to finite
data and store. Verifying a program operating on finite data
and store is an excellent method for bug detection and pro-
vides a fairly high measure of confidence in the correctness
of the code, but it does not represent a proof. There is, in gen-
eral, no guarantee that the properties of a program of given

size generalize. But we hope that recent results in data inde-
pendence [30, 29] can help overcome such limitations.

We are actively engaged in investigating the above topics, and we
are grateful to the Engineering and Physical Sciences Research
Council of the United Kingdom for financial support in the form
of the research grant Algorithmic Game Semantics and its Appli-
cations; there is also a related project on Scalable Software Model
Checking based on Game Semantics by Ranko Lazic of the Univer-
sity of Warwick.

5. REFERENCES
[1] AT&T FSM Librarytm – general-purpose finite-state

machine software tools. http:
//www.research.att.com/sw/tools/fsm/.

[2] ABRAMSKY, S. Algorithmic game semantics: A tutorial
introduction. Lecture notes, Marktoberdorf International
Summer School 2001. (available from
http://web.comlab.ox.ac.uk/oucl/work/
samson.abramsky/), 2001.

[3] ABRAMSKY, S., HONDA, K., AND MCCUSKER, G. A fully
abstract game semantics for general references. In
Proceedings, Thirteenth Annual IEEE Symposium on Logic
in Computer Science (1998).

[4] ABRAMSKY, S., JAGADEESAN, R., AND MALACARIA, P.
Full abstraction for PCF. Information and Computation 163
(2000).

[5] ABRAMSKY, S., AND MCCUSKER, G. Linearity, sharing
and state: a fully abstract game semantics for Idealized Algol
with active expressions. vol. 2. 1996, ch. 20, pp. 297–329.
Published also as Chapter 20 of [35].

[6] ABRAMSKY, S., AND MCCUSKER, G. Full abstraction for
Idealized Algol with passive expressions. Theoretical
Computer Science 227 (1999), 3–42.

[7] ALUR, R., HENZINGER, T. A., AND KUPFERMAN, O.
Alternating-time temporal logic. Journal of the ACM 49, 5
(Sept. 2002), 672–713.

[8] ALUR, R., HENZINGER, T. A., MANG, F. Y. C., AND

QADEER, S. MOCHA: Modularity in model checking. In
Proceedings of CAV’98 (1998), Springer-Verlag,
pp. 521–525.

[9] BALL, T., AND RAJAMANI, S. K. The SLAM toolkit. In
13th Conference on Computer Aided Verification (CAV’01)
(July 2001). Available at
http://research.microsoft.com/slam/.

[10] CLARKE, E. M., GRUMBERG, O., AND PELED, D. A.
Model Checking. The MIT Press, Cambridge, Massachusetts,
1999.

[11] COLBY, C., GODEFROID, P., AND JAGADEESAN, L.
Automatically closing open reactive programs. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI’98) (Montreal, Canada, June 1998), pp. 345–357.

[12] CORBETT, J. C., DWYER, M. B., HATCLIFF, J.,
LAUBACH, S., PĂSĂREANU, C. S., AND ZHENG, H.
Bandera. In Proceedings of the 22nd International
Conference on Software Engineering (June 2000), ACM
Press, pp. 439–448.

[13] DE ALFARO, L., AND HENZINGER, T. A. Interface
automata. In Proceedings of the Joint 8th European Software
Engeneering Conference and 9th ACM SIGSOFT Symposium
on the Foundation of Software Engeneering (ESEC/FSE-01)

72

(New York, Sept. 10–14 2001), V. Gruhn, Ed., vol. 26, 5 of
SOFTWARE ENGINEERING NOTES, ACM Press,
pp. 109–120.

[14] DILL, D. L. The Murφ verfication system. In Proceedings of
CAV’96 (1996), vol. 1102 of LNCS, Springer-Verlag,
pp. 390–393.

[15] GHICA, D. R. A regular-language model for Hoare-style
correctness statements. In Proceedings of the Verification
and Computational Logic 2001 Workshop (Florence, Italy,
August 2001).

[16] GHICA, D. R. Regular language semantics for a
call-by-value programming language. In Proceedings of the
17th Annual Conference on Mathematical Foundations of
Programming Semantics (Aarhus, Denmark, May 2001),
Electronic Notes in Theoretical Computer Science, Elsevier,
pp. 85–98.

[17] GHICA, D. R. A Games-based Foundation for
Compositional Software Model Checking. PhD thesis,
Queen’s University School of Computing, Kingston, Ontario,
Canada, November 2002. Also available as Oxford
University Computing Laboratory Research Report
RR-02-13.

[18] GHICA, D. R. Game-based software model checking: Case
studies and methodological considerations. Tech. Rep.
PRG-RR-03-11, Oxford University Computing Laboratory,
May 2003.

[19] GHICA, D. R., AND MCCUKSER, G. The regular-language
semantics of first-order Idealized ALGOL. Theoretical
Computer Science (to appear).

[20] GHICA, D. R., AND MCCUSKER, G. Reasoning about
Idealized ALGOL using regular languages. In Proceedings of
27th International Colloquium on Automata, Languages and
Programming ICALP 2000 (2000), vol. 1853 of LNCS,
Springer-Verlag, pp. 103–116.

[21] HANKIN, C., AND MALACARIA, P. Generalised flowcharts
and games. Lecture Notes in Computer Science 1443 (1998).

[22] HANKIN, C., AND MALACARIA, P. Non-deterministic
games and program analysis: an application to security. In
Proceedings, Fourteenth Annual IEEE Symposium on Logic
in Computer Science. 1999, pp. 443–452.

[23] HATCLIFF, J., DWYER, M. B., AND ZHENG, H. Slicing
software for model construction. Higher-Order and Symbolic
Computation 13, 4 (Dec. 2000), 315–353.

[24] HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND

SUTRE, G. Lazy abstraction. In Proceedings of the 29th
Annual Symposium on Principles of Programming
Languages (2002), ACM Press, pp. pp. 58–70.

[25] HOLZMANN, G. J., AND PELED, D. A. The state of SPIN.
In Proceedings of CAV’96 (1996), vol. 1102 of LNCS,
Springer-Verlag, pp. 385–389.

[26] HOPCROFT, J. E., AND ULLMAN, J. D. Introduction to
Automata Theory, Languages, and Computation. Addidon
Wesley, 1979.

[27] HYLAND, J. M. E., AND ONG, C.-H. L. On full abstraction
for PCF: I, II and III. Information and Computation 163, 8
(Dec. 2000).

[28] LAIRD, J. Full abstraction for functional languages with
control. In Proceedings, Twelth Annual IEEE Symposium on
Logic in Computer Science (Warsaw, Poland, 29 June–2 July
1997), IEEE Computer Society Press, pp. 58–67.

[29] LAZIC, R., AND NOWAK, D. A unifying approach to
data-independence. Lecture Notes in Computer Science 1877
(2000).

[30] LAZIC, R. S. A Semantic Study of Data Independence with
Applications to Model Checking. PhD thesis, University of
Oxford, 1999.

[31] MANNA, Z., AND PNUELI, A. A hierarchy of temporal
properties. In Proceedings of the 9th Annual ACM
Symposium on Principles of Distribted Computing (Québec
City, Québec, Canada, Aug. 1990), C. Dwork, Ed., ACM
Press, pp. 377–408.

[32] MURAWSKI, A. S. Complexity of first-order call-by-name
program equivalence. submitted for publication, 2003.

[33] MURAWSKI, A. S. On program equivalence in languages
with ground-type references. In Proceedings of LICS’03
(2003), IEEE Computer Society Press. to appear.

[34] MURAWSKI, A. S. Variable scope and call-by-value
program equivalence. in preparation, 2003.

[35] O’HEARN, P. W., AND TENNENT, R. D., Eds. ALGOL-like
Languages. Progress in Theoretical Computer Science.
Birkhäuser, Boston, 1997. Two volumes.

[36] ONG, C.-H. L. Observational equivalence of third-order
Idealized Algol is decidable. In Proceedings of IEEE
Symposium on Logic in Computer Science, 2002 (July 2002),
pp. 245–256.

[37] REAPE, M., AND THOMPSON, H. S. Parallel intersection
and serial composition of finite state transducers.
COLING-88 (1988), 535–539.

[38] REYNOLDS, J. C. The essence of ALGOL. In Algorithmic
Languages, Proceedings of the International Symposium on
Algorithmic Languages (Amsterdam, Oct. 1981), J. W.
de Bakker and J. C. van Vliet, Eds., North-Holland,
Amsterdam, pp. 345–372. Reprinted as Chapter 3 of [35].

[39] SCHMIDT, D. A. On the need for a popular formal
semantics. ACM SIGPLAN Notices 32, 1 (Jan. 1997),
115–116.

[40] SENIZERGUES. L(A) = L(B)? decidability results from
complete formal systems. TCS: Theoretical Computer
Science 251 (2001).

[41] STIRLING, C. Deciding DPDA equivalence is primitive
recursive. Lecture Notes in Computer Science 2380 (2002)

73

SAVCBS 2003
POSTER ABSTRACTS

74

Bridging the gap between Acme and UML 2.0 for CBD
Miguel Goulão

Departamento de Informática
Faculdade de Ciências e Tecnologia - UNL

2825 Monte de Caparica, Portugal

miguel.goulao@di.fct.unl.pt

Fernando Brito e Abreu
Departamento de Informática

Faculdade de Ciências e Tecnologia - UNL
2825 Monte de Caparica, Portugal

fba@di.fct.unl.pt
ABSTRACT
Architecture Description Languages (ADLs) such as Acme (a
mainstream second generation ADL which contains the most
common ADL constructs) provide formality in the description of
software architectures, but are not easily reconciled with day-to-
day development concerns, thus hampering their adoption by a
larger community. UML, on the other hand, has become the de
facto standard notation for design modeling, both in industry and
in academia. In this paper we map Acme modeling abstractions
into UML 2.0, using its new component modeling constructs, its
lightweight extension mechanisms and OCL well-formedness
rules. The feasibility of this mapping is demonstrated through
several examples. This mapping bridges the gap between
architectural specification with Acme and UML, namely allowing
the transition from architecture to implementation, using UML
design models as a middle tier abstraction.

Keywords
Component-based architectures, component specification, ADLs,
Acme, UML.

1. INTRODUCTION
Software architectural descriptions provide an abstract repre-
sentation of the components of software systems and their inter-
actions. There are three main streams of architectural description
techniques: ad-hoc, OO techniques and ADLs.

Ad-hoc notations lack formality, preventing architectural
descriptions from being analyzed for consistency or completeness
and for being traced back and forward to actual implementations
[2].

To overcome those drawbacks, one can use ADLs, such as Aesop
[3], Adage [4], C2 [5], Darwin [6], Rapide [7], SADL [8], UniCon
[9], MetaH [10], or Wright [11]. Although with a considerable
overlap on the core, each ADL focuses on different aspects of
architectural specification, such as modeling the dynamic
behavior of the architecture, or modeling different architectural
styles. This diversity provides different approaches to solve
specific families of problems. However, the interchange of
information between different ADLs becomes a major drawback.
Developing a single ADL providing all the features of the various
ADLs would be a very complex endeavor. Instead, an ADL called
Acme [12] emerged as a generic language which can be used as a
common representation of architectural concepts in the
interchange of information between specifications with different
ADLs [13].

Although ADLs allow for architecture in-depth analysis, their
formality is not easily reconciled with day-to-day development
concerns. OO approaches to modeling, on the other hand, are
more widely accepted in industry. In particular, the UML [14] has

become both a de jure and de facto standard. Using it to describe
software architectures could bring economy of scale benefits,
better tool support and interoperability, as well as lower training
costs.

OO methods have some advantages in the representation of
component-based systems, when compared to ADLs. There is a
widespread notation, an easier mapping to implementation, better
tools support and well-defined development methods. But they
also have some shortcomings. For instance, they are less
expressive than ADLs when representing connections between
components.
Several attempts to map ADLs to UML have been made in the
past, as we will see in section 2. One motivation for such attempts
is to bring architectural modeling to a larger community, through
the use of mainstream modeling notations. Another is to provide
automatic refinement mechanisms for architectures. UML can be
used as a bridge from architectural to design elements [15]. In this
paper we will present a more straightforward mapping from Acme
to UML, when compared to previous attempts, due to the usage of
the new UML 2.0 metamodel.
We will represent the concepts covered by Acme using the can-
didate UML 2.0 metamodel, which has been partially approved by
the OMG recently. It includes UML’s infrastructure [16],
superstructure [17] and OCL 2.0 [18]. This increases our model-
ing power due to the new features of the upcoming standard
version, mainly in what concerns the representation of
components, ports, interfaces (provided or required), and the
hierarchical decomposition of components.

This paper is organized as follows. Related work is discussed in
section 2. Section 3 contains a formal specification of the map-
ping between Acme and UML. Section 4 includes a discussion of
the virtues and limitations of that mapping. Section 5 summarizes
the conclusions and identifies further work.

2. RELATED WORK
A number of mappings among the concepts expressed in ADLs
and their representation with UML have been attempted.
A possible strategy is to use UML “as is”, in the mapping. In [19],
UML is used to express C2 models. In [2], Garlan presents several
UML metamodel elements as valid options to express each of the
structural constructs defined in Acme. Each mapping becomes the
best candidate depending on the goals of the translation from
Acme to UML. The semantic mismatch between the ADL and
UML concepts is the main drawback of this strategy.
An alternative is to modify the UML metamodel, to increase the
semantic accuracy of the mapping [20]. Unfortunately, this drives
us away from the standard, and consequently sacrifices existing
tool support.
An interesting compromise is to use UML’s extension mecha-

75

nisms to mitigate conceptual mismatches, while maintaining
compatibility with the standard metamodel. Examples of this
strategy can be found in [15] (C2SADEL to UML), [1] (Acme to
UML-RT), and [21] (C2 and Wright to UML). The latter uses
OCL constraints on the metamodel elements which is close to the
one proposed in this paper, but requires a mapping for each ADL
and uses an older and notably less expressive version of UML).
The approach discussed in this paper bridges the gap between
software architecture and design using an OO modeling notation.
All of the above mentioned mappings were performed with UML
1.x, whereas in our paper we use the new UML 2.0 metamodel
elements, which enhance the language’s suitability for
component-based design.

3. MAPING ACME INTO UML
From now on we will assume the reader is familiar with Acme,
UML and OCL. Due to space constraints, we omit the OCL
definition of predicates such as IsAcmeComponent(), Is-
AcmeConnector(), IsAcmePort(), IsAcmeRole(), Is-

AcmeProperty() and others with self explanatory names that
will be used in our mapping presentation. HasNoOtherInter-
faces() is a predicate that denotes that no other interfaces
except for the ones defined in ports will be available for a par-
ticular component.

3.1 Components
An Acme component has ports, which act as the component
interfaces, properties, a representation with several bindings
(defined as rep-maps) and a set of design rules. The closest
concept in UML is the one of component. To avoid mixing
Acme’s components with other concepts that we will also repre-
sent with UML components, we created a stereotype for Acme
components named <<AcmeComponent>>, using Component as
the base class. Invariant 1 assures these components only have
interfaces through Acme ports or properties.
context Component inv: -- Invariant 1
 self.IsAcmeComponent() implies
 self.ownedPort->forAll(ap|
 ap.IsAcmePort() or
 ap.IsAcmeProperty()) and
 self.HasNoOtherInterfaces()

3.2 Ports
Acme’s ports identify points of interaction between a component
and its environment. They can be as simple as operation
signatures, or as complex as collections of procedure calls with
constraints on the order in which they should be called. UML
ports are features of classifiers that specify distinct points of
interaction between the classifier (in this case, the component)
and its environment (in this case, the rest of the system). UML
ports have required and provided interfaces, which can be asso-
ciated to pre and post conditions. We use a combination of UML
port and corresponding required and provided interfaces to
express Acme’s port concept. Acme ports can only be used with
Acme components and they have one provided and one required
interface.
context Port inv: -- Invariant 2
 self.IsAcmePort() implies
 self.owner.IsAcmeComponent() and
 (self.required->size()=1) and
 (self.provided->size()=1)

3.3 Connectors
Acme connectors represent interactions among components.
They are viewed as first class elements in the architecture com-
munity. Representing them using UML’s assembly connector
would be visually appealing, but we would loose expressiveness
because Acme connectors may be much more complex than a
simple interfaces’ match. They can be, for example, a protocol, or
a SQL link between two components (a client and a database).
Moreover, when reusing components built by different teams it is
normal that their interfaces do not match exactly. The connector
may provide the required glue between the components and this
must be made explicit in the design. In order to represent the
concept of connector, which has no semantic equivalent in UML,
we use a stereotyped component named <<AcmeConnector>>
and ensure that it has no other interfaces than the ones defined
through its roles and properties.
context Component inv: -- Invariant 3
 self.IsAcmeConnector() implies
 self.ownedPort->forAll(ap|
 ap.IsAcmeRole() or
 ap.IsAcmeProperty()) and
 self.HasNoOtherInterfaces()

Although representing a connector with a stereotyped component
clutters the outcoming design, it offers the ability to represent the
connector as a first class design element, with flexibility in the
definition of any protocols it may implement. Consider the
example in Figure 1, where the components client and server
have interfaces that do not match, but the rpc connector
implements a protocol to make both components interact. We
have included provided and required interfaces in both ends of the
connector, to illustrate that it provides bi-directional communi-
cation abilities.

Figure 1 – Using the <<AcmeConnector>>

<<AcmeComponent>>
:client

PIsend_request

<<AcmeConnector>>
:rpc

<<AcmeComponent>>
:serv er

send_request

caller

receiv e_request

callee

PIreceiv e_request

<<AcmeSy stem>>
:simple_cs

RIsend_request

RIreceiv e_request

// Original Acme specification
System simple_cs = {
 Component client = {Port sendRequest}
 Component server = {Port receiveRequest}
 Connector rpc = {Roles{caller, callee}}
 Attachments {
 client.send-request to rpc.caller ;
 server.receive-request to rpc.callee }
}

3.4 Roles
In Acme, roles are related to connectors the same way as ports are
related to components. Thus, it makes sense to represent Acme
roles as constrained UML ports, through the use of the
<<AcmeRole>> stereotype.
context Port inv: -- Invariant 4
 self.IsAcmeRole() implies
 self.owner.IsAcmeConnector() and
 (self.required->size()=1) and
 (self.provided->size()=1)

3.5 Systems
An Acme system represents a graph of interacting components.
The UML’s concept of package (with the standard <<subsys-
tem>> stereotype) represents a set of elements, rather than the
structure containing them and is not suitable for defining system-

76

level properties. To avoid such problems we use the constrained
component stereotype <<AcmeSystem>>, with the following
constraints:
context Component inv: -- Invariant 5
 self.IsAcmeSystem() implies
 self.contents()->select(el|
 el.IsKindOf(Component))->asSet()
 ->forAll(comp|
 comp.IsAcmeComponent() or
 comp.IsAcmeConnector())
context Component inv: -- Invariant 6
 self.IsAcmeSystem() implies
 self.contents()->select(el|
 el.IsKindOf(Port))->asSet()
 ->forAll(prt|
 prt.IsAcmePort() or
 prt.IsAcmeRole() or
 prt.IsAcmeProperty())
context Component inv: -- Invariant 7
 self.IsAcmeSystem() implies
 self.ownedPort->forAll(ap|
 ap.IsAcmePort() or
 ap.IsAcmeRole() or
 ap.IsAcmeProperty()) and
 self.HasNoOtherInterfaces()

3.6 Representations
Acme’s representations provide the mechanism to add detail to
components and connectors. Acme rep-maps are used to show
how higher and lower-level representations relate to each other.
We will use the features for packaging components of UML 2.0 to
express representations. UML provides two wiring elements (in
the UML specification, they are referred to as “specialized con-
nectors”): assembly and delegation. The former provides a
containment link from the higher level component to its
constituent parts, while the latter provides the wiring from higher
level provided interfaces to lower level ones, and from lower level
required interfaces to higher level ones. A delegation
corresponds to Acme’s rep-map concept. To ensure components
are connected to other components through connectors, we need
to constrain all assembly connectors to link ports to roles.
context connector inv: -- Invariant 8
 self.kind = #assembly implies
 self.end->(exists(cp|cp.role.IsAcmePort())
 and exists(cr|cr.role.IsAcmeRole()))

Figure 2 depicts the specification of server. The wiring between
the internal structure of server – a system which contains a
topology with three components and the connectors among them
– and the server’s own ports is achieved with the usage of the
<<delegate>> connectors. Although Acme explicitly uses the
concepts of representation and system for defining subsystems,
we make them implicit in our mapping. Making them explicit
would not improve the expressiveness of the resulting design and
would clutter the diagram by creating an extra level of
indirection.

Figure 2 – Detailing a component specification

<<AcmeComponent>>
:serv er

receiv e_request

<<AcmeComponent>>
:connectionManager

external_socket

<<AcmeComponent>>
:security Manager

<<AcmeConnector>>
:clearanceRequest

requestor

grantor

security CheckIntf

<<AcmeComponent>>
:database

<<AcmeConnector>>
:SQLQuery

caller

callee

dbQuery Intf

<<AcmeConnector>>
:security Query

requestorsecurity Manager

security Authorization query Intf

credentialQuery security ManagementIntf

<<delegate>>

// Original Acme specif ication extract
Component serv er = {
 Port receiv eRequest;
 Representation serv erDetails = {
 Sy stem serv erDetailsSy s = {
 Component connectionManager = {
 Ports { externalSocket; security CheckIntf ; dbQuery Intf } }
 Component security Manager = {...}
 Component database = {...}
 Connector SQLQuery = { Roles { caller; callee } }
 Connector clearanceRequest = { Roles { requestor; grantor } }
 Connector security Query = { Roles { security Manager; requestor } }
 Attachments {
 connectionManager.security CheckIntf to clearanceRequest.requestor;
 security Manager.security Authorization to clearanceRequest.grantor;
 ...}
 Bindings { connectionManager.externalSocket to serv er.receiv eRequest }
}

3.7 Properties
Properties represent semantic information about a system and its
architectural elements. To allow automatic reasoning on them,
using OCL, we can make these properties available outside the
component’s internal scope. Ports can be typed with a provided
interface that allows the component user to access its properties.
The downsides of representing Acme properties as UML ports are
that by doing so we are cluttering the design and extending the
interfaces provided by the design element. An
<<AcmeProperty>> port owns a single provided interface that
must provide get and set operations for the property’s value and
type.
context Port inv: -- invariant 9
 self.IsAcmeProvided() implies
 (self.required->IsEmpty()) and
 (self.provided->size()=1)

3.8 Constraints (invariants and heuristics)
Constraints allow the specification of claims on how the archi-
tecture and its components are supposed to behave. While in-
variants are conditions that must hold at all times, heuristics are
constraints that should hold, although breaking them is possible.
In UML, we can express design constraints through OCL. These
constraints can be pre-conditions, post-conditions or invariants.
Acme’s notion of invariant can be directly mapped to its OCL
counterpart. However, there is no direct UML semantic equivalent
for the notion of heuristic. This could be circumvented by creating
the <<AcmeConstraint>> stereotype as a specialization of
the UML Constraint metaclass. The former would have an
enumerated attribute with two allowed values: invariant and
heuristic.

3.9 Styles and Types
An architectural style defines a vocabulary of design elements and
the rules for composing them. It is used in the description of
families of architectures. Since we have created stereotypes for
the several UML constructs used in this Acme to UML mapping,
we can now specify architectural styles using these stereotyped
elements.

77

Figure 3- The pipe and filter family

<<AcmeComponent>>
FilterT

<<AcmeComponent>>
UnixFilterT

stdin stdout

stdin stdout

stderr

<<AcmeConnector>>
PipeT

source sink

PipeFilterFam

[1] All the connectors used in Pipe and Filter
sy stems must conf orm to the PipeT connector ty pe.

context Component inv:
self.IsAcmeComponent()
 implies
 IsKindOf(PipeT)

<<AcmeProperty >>
throughput

<<AcmeProperty >>
implementationFile

<<AcmeProperty >>
buf f erSize

Figure 3 represents the pipe and filter family, an architectural
style that defines two types of components, FilterT and Unix-
FilterT, a specialization of FilterT. The architectural style is
defined by means of a UML package, as the family definition
does not prescribe a particular topology. It does, however, es-
tablish an invariant that states that all the connectors used in a
pipe and filter system must conform to PipeT.

4. DISCUSSION
The presented mapping from Acme to UML is more straight-
forward than previous approaches. This mainly results from the
increased expressiveness provided by the new UML 2.0 design
elements. From a structural viewpoint, representing a topology is
fairly simple when using UML. This is mainly due to the relative
closeness of the sort of structural information that we want to
express both at the architectural and design levels. In both cases
we have to identify components and the connections among them,
possibly at different levels of abstraction.
However, while a connector is regarded as a first class design
element by the architecture community, it has no direct mapping
in UML 2.0. Our proposal is to promote connectors to first class
design elements, by representing them as stereotyped
components. This seems to be a good option, considering that the
evolution of CBD should provide us with an increasing number of
off-the-shelf components and that, the complexity of building
component-based software is shifting to the production of glue
code. Representing connectors as stereotyped components gives
us the extra flexibility to meet this challenge.
The representation of properties is not an easy nut to crack.
Perhaps they could be more suitably defined at the meta-level,
rather than using the <<AcmeProperty>> ports for this purpose,
but this still requires further research.
Heuristics are also complex to map directly to UML, as UML
provides no direct representation for this concept, although we
can use OCL to deal with this problem.
Since Acme does not provide a direct support for component
dynamics specification, in this paper we do not address it.
Nevertheless, we could use properties to annotate the architectural
entities with information on their expected behavior. For instance,
a connector may have a property specifying its protocol with
some formalism (e.g. Wright). We could use UML’s behavioral
modeling features similarly, thus complementing the structural

information in the mapped specification with a behavioral
specification of the design elements used.

5. CONCLUSIONS
We have shown the feasibility of expressing architectural infor-
mation expressed in Acme using the UML 2.0. It is possible to
obtain a mapping from a given ADL to UML, through a two-step
approach. We could first map the architecture from the original
ADL to Acme and then use the mapping proposed in this paper to
obtain the corresponding specification in UML. Details lost in the
ADL to Acme conversion can always be added later to the
resulting UML specification.
The proposed mapping builds upon the added expressiveness of
UML 2.0 for architectural concepts, when compared to UML’s
previous versions. The availability of components with ports
typed by provided and required interfaces has proved to be a step
forward in the exercise of bridging the gap between architectural
and design information. This improves traceability between archi-
tectural description and its implementation, using the design as a
middle layer between them. This traceability is relevant for
keeping the consistency between the architecture, design and
implementation of a software system.
The proposed mapping focuses mainly on structural aspects and
design constraints. Although it also points out to ways of dealing
with the definition of system properties, including semantics and
behavioral specification, further research is required to provide
more specific guidance on these aspects.

REFERENCES
[1] S.-W. Cheng and D. Garlan, "Mapping Architectural Con-

cepts to UML-RT", PDPTA'2001, Monte Carlo Resort, Las
Vegas, Nevada, USA, 2001.

[2] D. Garlan and A. J. Kompanek, "Reconciling the Needs of
Architectural Description with Object-Modeling Notations",
<<UML>> 2000, York, UK, 2000.

[3] D. Garlan, R. Allen, and J. Ockerbloom, "Exploiting style in
architectural desing environments", SIGSOFT'94: The
Second ACM Symposium on the Foundations of Software
Engineering, 1994.

[4] L. Coglianese and R. Szymanski, "DSSA-ADAGE: An
Environment for Architecture-based Avionics Develop-
ment", AGARD'93, 1993.

[5] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor,
"Using object-oriented typing to support architectural
design in the C2 style", SIGSOFT'96: Fourth ACM Sym-
posium on the Foundations of Software Engineering, 1996.

[6] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, "Speci-
fying distributed software architectures", Fifth European
Software Engineering Conference, ESEC'95, 1995.

[7] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera, D.
Brian, and W. Mann, "Specification and analysis of system
architecture using Rapide", IEEE Transactions on Software
Engineering, vol. 21, No.4, pp. 336-355, 1995.

[8] M. Moriconi, X. Qian, and R. Riemenschneider, "Correct
architecture refinement", IEEE Transactions on Software
Engineering, vol. 21, No. 4, pp. 356-373, 1995.

[9] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young,
and G. Zelesnik, "Abstractions for Software Architecture
and Tools to support them", IEEE Transactions on Software
Engineering, vol. 21, No. 4, pp. 314-335, 1995.

78

[10] P. Binns and S. Vestal, "Formal real-time architecture
specification and analysis", Tenth IEEE Workshop on Real-
Time Operating Systems and Software, New York, USA,
1993.

[11] R. Allen and D. Garlan, "A Formal Basis for Architectural
Connection", ACM Transactions on Software Engineering
and Methodology, vol. 6, pp. 213-249, 1997.

[12] D. Garlan, R. T. Monroe, and D. Wile, "Acme: Architec-
tural Description of Component-Based Systems", in
Foundations of Component Based Systems, G. T. Leavens
and M. Sitaraman, Eds.: Cambridge University Press, 2000,
pp. 47-68.

[13] M. R. Barbacci and C. B. Weinstock, "Mapping MetaH into
ACME", Carneggie Mellon University / Software
Engineering Institute, Technical Report CMU/SEI-98-SR-
006, July 1998.

[14] OMG, "OMG Unified Modeling Language Specification.
Version 1.5", Object Management Group March 2003.

[15] A. Egyed and N. Medvidovic, "Consistent Architectural
Refinement and Evolution using the Unified Modeling
Language", 1st Workshop on Describing Software Archi-
tecture with UML, co-located with ICSE 2001, Toronto,
Canada, 2001.

[16] U2-Partners, "3rd revised submission to OMG RFP ad/00-
09-01: Unified Modeling Language: Infrastructure - version
2.0", U2-Partners January 2003.

[17] U2-Partners, "2nd revised submission to OMG RFP ad/00-
09-02: Unified Modeling Language: Superstructure -
version 2.0", U2-Partners January 2003.

[18] Boldsoft, Rational, IONA, and Adaptive, "Response to the
UML 2.0 OCL RfP (ad/2000-09-03) - Revised Submission,
Version 1.6 - OMG Document ad/2003-01-07", OMG 2003.

[19] N. Medvidovic and D. S. Rosenblum, "Assessing the
Suitability of a Standard Design Method for Modeling
Software Architectures", First Working IFIP Conference on
Software Architecture, 1999.

[20] B. Selic, "On Modeling Architectural Structures with
UML", ICSE 2002 Workshop Methods and Techniques for
Software Architecture Review and Assessment, Orlando,
Florida, USA, 2002.

[21] J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S.
Rosenblum, "Integrating Architecture Description Lan-
guages with a Standard Design Method", International
Conference on Software Engineering (ICSE98), Kyoto,
Japan, 1998.

79

Abstract OO Big O

Joan Krone
Denison University

Department of Math and CS
Granville, Ohio 43023

740-587-6484
krone@denison.edu

W. F. Ogden
The Ohio State University

Neal Avenue
Columbus, Ohio 43210

614-292-6007
ogden@cis.ohio-state.edu

SUMMARY
When traditional Big O analysis is rigorously applied to object
oriented software, several deficiencies quickly manifest
themselves. Because the traditional definition of Big O is
expressed in terms of natural numbers, rich mathematical
models of objects must be projected down to the natural
numbers, which entails a significant loss of precision beyond
that intrinsic to order of magnitude estimation. Moreover, given
that larger objects are composed of smaller objects, the lack of a
general method of formulating an appropriate natural number
projection for a larger object from the projections for its
constituent objects constitutes a barrier to compositional
performance analysis.
We recast the definition of Big O in a form that is directly
applicable to whatever mathematical model may have been used
to describe the functional capabilities of a class of objects. This
generalized definition retains the useful properties of the natural
number based definition but offers increased precision as well as
compositional properties appropriate for object based
components. Because both share a common mathematical
model, functional and durational specifications can now be
included in the code for object operations and formally verified.
With this approach, Big O specifications for software graduate
from the status of hand waving claim to that of rigorous
software characterization.

Categories and Subject Descriptors
D.2[Software Engineering], F.2[Analysis of Algorithms],
F.3[Logics and Meanings of Programs]: Specifications, Models,
Semantics – performance specifications, performance analysis,
performance proof rules.

General Terms
Algorithms, Performance, Verification.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

Keywords
Performance, Formal Specification, Verification, Big O.

1. INTRODUCTION
The past forty years have seen a great deal of work on the
rigorous specification and verification of programs’ functional
correctness properties [2] but relatively little on their
performance characteristics. Currently performance
“specifications” for programs commonly consist of reports on a
few sample timings and a general order of magnitude claim
formulated in a Big O notation borrowed from number theory.
As we have discussed elsewhere [6], such an approach to the
performance of reusable components is no more adequate than
the test and patch approach is to their functionality.

As with functionality, problems with performance usually have
their roots in the design phase of software development, and it’s
there that order of magnitude considerations are most
appropriately encountered. This means our order of magnitude
notations are generally applied in a somewhat rough and ready
fashion (which is probably why the deficiencies of our current
ones have escaped notice for so long). However, if their
formulation doesn’t reflect the ultimate performance of the
components under design accurately and comprehensibly, then
marginal designs become almost inevitable. So the way to get
an appropriate order of magnitude definition is to formulate one
that meshes smoothly with program verification.

With the advent of object oriented programming and a
component based approach to software, formal specifications of
a component’s functionality are considered to be critical in
order for clients to make good choices when putting together a
piece of software from certified components.

To meet the need for reasoning about performance as well as
functionality, we introduce a new object appropriate definition
of Big O. Object Oriented Big O, or OO Big O for short, allows
one to make sensitive comparisons of running times defined
over complex object domains, thereby achieving much more
realistic bounds than are possible with traditional big O.

We cast our approach in a framework that includes an assertive
language with syntactic slots for specifying both functionality
and performance, along with automatable proof rules that deal
with both. Equally important is the need for the reasoning to be
fully modular, i.e., once a component has been certified as

80

correct, it should not be necessary to reverify it when it is
selected for use in a particular system.

Our approach is based on the software engineering philosophy
that a component should be designed for reuse and thus include
a general mathematical specification that admits several possible
implementations – each with different performance
characteristics [3, 7]. Of course, in order for a component to be
reusable, it should include precise descriptions of both its
functionality and its performance, so that prospective clients can
be certain they are choosing components that fit their needs.

It is also important that all reasoning about constituent
components – including reasoning about performance – be
possible without knowing implementation details. In fact, if one
is using generic components, it should be possible to reason
about those components even before details such as entry types
to a generic container type, are available.

2. OO Big O Definition
The traditional Big O is a relation between natural number
based functions defined in the following way:
Given f, g: ℕ→ℝ, f(n) is O(g(n)) iff ∃ constants c and n0 such
that f(n) ≤ c⋅g(n) whenever n ≥ n0. A program whose running
time is O(g) is said to have growth rate g(n) [1].
When the object classes central to modern programming are
formally modeled, they present to clients a view of objects that
could come from essentially arbitrary mathematical domains,
since the point of introducing objects is to simplify reasoning
about the functionality of components by providing a minimalist
explanation that hides the details of their implementation. But
the functionally simplest models may well have little to do with
natural numbers. So the natural expression of the duration f(x)
of an operation on object x is as a function directly from the
input domain used to model x to the real numbers. Clearly any
gauging function g that we might want to use as an estimate for
f should have this same domain. Accordingly, the Is_O relation
between functions (f(x) Is_O g(x)) is defined by:
Definition: (f: Dom→ℝ) Is_O (g: Dom→ℝ): B = (∃ A: ℝ>0,
 ∃ H: ℝ ∋ ∀ x: Dom, f(x) ≤ A⋅g(x) + H).
In other words, for two timing functions f and g mapping a
computational domain Dom to the real numbers, to say that
f(x) Is_O g(x) is to say that there is some positive acceleration
factor A and some handicap H such that for every domain value
x, f(x) ≤ A⋅g(x) + H. If we think of f and g as representing
competing processes, f being big O of g means that g is not
essentially faster than f. If f is run on a processor A times faster
than g’s processor and also given a head start H, then f will beat
g on all input data x.

Of course, in order to use this definition, it is necessary to have
mathematical support in the form of theorems about the revised
definition of Is_O. For example, we need an additive property
so we can apply our analysis to a succession of operation
invocations:

Theorem OM1: If f1(x) Is_O g1(x) and f2(x) Is_O g2(x), then
 f1(x) + f2(x) Is_O Max(g1(x), g2(x)).
A development of appropriate theorems and definitions appears
in [5].

3. ABSTRACT OBJECTS
If you want to produce rigorously specified and verified
software components that support genericity, facilitate
information hiding, and can be reasoned about in a modular
fashion, it is necessary to adhere carefully to certain guidelines
and principles [7].

A simple example of a general purpose component concept that
can be used to make clear the need for a new definition of
Big_O is the one that captures the “linked list.” Because one of
our guidelines is to tailor a concept to simplify the client’s view,
we call this concept a one-way list template and the objects it
provides list positions. We describe list positions
mathematically as pairs of strings over the entry type. The first
string in a list position contains the list entries preceding the
current position and is named Prec; the second string is the
remainder of the list, Rem. Since the operations on list position
(Insert, Advance, Reset, Remove, etc.) all have easy
specifications in terms of this model, and since the underlying
linking pointers are cleanly hidden, reasoning about client code
is much simplified with this abstract model.

Concept One_Way_List_Template(type Entry;
 evaluates Max_Total_Length: Integer);
 uses Std_Integer_Fac, String_Theory;
 requires Max_Total_Length > 0;
 Type Family List_Position ⊆ Cart-Prod
 Prec, Rem: Str(Entry)
 end;
 Μ
 Operation Advance(updates P: List_Position);
 requires P.Rem ≠ Λ;
 ensures P.Prec◦P.Rem = @P.Prec◦@P.Rem and
 |P.Prec| = |@P.Prec| + 1;
Although variations in list implementation details are usually
insignificant, our system allows for the possibility of a
multiplicity of different realizations (implementations) for any
given concept. Each Realization, with its own potentially
distinct performance characteristics, retains a generic character,
since parameter values such as the entry type for lists have yet
to be specified. The binding of such parameters only takes
place when a client makes a Facility, which involves selecting
the concept and one of its realizations along with identifying the
appropriate parameters.

When designing concepts for maximal reusability, our
guidelines prescribe that only the basic operations on a class of
objects should be included, so for lists we only include Insert,
Advance, etc., but not Search, Sort, etc. In order to have a rich
enough Big O example, we will consider such a sorting
operation, so we need to employ the Enhancement construct
used to enrich basic concepts such as the one-way list.
Well-designed enhancements also retain to the extent possible
the generality we seek in our concepts, but often they do add
constraints that prevent their use in certain situations. Providing
a Sort_List operation, for example, requires that list entries
possess an ordering relation ≾, so certain classes of entries
would be precluded from lists if Sort_List were one an operation
in the basic list concept.

81

EXAMPLE APPLICATION OF BIG Ο
The enhancement’s name here is Sort_Capability, and it
maintains the generic character of the concept (which allows
entries to be of arbitrary type) by importing an ordering relation
≾ on whatever the entry type may be. A requires clause insists
that any imported ≾ relation actually be a total preordering on
whatever the entry type is.

The uses clause indicates that this component relies on a
mathematical theory of order relations for the definitions and
properties of notions such as total preordering. Note that an
automated verifier needs such information.

Enhancement Sort_Capability(def. const (x: Entry) ≾
 (y: Entry): B
);
 for One_Way_List_Template;
 uses Basic_Ordering_theory;
 requires Is_Total_Preordering(≾);
 Def. const In_Ascending_Order(α: Str(Entry)): B =
 (∀ x, y: Entry, if 〈x〉◦〈y〉 Is_Substring α, then x ≾ y);
 Operation Sort_List(updates P: List_Position);
 ensures P.Prec = Λ and In_Ascending_Order(P.Rem) and
 P.Rem Is_Permutation @P.Prec◦@P.Rem;
end Sort_Capability;
A client who wishes to order a list would be able to choose this
list enhancement on the basis of these functional specifications.
However, before choosing among the numerous realizations for
it, a client should be able to see information about their
performance. Rather than giving such timing (duration)
information a separate ad hoc treatment, we introduce syntax for
formally specifying duration as part of each realization. In
short, we associate with every component not only a formal
specification of its functionality but of its performance as well,
so that a potential client can choose a component based on its
formal specifications rather than on its detailed code.
To see how the new Big O definition can improve performance
specifications, we consider an insertion sort realization for the
Sort_List operation.
Because a realization for a concept enhancement relies upon the
basic operations provided by the concept, its performance is
clearly dependent on their performance, and that can vary with
the realization chosen for the concept. Fortunately performance
variations for a given concept’s realizations seem to cluster into
parameterizable categories, which we can capture in the
Duration Situation syntactic slot. The normal situation for a
one-way list realization, for example, is that the duration of each
operation Is_Ο(1). Of course realizations of lists with much
worse performance are possible, but we wouldn’t ordinarily
bother to set up a separate duration situation to support
analyzing their impact on our sort realization.
Duration situations talk about the durations of supporting
operations such as the Insert and Advance operations by using
the notation DurInsert(E, P), DurAdvance(P), etc. So we can use
our Big O notation to indicate that the performance estimates
labeled “normal” only hold when DurInsert(E, P) Is_O 1, etc.

Realization Insertion_Sort_Realiz(
 Oper Lss_or_Comp(restores E1, E2: Entry): Boolean;
 ensures Lss_or_Comp = (E1 ≾ E2);)

 for Sorting_Capability;
 Duration Situation Normal: DurInsert(P) Is_Ο 1 and
 DurAdvance(P) Is_Ο 1 and Dur=(i, j) Is_Ο 1 and Λ
 Inductive def. on α: Str(Entry) of const
 Rank(E: Entry, α): ℕ is
 (i) Rank(E, Λ) = 0;

 (ii) Rank(E, ext(α, D)) =


 +

otherwiseα)Rank(E,
EDif1α)Rank(E, π

;

 Μ
 Inductive def. on α: Str(Entry) of const P_Rank(α): ℕ is
 (i) P_Rank(Λ) = 0;
 (ii) P_Rank(ext(α, E)) = P_Rank(α) + Rank(E, α);
 Theorem IS6: ∀ β: Str(Entry), P_Rank(β) ≤ |β|⋅(|β| − 1)/2;
 Def. const Len(P: List_Position): ℕ = (|P.Prec◦P.Rem|);
 Proc Sort_List(updates P: List_Position);
 Duration Normal:
 Is_Ο Max(Len(@P), P_Rank(@P.Prec◦@P.Rem));
 Var P_Entry, S_Entry: Entry;
 Μ
 While Length_of_Rem(P) ≠ 0
 affecting P, P_Entry, Sorted, S_Entry, Processed_P;
 maintaining Sorted.Prec = Λ and
 In_Ascending_Order(Sorted.Rem) and
 Processed_P.Prec◦P.Rem = @P.Prec◦@P.Rem and
 Sorted.Rem Is_Permutation Processed_P.Prec;
 decreasing |P.Rem|;
 elapsed_time Normal: Is_Ο P_Rank(Processed_P.Prec)
 + |Processed_P.Prec|;
 do
 Remove(P_Entry, P);
 Μ
For each loop, we record the loop invariant that is used to
establish the functional effect in its the maintaining clause,
while the progress metric used to prove termination is recorded
in the decreasing clause. The elapsed_time clause is used to
specify on each pass through the loop how much time has
elapsed since the loop was entered, which can vary according to
the named situation (“Normal” in our example). If an elapsed
time clause begins with the Is_Ο token, then the verifier must
establish that the actual elapsed time function Is_Ο of the gauge
function specified by the subsequent expression.
The portion of our proof rules that deals with verifying duration
estimates for loops accomplishes its objective by checking that
the duration of each loop body Is_Ο of the difference between
the value of the gauge function at the end of the loop body and
its value at the beginning.
Clearly the elapsed time of an insertion sort depends heavily
upon the order of the elements in the original list @P, but
traditional natural number based Big_O analysis would require
that we project the @P list onto a natural number “n” and
express our gauge function in terms of that n (e.g. n3). Typically
that n would be the length of a list (what we’ve formally defined
as Len(P) so that n = Len(@P)). Since Len(@P) is totally
insensitive to the order of the entries in @P, we could at best
end up with a duration estimate for Sort_List of n2.
To exploit the increased precision of the OO Big O definition,
we need to define a function on strings of entries α that counts

82

how many entries in α are less than an entry E and hence would
be skipped over when positioning E after α has been sorted, and
that’s why our realization includes the definition of the Rank(E,
α) function. Since the elapsed time of the outer loop depends
upon the cumulative effect of positioning successive entries in
@P, we also need to define a “preceding rank” function
P_Rank(α).

Using these definitions, we can express elapsed time bounds for
the two loops in the code and the overall Duration bound:
 Max(Len(@P), P_Rank(@P.Prec◦@P.Rem)).

Now one of the theorems about P_Rank is that P_Rank(α) ≤
|α|⋅(|α|−1)/2, so it follows that DurSort_List(P) Is_O Len(P)2 too,
and we can get the much less exacting estimate produced by
traditional Big O analysis if we wish. We’re just not forced to
when we need a sharper estimate. Another point to note is that
besides being compatible with correctness proofs for
components, the direct style of performance specification is
much more natural than the old style using the often ill defined
“n” as an intermediary.

4. THE CALCULUS FOR OO BIG O
Our Sort_List example illustrates how we can use the new Big
O notation in performance specifications and indicates how such
specifications could fit into a formal program verification
system. The success of such a verification system depends upon
having a high level calculus for Big O that allows verification of
performance correctness to proceed without direct reference to
the detailed definition of Big O.
Of course making such a calculus possible is one of the primary
motivations for the new Big O definition, and in [4] we have
developed a number of results like the earlier theorem OM1 to
support this calculus. Another simple illustration of a property
of the new Big O important for verification is dimensional
insensitivity.
Theorem OM2: If f(x) Is_O g(x) and F(x, y) = f(x) and

G(x, y) = g(x), then F(x, y) Is_O G(x, y).
Taken together, these results must justify both the proof rules
for our program verification system and the expression
simplification rules for the resulting verification conditions.

5. CONCLUSION
A critical aspect of reusable components is assured correctness,
an attribute attainable only with formal specifications and an
accompanying proof system. Here, we claim that while
functional correctness is absolutely necessary for any
component that is to be reused, it is not sufficient. Reusable
components need formally specified performance characteristics
as well.
Traditional Big O order of magnitude estimates are inadequate
because they deal only with the domain of natural numbers and
offer no support for modularity and scalability.
If we want to design software components that can be reused,
such components must have formal specifications for both

functionality and performance associated with them and there
must be a proof system that addresses both. Moreover, to avoid
intractable complexity, it must be possible to reason about these
components in a modular fashion, so that one can put together
hierarchically structured programs, each part of which can be
reasoned about using only the abstract specifications for its
constituent parts. To avoid the rapid compounding of
imprecision that otherwise happens in such systems, it is also
essential to use high precision performance specification
mechanisms such as OO Big O.
To develop maximally reusable components, it is necessary to
be able to reason about them in a generic form, without knowing
what parametric values may be filled in when the component is
put into use.
OO Big O satisfies all these criteria, supporting complete
genericity, performance analysis of programs over any domain,
and modular reasoning.

6. REFERENCES
1. Aho, A., Hopcroft, J., Ullman, J., Data Structures and

Algorithms, Addison-Wesley, 1983.
2. de Roever, W., Engelhardt, K. Data Refinement:

Model-Oriented Proof Methods and their Comparison,

Cambridge University Press, 1998.

3. Krone, “The Role of Verification in Software

Reusability.” Dissertation, The Ohio State University,

1988.

4. J. Krone, W. F. Ogden, and, M. Sitaraman, Modular

Verification of Performance Constraints, Technical

Report RSRG-03-04, Department of Computer

Science, Clemson University, Clemson, SC 29634-

0974, May 2003, 25 pages.

5. Ogden, W. F., CIS680 Coursenotes, Spring 2002.

6. Sitaraman, M., Krone, J., Kulczycki, G., Ogden, W.,

and Reddy, A. L. N., “Performance Specification of

Software Components,” ACM SIGSOFT Symposium

on Software Reuse, May 2001.

7. Weide, B., Ogden, W., Zweben, S., “Reusable

Software Components,” in M.C. Yovits, editor,

Advances in Computers, Vol 33, Academic Press,

1991, pp. 1 – 65

83

Ontology-based Description and Reasoning
for Component-based Development on the Web

Claus Pahl
Dublin City University, School of Computing

Dublin 9, Ireland

ABSTRACT
Substantial efforts are currently been made to transform the Web
from a document-oriented platform for human consumption into
a software-oriented application-to-application platform. The Web
Services Framework provides the necessary languages, protocols,
and support techniques. Even though Web services exhibit a basic
component model, much can be gained by fully embracing soft-
ware component technology for the Web. We propose to base this
endeavour on ontology technology – an integral element of the Se-
mantic Web. We will introduce an ontology that in particular pro-
vides a rich reasoning framework for behavioural aspects of Web
services or, indeed, components on the Web.

1. THE WEB AND SOFTWARE DEVELOP-
MENT AND DEPLOYMENT

The Web is undergoing dramatic changes at the moment. From
a human-oriented document publishing framework it has more and
more developed into a platform where we can equally well find
software applications. The application-to-application use of the
Web is one of the recent endeavours to enhance the capabilities of
the platform. TheWeb Servicesinitiative [18] bundles these efforts
to provide software applications in form of targeted services.

The current Web is a platform comprisingdescription languages
(such as HTML),protocols (such as HTTP), andtools (such as
browsers and search engines) to support search, retrieval, trans-
portation, and display of documents. The Web Services Frame-
work provides a similar set of technologies – a description language
WSDL (Web Service Description Language) for software services,
a protocol SOAP (Simple Object Access Protocol) for service inter-
actions, and tool support in form of UDDI (Universal Description,
Discovery, and Integration Service) – a registry and marketplace
where providers and users of Web services can meet.

Web services are important for middleware architectures. Var-
ious architectures, e.g. CORBA, have been established, but inter-
operability between these individual architectures, in particular in
distributed environments, is still a major problem. Web services
can, due to the ubiquity of the Web, provide interoperability.

Clearly, Web Services can encapsulate software components from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAVCBS’03 - ESEC/FSE’03 Workshop,Sept 1-2, 2003, Helsinki, Finland.
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00.

various architectures and provide uniform Web-based interfaces and
Web-based communication infrastructures for the component de-
ployment. Web services themselves exhibit a simplecomponent
model[5, 16]. Even though service deployment has been the fo-
cus so far, the support of component-style deployment is, how-
ever, only one aspect of the Web Services Framework. We would
like to emphasise here the importance of the development aspect –
component-based software developmentusing theWeb as the devel-
opment platformis often neglected or treated as a secondary aspect.
Component development for the Web and using the Web requires
the support by specific Web technologies that we will discuss here.

Besides services at the core of the Web Service Framework, we
also look at current trends in this area. In particular Web service
coordination creating service processes and interactions is an as-
pect that has received much attention [10, 1], and that is also of
importance from a component-oriented perspective.

2. COMPONENT-BASED SOFTWARE DE-
VELOPMENT FOR THE WEB

Component-based software development [9, 16] is an ideal tech-
nology to support Web-based software development. As already
mentioned, Web Services are based on a simple component model.
A service encapsulates a coherent collection of operations. A cen-
tral objective of component technology – central also for Web ser-
vices – is the separation of computation and connection.Compu-
tational aspectsare abstracted by interface descriptions. Usually,
a set of semantically described, coherent operations forms an in-
terface. Connectionis more than plugging a provided operation
into a requested operation – the coordination (or choreography) of
services and their operations to more complex service processes is
another important aspect of connectivity.

The (automated) interaction between component providers and
clients becomes crucial in this context. Due to the nature of the
Web platform, automation of these processes is highly important.
The description of provided and required services needs to be sup-
ported. Reasoning to support matching of provided and required
services is essential. Two aspects shall be distinguished:

• Component connection and interactionis based on plugging
components together when a client requests services of a
provider, possibly involving connectors or glue code. The
semantical description of both provided and required com-
ponent (or service) interfaces is essential in the Web context.

• The composition of services tocoordinated service processes
exhibiting a predefinedinteraction patternis the other aspect
[13]. Several extensions of the Web Services framework in
this direction have already been made – such as the Web Ser-

84

vices Flow Language WSFL [10] or the Web Services Coor-
dination Language WSCL [1].

The architecture of this approach is illustrated in Figure 1. Critical
for both forms is development support for a style of software de-
velopment that is strongly based on retrieving and assembling suit-
able off-the-shelf components from a range of different component
repositories. Reuse is the central theme for component develop-
ment on the Web. The heterogeneity, distribution, and decentral-
isation requires a high degree of robustness and dependability of
software components for the Web.

3. ONTOLOGIES AND COMPONENTS

3.1 Semantics and Knowledge
Describing the semantics of components means to express knowl-

edge about the behaviour or other, non-functional aspects of a com-
ponent or component process. This knowledge comprises:

• Domain knowledgefrom the application domain – basic en-
tities and their properties are defined. This aspect – usually
known as domain modelling in requirements engineering –
is a widely accepted method.

• Software-related knowledgein relation to the type of seman-
tics – behavioural semantics could express the behaviour of
operations in a state-based system, techniques such as refine-
ment could be defined. This is – due to the distributed and
collaborative development on the Web – an emerging aspect.

3.2 The Semantic Web
In the context ofcomponent-based Web service development,

the description of knowledge and also reasoning about knowledge
are essential requirements. This requirement, in principle, can be
satisfied through the techniques of another activity in the Web con-
text – the Semantic Web initiative [18]. Description of and reason-
ing about knowledge is the objective ofontology technology, which
is at the core of the Semantic Web. It provides XML-based knowl-
edge description and ontology languages. Ontology languages fa-
cilitate the hierarchical description of concepts from a domain and
their properties and support reasoning about these concepts and
properties through a suitable logic.

The aim of theSemantic Webis to open the Web to process-
ing by software agents. The exploitation of the full potential of
the Web as an information network is currently hampered by the
fact that information is provided for human consumption. Software
processing, e.g. searches using search engines, is often inaccurate
and error-prone. Adding semantical descriptions to Web resources
and logic to reason about properties based onontologies shared
between Web usersis the key contribution of the Semantic Web.

The application of ontologies is certainly not limited to appli-
cation domains; they can also be used to capture software develop-
ment principles and reasoning techniques.

3.3 Ontology Languages
The Semantic Web is based on the Resource Description Frame-

work RDF – an XML-based language to express properties in terms
of triples (Subject, Property, Object) [18]. Subjects (or concepts)
are defined in terms of their properties in relation to other, already
defined objects (concepts). We could, for instance, say that a com-
ponent has an author,(Component, hasAuthor, Author) .
In this way, based on some basic concepts, a hierarchy of com-
plex, semantically defined concepts can be created. The ontology
language DAML+OIL [18] (most likely the future Ontology Web

Language OWL) is an extension of RDF by a rich set of operators
and features to support ontology description and reasoning.

Reasoning is a central aspect that needs to be supported by a
suitable logic. DAML+OIL is essentially a very expressive descrip-
tion logic. Description logics [2] are first-order logics that provide
operators to specify concepts and their properties.

3.4 Ontology Support for Component-based
Service Description and Composition

3.4.1 Description – Interface and Interaction
Ontology languages usually support the notions of concepts and

properties (or roles)1. Ontology languages are application-domain
independent. In the context of component-based Web services, the
first essential question is what the description logic concepts and
roles represent. An intuitive choice might be to use concepts to rep-
resent services or operations, and to express their properties using
roles. We, however, suggest a different approach (Fig. 2).Con-
ceptsrepresentdescriptions of service properties. Rolesare used to
represent theservicesthemselves. Roles are usually interpreted as
relations on classes of individuals (that represent concepts) – here
they are interpreted as accessibility relations on states. This choice
enables us to view a description logic specification as the speci-
fication of a state-based system with descriptions of state proper-
ties through concepts and specification of state transitions through
roles. We actually distinguish two role types.Descriptional roles
correspond to the classical use of roles as properties – examples in
our ontology are preCond, postCond, opName, or opDescr, see Fig.
2. Transitional rolesare roles representing operations, as we have
just introduced.

Roles – supposed to represent services and operations here –
are classically used in description logics to express simple con-
cept properties. For instance, for a conceptComponent , the term
∀hasAuthor.Author is a value restrictionthat says that all
components have authors. For a conceptState , theexistentially
quantified expression∃preCond.valid(input) says that for
a given class of states, there is at least one for with a precon-
dition valid(input) holds. Concepts are usually interpreted
by classes of objects (called individuals). BothhasAuthor and
preCond are roles – interpreted by relations on classes of individ-
uals. ∀update .∀postCond . equal(retrieve(id),doc)
means that by executing operationupdate a state is reached that
is described by postconditionequal(retrieve(id),doc) .

Even though some extensions of description logics exist in the
literature [2], special attention has to be dedicated to roles if the
needs arising from the application of ontology technology to com-
ponents and services as suggested here have to be addressed. Ele-
ments of the language that need attention are: operations and pa-
rameters, service processes, and interactions of (provided and re-
quested) services. We have developed a description logic that sat-
isfies these criteria [14] – see Figure 2. At the core of this logic is
a richrole expression sublanguage.

Operations – names and parameters: Usually, individuals can
be named in description logics, but the notion of a variable or an
abstract name is unknown. We have introduced names as roles,
since they are here required as part of role expressions, interpreted
as constant functions. Parameterisation is expressed through func-
tional (sequential) composition of roles. We can express a parame-
terised role such as∀Login ◦ id .post whereid is a name that
is a parameter to operation (role)Login .

1We focus here on description logic as the underlying ontology
language – instead of the more verbose DAML+OIL.

85

Repository

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

Component/
Service

Component/
Service

Ontology

requires provides

match

interact

the Web

Client Provider

Figure 1: Ontology-based Component Development for the Web

Processes – role expressions: Besides the sequential (functional)
composition of roles (representing operations and parameters), other
forms of composition of services to service processes are required
[14]. These composition operators include non-deterministic choice,
iteration, and parallel composition; the following is an example
∀Login; !(Catalog + Quote); Purchase . post . The
semantics of these operators can be defined in a transition system-
based semantics for the logic.

Interaction – ports and the service life cycle: It is important to
cover all aspects of the composition process including the matching
of specifications, the connection of services, and the actual interac-
tion between services [13, 14]. This is actually a central part of the
life cycle of a service. A more network-oriented notion of ports,
representing services in a component architecture is the central no-
tion. Send and receive operations need to be distinguished – which
means for the logic that role names can appear in these two forms.

The central aim of bringing ontology technology to component
and Web service development is in enable meaningful, knowledge-
level interaction through semantically decribed interfaces. Ontolo-
gies provide domain- and software development-related knowledge
representation techniques for interfaces. Knowledge describing in-
terfaces enables meaningful interaction.

3.4.2 Reasoning – Support for Service Matching
Reasoning in description logic is based on the central idea of

subsumption– which is the subclass (or subset) relationships be-
tween classes that interpret either concepts (sets) or roles (rela-
tions). A composition activity that requires reasoning support in
this context isservice or component matching. The compatibility
of a service requirements specification and the description of a pro-
vided service has to be verified.

Three research aspects are important in relation to matching
support. Firstly, the subsumption idea has to be related to suitable
matching notionsfor components and services. Secondly, the spe-
cific nature ofrolesandrole expressionsrepresenting (composite)
operations has to be addressed. Thirdly, thetractability of the re-
sult logical framework has to be considered. These research issues
shall now be looked at in more detail.

Subsumption and matching: Matching between specifications
of required and provided services can be expressed in form of clas-
sical notion used in computing, such as refinement or simulation
[14]. For service interfaces we propose arefinementnotion, which,
if based on a design-by-contract matching notion on pre- and post-

conditions, can be proven to imply subsumption [3]. For service
process we propose asimulationnotion on role expressions, which
can also be proven to imply subsumption.

Role expressions and transitions: Roles are used to represent
operations, i.e. roles have a transitional character. Essential is here
suitable reasoning support for transitional roles. Alink betweende-
scription logicanddynamic logic(a logic of programs [7]) provides
this support. Schild [15] investigates a correspondence between
role-based concept descriptions in description logic and modal op-
erators in dynamic logic. This correspondence allows us to adapt
modal logic reasoning about state-based system behaviour into de-
scription logics. This correspondence is the essential benefit of
chosing to represent services as roles, and not as concepts. Aspects
of process calculi such as simulation notions can also be adapted
for the description logic context [14].

Tractability: Tool support and automation are critical points for
the success of the proposed component-based Web service devel-
opment and deployment framework. Therefore, the tractability and
a high degree of automation are desirable – even tough difficult to
achieve.Decidability and complexitytend cause tractability prob-
lems in various logics. Here, we have proposed avery expressive
description logic. Some properties of the proposed framework,
however, seem to indicate that these problems can be adequately
addressed. Transitional roles can be limited to interpretation by
functions. Negation as an operator (known to cause difficulty) is
not required for role expressions. Furthermore, application domain
ontologies can be integrated through admissible concrete domains.

The specification of service and operation semantics often in-
volves concepts from the application domain. Description logic
theory [2] introduces a technique calledconcrete domainsto han-
dle the intoduction of specific classes of objects and their predicates
into an existing semantics – an abstract example would be a number
domain with its predicates. In order to retain the decidability in this
framework, anadmissibilitycriterion has to be satisfied. We have
shown that this is possible for standard application domains such
as numerical domains and domains of similar complexity [14].

4. RELATED WORK
DAML-S[6] is an ontology for Web services. DAML-S supports

a range of descriptions for different service aspects from textual de-
scriptions to behavioural semantics. The central difference between
DAML-S and our framework it that DAML-S models services as

86

Operation

Condition

Signature invariant Signature

Condition

postStatepreState

outSign

postCond

inSign

preCond

 opDescr opName

DescriptionName
...

Figure 2: Service Process Ontology focussing on Operations

concepts, whereas we model services (more precisely operations of
a service) as roles. The essential benefit of our approach is the cor-
respondence between description logics and dynamic logic. This
correspondence allows us to establish a richer reasoning framework
in particular for the behavioural aspects of service descriptions.

The correspondence betweendescription logic and dynamic logic
was explored by Schild [15] around a decade ago, but has, despite
its potential, not found its way into recent applications of ontology
technology for software development. We have enhanced a descrip-
tion logic by results from two other software-engineering related
areas –modal logics[7] andprocess calculi. Both have been used
extensively to provide foundations for component-based software
development, e.g. [11, 4]. For instance, advanced refinement and
matching techniques [3] can be adapted for this context. Dynamic
logic as an extension of Hoare logic can provide the framework.
Design-by-contract is an important approach for the description of
behavioural properties [12, 17, 8].

Description logic[2] relates toknowledge engineering– rep-
resenting and reasoning about knowledge. The combination of
knowledge and software engineering can result in fruitful outcomes.

5. CONCLUSIONS
Substantial effort is currently been made to make the Web a

software development and deployment platform – the Web Services
initiative. Component technology is ideally suited to support soft-
ware development for the Web. However, this new application con-
text also poses some challenges for component technology. Firstly,
the Web is a ubiquitous platform, widely accepted and standard-
ised. This requires component development techniques to adapt to
this environment and to adhere to the standards of the Web. Sec-
ondly, the Web as a development platform is less well explored. As
a consequence of distribution, decentralisation, and heterogeneity,
the composition and assembly activities need to be well supported.

We have illustrated that technologies from another Web initia-
tive – ontologies – can provide support for component-oriented
Web service development. Ontology technology to represent and
reason about knowledge can be adapted for components. We have
explored the foundations for a composition framework for the Web.
The framework is based on an ontology for components and ser-
vices that incorporates reasoning support for behavioural aspects.
An ontology – agreed and shared by developers and clients – can
capture domain and software-technical knowledge.

Ultimately we aim to support flexible, collaborative, and adap-
tive component-based structures for the Web, ideally formed from
federating, agent-like components. This would create an innova-
tive, more autonomous software organisation. Of course, much
work remains to be done until this vision is accomplished, but

work also remains towards a fully implemented support environ-
ment. Aspects of automation will, if at all, be difficult to achieve.

6. REFERENCES
[1] A. Banerji et.al.Web Services Conversation Language.

http://www.w3.org/TR/wscl10/, 2003.
[2] F. Baader, D. McGuiness, D. Nardi, and P. Schneider, editors.The

Description Logic Handbook. Cambridge University Press, 2003.
[3] R. Back and J. von Wright.The Refinement Calculus: A Systematic

Introduction. Springer-Verlag, 1998.
[4] A. Brogi, E. Pimentel, and A. Rold́an. Compatibility of Linda-based

Component Interfaces. In A. Brogi and E. Pimentel, editors,Proc.
ICALP Workshop on Formal Methods and Component Interaction.
Elsevier Electronic Notes in Theoretical Computer Science, 2002.

[5] F. Curbera, N. Mukhi, and S. Weerawarana. On the Emergence of a
Web Services Component Model. InProc. 6th Int. Workshop on
Component-Oriented Programming WCOP2001, 2001.

[6] DAML-S Coalition. DAML-S: Web Services Description for the
Semantic Web. In I. Horrocks and J. Hendler, editors,Proc. First
International Semantic Web Conference ISWC 2002, LNCS 2342,
pages 279–291. Springer-Verlag, 2002.

[7] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen,
editor,Handbook of Theoretical Computer Science, Vol. B, pages
789–840. Elsevier Science Publishers, 1990.

[8] G. Leavens and A. Baker. Enhancing the Pre- and Postcondition
Technique for More Expressive Specifications. In R. France and
B. Rumpe, editors,Proceedings 2nd Int. Conference UML’99 - The
Unified Modeling Language. Springer Verlag, LNCS 1723, 1999.

[9] G. Leavens and M. Sitamaran.Foundations of Component-Based
Systems. Cambridge University Press, 2000.

[10] F. Leymann. Web Services Flow Language (WSFL 1.0), 2001.
www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

[11] M. Lumpe, F. Achermann, and O. Nierstrasz. A Formal Language
for Composition. In G. Leavens and M. Sitamaran, editors,
Foundations of Component-Based Systems, 2000.

[12] B. Meyer. Applying Design by Contract.Computer, pages 40–51,
Oct. 1992.

[13] C. Pahl. A Formal Composition and Interaction Model for a Web
Component Platform. In A. Brogi and E. Pimentel, editors,Proc.
ICALP Workshop on Formal Methods and Component Interaction.
Elsevier Electronic Notes in Theoretical Computer Science, 2002.

[14] C. Pahl. An Ontology for Software Component Matching. InProc.
Fundamental Approaches to Software Engineering FASE’2003.
Springer-Verlag, LNCS Series, 2003.

[15] K. Schild. A Correspondence Theory for Terminological Logics:
Preliminary Report. InProc. 12th Int. Joint Conference on Artificial
Intelligence. 1991.

[16] C. Szyperski. Component Technology - What, Where, and How? In
Proc. 25th International Conference on Software Engineering
ICSE’03, pages 684–693. 2003.

[17] J. Warmer and A. Kleppe.The Object Constraint Language –
Precise Modeling With UML. Addison-Wesley, 1998.

[18] World Wide Web Consortium.Web Initiaves. www.w3.org, 2003.

87

ABSTRACT
A software component is typically modeled from one or more of
four functional aspects: interface, static behavior, dynamic
behavior, and interaction protocol. Each of these aspects helps to
ensure different levels of component compatibility and interop-
erability. Existing approaches to component modeling have
either focused on only one of the aspects (e.g., interfaces in vari-
ous IDLs) or on well-understood combinations of two of the
aspects (e.g., interfaces and their associated pre- and post-condi-
tions in static behavioral modeling approaches). This paper
argues that, in order to accrue the true benefits of component-
based software development, one may need to model all four
aspects of components. However, this requires that consistency
among the multiple aspects be maintained. We offer an approach
to modeling components using the four-view perspective (called
the Quartet) and identify the points at which the consistency
among the models must be maintained.

1. INTRODUCTION
Component-based software engineering has emerged as an

important discipline for developing large and complex software
systems. Software components have become the primary
abstraction level at which software development and evolution
are carried out. We consider a software component to be any
self-contained unit of functionality in a software system that
exports its services via an interface, encapsulates the realization
of those services, and possibly maintains transient internal state.
In the context of this paper, we further focus on components for
which information on their interface and behavior may be
obtained. In order to ensure the desired properties of component-
based systems (e.g., correctness, compatibility, interchangeabil-
ity), both individual components and the resulting systems’
architectural configurations must be modeled and analyzed.

The role of components as software systems’ building blocks
has been studied extensively in the area of software architectures
[11,15]. In this paper, we focus on the components themselves.
While there are many aspects of a software component worthy of
careful study (e.g., modeling notations [2], implementation plat-
forms [1], evolution mechanisms [9]), we restrict our study in
this paper to an aspect only partially considered in existing liter-
ature: internal consistency among different models of a compo-
nent. The direct motivation for this paper is our observation that
there are four primary functional aspects of a software compo-
nent: (1) interface, (2) static behavior, (3) dynamic behavior, and
(4) interaction protocol. Each of these four aspects represents
and helps to ensure different characteristics of a component.
Moreover, the four aspects have complementary strengths and
weaknesses. Existing approaches to component-based develop-
ment typically select different subsets of these four aspects (e.g.,
interface and static behavior [9], or interface and interaction pro-

tocol [16]). At the same time, different approaches treat each
individual aspect in very similar ways (e.g., modeling static
behaviors via pre- and post-conditions, or modeling interaction
protocols via finite state machines, or FSM).

The four aspects’ complementary strengths and weaknesses,
as well as their consistent treatment in literature suggest the pos-
sibility of using the four modeling aspects in concert. However,
what is missing from this picture is an understanding of the dif-
ferent relationships among these different models in a single
component. Figure 1 depicts the space of possible intra-compo-
nent model relationship clusters. Each cluster represents a range
of possible relationships, including not only “exact” matches,
but also “relaxed” matches [17] between the models in question.
Of these six clusters, only the pair-wise relationships between a
component’s interface and its other modeling aspects have been
studied extensively (relationships 1, 2, and 3 in Figure 1).

This paper suggests an approach to completing the modeling
space depicted in Figure 1. We discuss the extensions required to
commonly used modeling approaches for each aspect in order to
enable us to relate them and ensure their compatibility. We also
discuss the advantages and drawbacks inherent in modeling all
four aspects (referred to as the Quartet in the remainder of the
paper) and six relationships shown in Figure 1. This paper repre-
sents a starting point in a much larger study. By addressing all
the relationships shown in Figure 1 we eventually hope to
accomplish several important long-term goals:
• enrich, and in some respects complete, the existing body of

knowledge in component modeling and analysis,
• suggest constraints on and provide guidelines to practical

modeling techniques, which typically select only a subset of
the quartet,

• provide a basis for additional operations on components, such
as retrieval, reuse, and interchange [17],

• suggest ways of creating one (possibly partial) model from
another automatically, and

• provide better implementation generation capabilities from
thus enriched system models.
The rest of the paper is organized as follows. Section 2 sum-

marizes existing approaches to component modeling techniques
and introduces the Quartet in more detail. Section 3 demon-
strates our specific approach to component modeling using the
Quartet and provides details of each modeling perspective. Sec-
tion 4 discusses the relationships among the four modeling
aspects shown in Figure 1 by identifying their interdependen-
cies. Finally, Section 5 discusses our on-going research and
future directions.

 Modeling Multiple Aspects of Software Components

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.
{roshande,neno}@usc.edu

Roshanak Roshandel Nenad Medvidovic

Figure 1. Model
relationships within a
software component.

Interface

Static
Behavior

Dynamic
Behavior

Protocols

1 2

3

4

56

88

2. COMPONENT MODELING
Modeling from multiple perspectives has been identified as

an effective way to capture a variety of important properties of
component-based software systems [2,3,6,8,10]. A well known
example is UML, which employs nine diagrams (also called
views) to model requirements, structural and behavioral design,
deployment, and other aspects of a system. When several system
aspects are modeled using different modeling views, inconsis-
tencies may arise.

Ensuring consistency among heterogeneous models of a soft-
ware system is a major software engineering challenge that has
been studied in multiple approaches, with different foci. Due to
space constraints, we discuss a small number of representative
approaches here. [4] offers a model reconciliation technique par-
ticularly suited to requirements engineering. The assumption
made by the technique is that the requirements specifications are
captured formally. [5] also provide a formal solution to main-
taining inter-model consistency, though more directly applicable
at the software architectural level. One criticism that could be
levied at these approaches is that their formality lessens the like-
lihood of their adoption. On the other hand, [7] provide more
specialized approaches for maintaining consistency among UML
diagrams. While their potential for wide adoption is aided by
their focus on UML, these approaches may be ultimately harmed
by UML’s lack of formal semantics.

In this paper, we address similar problems to those cited
above, but with a specific focus on multiple functional modeling
aspects of a single software component. We advocate a four-
level modeling technique (called the Quartet). Using the Quartet,
a component’s structural, behavioral (both static and dynamic),
and interaction properties may be described and used in the anal-
ysis of a software system that encompasses the component:
1. Interface models specify the points by which a component

interacts with other components in a system.
2. Static behavior models describe the functionality of a

component discretely, i.e., at particular “snapshots” during
the system’s execution.

3. Dynamic behavior models provide a continuous view of how
a component arrives at different states in its execution.

4. Interaction protocol models provide an external view of the
component and its legal interactions with other components.

Typically, the static and dynamic component behaviors and inter-
action protocols are expressed in terms of a component’s interface
model (hence their positioning in Figure 1).

3. OUR APPROACH
The approach to component modeling we advocate is based

on the concept of the Quartet discussed in the previous section: a
complete functional model of a software component can be
achieved only by focusing on all four aspects of the Quartet. At
the same time, focusing on all four aspects has the potential to
introduce certain problems (e.g., large number of modeling nota-
tions that developers have to master, model inconsistencies) that
must be carefully addressed. While we use a particular notation
in the discussion below, the approach is generic such that it can
be easily adapted to other modeling notations. In this section, we
focus on the conceptual elements of our approach, with limited
focus on our specific notation used. Component models are spec-
ified from the following four modeling perspectives:1

Component_Model:
(Interface, Static_Behavior,
 Dynamic_Behavior, Interaction_Protocol);

3.1. Interface
Interface modeling serves as the core of our component mod-

eling approach and is extensively leveraged by other three model-
ing levels. An interface is specified in terms of several interface

elements. Each interface element has a direction (+ or -), name
(method signature), a set of input parameters, and possibly a
return type (output parameter). The direction indicates whether
the component requires (+) the service (i.e., operation) associated
with the interface element or provides (-) it to the rest of the sys-
tem. In other words:

Interface_Model: {Interface_Element};
Interface_Element:

(Direction, Method_signature,
 {Input_parameter}, Output_parameter);

3.2. Static Behavior
We adopt a widely used approach to static modeling [9],

which relies on first-order predicate logic to specify static behav-
ioral properties of a component in terms of the component’s state
variables, the constraints associated with them (invariants),
interfaces (as modeled in the interface model), operations
(accessed via interfaces) and their corresponding pre- and post-
conditions. In other words:

Static_Behaviors:
({State_variable}, Invariant, {Operation});

State_variable: (name, type);
Invariant: (logical_expression);
Operation:

({Interface_Element}, Pre_cond, Post_cond);
Pre/Post_cond: (logical_expression);

3.3. Dynamic Behavior
A dynamic behavior model provides a continuous view of the

component’s internal execution details. Variations of state-based
modeling techniques have been typically used to model a compo-
nent’s internal behavior (e.g., in UML). Such approaches
describe the component’s dynamic behavior using a set of
sequencing constraints that define legal ordering of the opera-
tions performed by the component. These operations may belong
to one of two categories: (1) they may be directly related to the
interfaces of the component as described in both interface and
static behavioral models; or (2) they may be internal operations
of the component (i.e., invisible to the rest of the system such as
private methods in a UML class). To simplify our discussion, we
only focus on the first case: publicly accessible operations. The
second case may be reduced to the first one using the concept of
hierarchy in StateCharts: internal operations may be abstracted
away by building a higher-level state-machine that describes the
dynamic behavior only in terms of the component’s interfaces.

A dynamic model serves as a conceptual bridge between the
component’s protocol and static behavioral models. On the one
hand, a dynamic model serves as a refinement of the static model
as it further details a component’s internal behavior. On the other
hand, by leveraging a state-based notation, a dynamic model
may be used to specify the sequence by which a component’s
operations get executed. Fully describing a component’s
dynamic behavior is essential in achieving two key objectives.
First, it provides a rich model that can be used to perform sophis-
ticated analysis and simulation of component behavior. Second,
it can serve as an important intermediate level model to generate
implementation level artifacts from architectural specification.

Existing approaches to dynamic behavior modeling employ
an abstract notion of component state. These approaches treat
states as entities of secondary importance, with the transitions
between states playing the main role in behavioral modeling.
Component states are often only specified by their name and set
of incoming and outgoing transitions. We offer an extended
notion of dynamic modeling that defines a state in terms of a set
of variables maintained by the component and their associated
invariants. These invariants constrain the values of and depen-
dencies among the variables [14].

To summarize, our dynamic behavior model consists of a set
of initial states and a sequence of guarded transitions from an
origin to a destination state. Furthermore, a state is specified in
terms of constraints it imposes over a set of a component’s state

1. Concise formulations are used in this section to clarify our definitions
and are not meant to serve as a formal specification of our model.

89

variables. In other words,

Dynamic_Behavior: (InitState,
{State:(Direction)Transition->State});

State: (Name, Variables, Invariant);
Transition: (Label, {Parameter}, Guard);
Guard: (logical_expression);

3.4. Interaction Protocols
Finally, we adopt the widely used notation for specifying com-

ponent interaction protocols, originally proposed in [11]. Finite
state semantics are used to define valid sequences of invocations
of component operations. Since interaction protocols are con-
cerned with an “external” view of a component, valid sequences of
invocations are specified irrespective of the component’s internal
state or the pre-conditions required for an operation’s invocation.
Our notation specifies protocols in terms of a set of initial states,
and a sequence of transitions from an origin state to a destination.

Interaction_Protocol: (InitState,
{State:(Direction)Transition->State});

State: (Name);
Transition: (Label, {Parameter});

4. RELATING COMPONENT MODELS
As previously discussed, modeling complex software sys-

tems from multiple perspectives is essential in capturing a multi-
tude of structural, behavioral, and interaction properties of the
system under development. The key issue however, is maintain-
ing the consistency among these models [4,5,7]. We address the
issue of consistency in the context of functional component
modeling based on the Quartet technique.

In order to ensure the consistency among the models, their
inter-relationships must be understood. Figure 1 depicts the con-
ceptual relationships among these models. We categorize these
relationships into two groups: syntactic and semantic. A syntac-
tic relationship is one in which a model (re)uses the elements of
another model directly and without the need for interpretation.
For instance, interfaces and their input/output parameters (as
specified in the interface model) are directly reused in the static
behavior model of a component (relationship 1 in Figure 1). The
same is true for relationships 2 and 3, where the dynamic behav-
ior and protocol models (re)use the names of the interface ele-
ments as transition labels in their respective FSMs.

Alternatively, a semantic relationship is one in which model-
ing elements are interpreted using the “meaning” of other ele-
ments. That is, specification of elements in one model indirectly
affects the specification of elements in a different model. For
instance, an operation’s pre-condition in the static behavior
model specifies the condition that must be satisfied in order for
the operation to be executed. Similarly, in the dynamic behavior
model, a transition’s guard ensures that the transition will only
be taken when the guard condition is satisfied. The relationship
between a transition’s guard in the dynamic behavior model and
the corresponding operation’s pre-condition in the static behav-
ior model is semantic in nature: one must be interpreted in terms
of the other (e.g., by establishing logical equivalence or implica-
tion) before their (in)consistency can be established. Examples
of this type of relationship are relationships 4 and 5 in Figure 1.

In the remainder of this section we focus in more detail on
the six relationships among the component model quartet
depicted in Figure 1.

4.1. Interface vs. Other Models (Relationships 1, 2, 3)
The interface model plays a central role in the design of other

component models. Regardless of whether the goal of modeling
is to design a component’s interaction with the rest of the system
or to model details of the component’s internal behavior, inter-
face models will be extensively leveraged.

When modeling a component’s behaviors from a static per-
spective, the component’s operations are specified in terms of
interfaces through which they are accessed. As discussed in Sec-

tion 3, an interface element specified in the interface model is
mapped to an operation, which is further specified in terms of its
pre- and post-conditions that must be satisfied, respectively,
prior to and after the operation’s invocation.

In the dynamic behavior and interaction protocol models,
activations of transitions result in changes to the component’s
state. Activation of these transitions is caused by internal or
external stimuli. Since invocation of component operations
results in changes to the component’s state, there is a relation-
ship between these operations’ invocations (accessed via inter-
faces) and the transitions’ activations. The labels on these
transitions (as defined in Section 3) directly relate to the inter-
faces captured in the interface model.

The relationship between the interface model and other mod-
els is syntactic in nature. The relationship is also unidirectional:
all interface elements in an interface model may be leveraged in
the dynamic and protocol models as transition labels; however,
not all transition labels will necessarily relate to an interface ele-
ment. Our (informal) discussion provides a conceptual view of
this relationship and can be used as a framework to build auto-
mated analysis support to ensure the consistency among the
interface and remaining three models within a component.

4.2. Static vs. Dynamic Behavior (Relationship 4)
An important concept in relating static and dynamic behavior

models is the notion of state in the dynamic model and its con-
nection to the static specification of component’s state variables
and their associated invariant. Additionally, operation pre- and
post-conditions in the static behavior model and transition
guards in the dynamic behavior model are semantically related.
We have extensively studied these relationships in [13,14] and
identified the ranges of all such possible relationships. The cor-
responding concepts in the two models may be equivalent, or
they may be related by logical implication. Although their equiv-
alence ensures their inter-consistency, in some cases equivalence
may be too restrictive. A discussion of such cases is given below.

Transition Guard vs. Operation Pre-Condition. At any
state in a component’s dynamic behavior model, multiple outgo-
ing transitions may share the same label, but with different
guards on the label. In order to relate an operation’s pre-condi-
tion in the static model to the guards on the corresponding transi-
tions in the dynamic model, we define the union guard (UG) of
a transition label at a given state:

where n is the number of outgoing transi-
tions with the same label at a given state
and Gi is the guard associated with the ith

transition.
Clearly, if UG is equivalent to its corresponding operation’s

pre-condition, the consistency at this level is achieved. However,
if we consider the static behavior model to be an abstract specifi-
cation of the component’s semantics, the dynamic behavioral
model becomes the concrete realization of those semantics. In
that case, if UG is stronger than the corresponding operation’s
pre-condition, the operation may still be invoked safely: UG
places bounds on the operation’s (i.e., transition’s) invocation,
ensuring that the operation may never be invoked under circum-
stances that violate its pre-condition; in other words, UG should
imply the corresponding operation’s pre-condition.

State Invariant vs. Component Invariant. The state of a
component in the static behavior specification is modeled using
a set of state variables. The possible values of these variables are
constrained by the component’s invariant. Furthermore, a com-
ponent’s operations may modify the state variables’ values, thus
modifying the state of the component as a whole. The dynamic
behavior model, in turn, specifies internal details of the compo-
nent’s states when the component’s services are invoked. As
described in Section 2, these states are defined using a name, a
set of variables, and an invariant associated with these variables
(called state invariant). It is crucial to define the states in the

i

n

i
GUG

1=
∨=

90

dynamic behavior state machine in a manner consistent with the
static specification of component’s state and invariant.

Once again, an equivalence relation among these two ele-
ments may be too restrictive. In particular, if a state’s invariant in
the dynamic model is stronger than the component’s invariant in
the static model (i.e., state’s invariant implies component’s
invariant), then the state is simply bounding the component’s
invariant, and does not permit for circumstances under which the
component’s invariant is violated. This relationship preserves the
properties of the abstract specification (i.e., static model) in its
concrete realization (i.e., dynamic model) and thus may be con-
sidered less restrictive than the equivalence. For more discussion
on these, and a study of other possible relationships, see [14].

State Invariants vs. Operation Post-Condition. The
final important relationship between a component’s static and
dynamic behavior models is that of an operation’s post-condition
and the invariant associated with the corresponding transition’s
destination state.

In the static behavior model, each operation’s post-condition
must hold true following the operation’s invocation. In the
dynamic behavior model, once a transition is taken, the state of
the component changes from the transition’s origin state to its
destination state. Consequently, the state invariant constraining
the destination state and the operation’s post-condition are
related. Again, the equivalence relationship may be unnecessar-
ily restrictive. Analogously to the previous cases, if the invariant
associated with a transition’s destination state is stronger than
the corresponding operation’s post-condition (i.e., destination
state’s invariant implies the corresponding operation’s post-con-
dition), then the operation may still be invoked safely.

4.3. Dynamic Behavior vs. Protocol (Relationship 5)
As previously mentioned, the relationship between the

dynamic behavior and interaction protocol models of a compo-
nent is semantic in nature: the concepts of the two models relate
to each other in an indirect way.

As discussed in Section 3 we model a component’s dynamic
behavior by enhancing traditional FSMs with state invariants.
Our approach to modeling interaction protocols also leverages
FSMs to specify acceptable traces of execution of component
services. The relationship between the dynamic behavior model
and the interaction protocol model thus may be characterized in
terms of the relationship between the two state machines. These
two state machines are at different granularity levels however:
the dynamic behavior model details the internal behavior of the
component based on both internally- and externally-visible tran-
sitions, guards, and state invariants; on the other hand, the proto-
col model simply specifies the externally-visible behavior of the
component, with an exclusive focus on transitions.

Our goal here is not to define a formal technique to ensure
equivalence of two arbitrary state machines. This would first
require some calibration on the models to even make them com-
parable. Additionally, several approaches have studied the
equivalence of StateCharts [2,16]. Instead, we provide a more
pragmatic approach to ensure the consistency of the two models.
We consider the dynamic behavior model to be the concrete real-
ization of the system under development, while the protocol of
interaction provides a guideline for the correct execution
sequence of the component’s interfaces. Assuming that the inter-
action protocol model demonstrates all valid sequences of opera-
tions invocations of the component, the dynamic behavioral
model should be designed such that any legal sequence of invo-
cations of the component would also result in a legal execution
of the component’s dynamic behavior FSM. In other words, the
dynamic behavioral model may be more general than the proto-
col of interactions; any execution trace obtained by the protocol
model, must result in a legal execution of component’s dynamic
behavioral model.

4.4. Static Behavior vs. Protocol (Relationship 6)
As discussed in Section 3.3, we consider the dynamic behavior

model to be a bridge between a component’s interaction protocol
and static behavior specification models. The interaction protocol
model specifies the valid sequence by which the component’s
interfaces may be accessed. In doing so, it fails to take into account
the component’s internal behavior (e.g., the pre-conditions that
must be satisfied prior to an operation’s invocation). Consequently,
we believe that there is no direct conceptual relationship between
the static behavior and interaction protocol models. Note, however,
that the two models are related indirectly via a component’s inter-
face and dynamic behavior models.

5. CONCLUSION
In this paper, we argued for a four-level modeling approach,

referred to as the Quartet, that can be used to model structural,
static and dynamic behavioral, and interaction properties of a soft-
ware component. We also discussed the conceptual dependencies
among these models and highlighted specific points at which con-
sistency among them must be established. While it may be argued
that practitioners will be reluctant to use our approach in “real”
development situations because it requires too much rigor and
familiarity with too many notations, we believe such a criticism to
be misplaced: the experience of UML has shown that practitioners
will be all too happy to adopt multiple notations if those notations
solve important problems. It should also be noted that our
approach allows developers to select whatever subset of the Quar-
tet they wish, but gives them an understanding of how incorporat-
ing additional component aspects is likely to impact their existing
models.

6. REFERENCES
[1] Allen R., Garlan D., “A formal basis for architectural connec-

tion”, ACM TOSEM, 6(3):213–249, 1997.
[2] Booch G., Jacobson I., Rumbaugh J. “The Unified Modeling

Language User Guide”, Addison-Wesley, Reading, MA.
[3] Farías A., Südholt M., “On Components with Explicit Proto-

cols Satisfying a Notion of Correctness by Construction”, in
Confederated Int’l Conf. CoopIS/DOA/ODBASE 2002.

[4] Finkelstein A., et al., “Inconsistency Handling in Multi-Per-
spective Specifications”, IEEE TSE, August 1994.

[5] Fradet P., et al., “Consistency checking for multiple view soft-
ware architectures”, in ESEC/FSE 1999.

[6] Hofmeister C., et al., “Describing Software Architecture with
UML,” in WICSA1, San Antonio, TX, February 1999.

[7] Hnatkowska B., et al., “Consistency Checking in UML Mod-
els”, in 4th Int’l Conf. on Information System Modeling
(ISM01), Czech Republic, 2001.

[8] Krutchen, P.B. “The 4+1 View Model of Architecture”, IEEE
Software 12, pp. 42 - 50, 1995.

[9] Liskov B. H., Wing J. M., “A Behavioral Notion of Subtyp-
ing”, ACM TOSEM, November 1994.

[10] Nuseibeh B., et al., “Expressing the Relationships Between
Multiple Views in Requirements Specification”, in ICSE-15,
Baltimore, Maryland, 1993.

[11] Perry D.E., and Wolf A.L., "Foundations for the Study of Soft-
ware Architectures", ACM SIGSOFT Software Engineering
Notes, 17(4): 40-52, October 1992.

[12] Plasil F., Visnovsky S., “Behavior Protocols for Software
Components”, IEEE TSE, November 2002.

[13] Roshandel R., Medvidovic N., “Coupling Static and Dynamic
Semantics in an Architecture Description Language”, in Work-
ing Conf. on Complex and Dynamic Systems Architectures,
Brisbane, Australia, December 2001.

[14] Roshandel R., Medvidovic N., “Relating Software Component
Models”, Tech Rep’t USC-CSE-2003-504, March 2003.

[15] Shaw M., Garlan D., “Software Architecture: Perspectives on
an Emerging Discipline”, Prentice-Hall, 1996.

[16] Yellin D.M., Strom R.E., “Protocol Specifications and Compo-
nent Adaptors,” ACM TOPLAS, vol. 19, no. 2, 1997.

[17] Zaremski A.M., Wing J.M., “Specification Matching of Soft-
ware Components”, ACM TOSEM, vol. 6, no. 4, 1997.

91

Reasoning About Parameterized Components with
Dynamic Binding

Nigamanth Sridhar
Computer and Information Science

The Ohio State University
2015 Neil Ave

Columbus OH 43210-1277 USA

nsridhar@cis.ohio-state.edu

Bruce W. Weide
Computer and Information Science

The Ohio State University
2015 Neil Ave

Columbus OH 43210-1277 USA

weide@cis.ohio-state.edu

ABSTRACT
Parameterized components provide an effective way of build-
ing scalable, reliable, flexible software. Techniques have
been developed for reasoning about parameterized com-
ponents in such a way that the relevant properties of a
parameterized component can be predicted based on the
restrictions on actual parameters. These techniques as-
sume that the parameters are bound at compile-time. But
in some cases, compile-time is just not late enough to in-
stantiate a parameterized component; we would like to
push instantiation into run-time instead. Doing this is
sometimes dangerous, since we can no longer depend on
the type system of the language to support our reasoning
methods. In this paper, we present a specification notation
and associated proof obligations, which when satisfied, al-
low us to extend the theories of reasoning about templates
with static binding to dynamically-bound templates. We
present these proof obligations in the context of the Ser-
vice Facility pattern, which is a way of building templates
whose parameters are dynamically bound.

1. INTRODUCTION
In languages that support them, templates can be used

to program parameterized components, which can be spe-
cialized to meet specific client needs at component inte-
gration time. Further, since the language recognizes tem-
plates as first-class constructs, the compiler can enforce
type restrictions on them as well as it does on other parts
of the language. Reasoning about templates that are in-
stantiated1 at compile-time is considerably helped by the
fact that each of the instantiated templates defines a new
type that the compiler recognizes. Further, these types re-
1In this paper we use the word instantiation to mean the
setting of all parameters of a template. We refer to what
is often called object instantiation in the OO literature as
object creation in order to avoid confusion.

Poster presentation at the Workshop on Specification and Verification of
Component-Based Systems, co-located with ESEC/FSE 2003. Sep 1–2,
2003. Helsinki, Finland.

main static for the rest of the program’s lifetime. In gen-
eral, a compiler that does compile-time template binding
(e.g., the C++ compiler) requires the following of the client
program that uses a template:

R1. The template is instantiated statically, and

R2. The actual template parameters result in type-correct
bodies for the template’s methods.

One important consideration with parameterized compo-
nents that could drastically affect their usefulness is the
binding time of template parameters. If parameters are
bound at compile-time (as in C++), we are faced with the
problem that the component is statically configured, and
no changes are possible after instantiation.

Fortunately, static composition is not inherent to pa-
rameterized programming [5]. The Service Facility (Serf)
design pattern [10] provides a way of building parameter-
ized software components, particularly in languages that
do not provide linguistic support for templates. In contrast
with C++ templates and Ada generics, which are instan-
tiated at compile-time, template parameters are bound to
a Serf at run-time. Such run-time binding has its advan-
tages — the client has more flexibility in pushing design
decisions to later in the program’s lifetime [11]. How-
ever, late binding also has a downside — reasoning about
program behavior becomes harder. Since Serf templates
are instantiated at run-time, the reasoning system must
be strengthened using additional proof obligations that
subsume compile-time type checking and related checks,
which we outline in this paper.

The rest of this paper is organized as follows. Section 2
reviews the Service Facility pattern, how to build parame-
terized components using this pattern, and the additional
obligations that are needed to reason about the correct-
ness of such components. We conclude in Section 3.

2. THE SERVICE FACILITY PATTERN
The Service Facility (Serf) design pattern [10] is a com-

posite design pattern [8] that combines elements of sev-
eral well-known design patterns [4], viz. Abstract Fac-
tory, Proxy, Factory Method, Bridge, and Strategy. Here
we only describe the aspects of this pattern that enable
parameterized programming. We refer the reader to [10]
and to [9] for more details on other aspects of the pattern.

92

Listing 1: C# Stack and StackSerf interfaces
1 public interface Stack : Data { }
2

3 public interface StackSerf : ServiceFacility {
4 void push(Stack s, Data x);
5 void pop(Stack s, Data x);
6 int length(Stack s);
7

8 // Template parameter(s)
9 public ServiceFacility ItemSerf { get; set; }

10 }

Listing 2: Instantiating StackSerf

1 /* ... */
2 PayrollRecordSerf pSerf = new PayrollRecordSerf_R1();
3 /* ... */
4 StackSerf stkSerf = new StackSerf_R1();
5 stkSerf.ItemSerf = pSerf;
6 /* ... */

When using the Serf design pattern, a client program
dynamically supplies template parameters to the Serf tem-
plate as strategies. Listing 1 shows the C# interface Stack-
Serf, a stack template. A client program using this Stack-
Serf will “instantiate” the template by assigning to the
ItemSerf property a Serf isf that will provide the type of
the item in the stack (a “strategy”). For example, Listing 2
shows a client instantiating implementation StackSerf R1
of StackSerf to create a stack of payroll records.

Since the template parameters are set at run-time, there
is no way for the compiler to ensure that they are set, let
alone in a type-safe way (i.e., with actuals that would have
allowed compile-time type-checks to succeed). At the point
that the stkSerf object is declared and constructed (line 4 in
Listing 2), the compiler decides that the object is ready for
use. However, under the semantics of Serfs, this object has
not been fully instantiated and is therefore not ready for
use. The client, therefore, has proof obligations that it has
to satisfy — that the Serf has been properly instantiated
with appropriate parameters (line 5).

The template parameters in a Serf are represented as
data members in the implementation. Each template pa-
rameter corresponds to one (or two in some cases) data
member in the Serf class. In order to ensure a Serf ob-
ject has, in fact, been properly instantiated, the client has
to satisfy a proof obligation that all of these data members
have legal values. We will see later (Section 2.4) what such
legal values are. In the rest of this section, we introduce
new notation for specifying template parameters for Serfs.

2.1 Specifying Template Parameters
In order to specify a template Serf, we use the RESOLVE [2]

notation. As an example, we present StackContract (bor-
rowed from [2]) specified using the RESOLVE notation in
Listing 3. This module defines one type (Stack) and its in-
terface exports three operations on this type — push, pop,
and length. The type definition describes a mathematical
model (string of Item, in this case), as well as the set of le-
gal values that a new instance of this type can assume
upon initialization (empty string, in the case of Stack).

Listing 3: The contract for StackContract specified using
RESOLVE

1 contract StackContract
2 context
3 global context
4 facility StandardIntegerFacility
5 parametric context
6 type Item
7 interface
8 type Stack is modeled by string of Item
9 exemplar s

10 initialization
11 ensures |s | = 0
12 operation push (
13 alters s: Stack,
14 consumes x: Item
15)
16 ensures s = <#x> * #s
17 operation pop (
18 alters s: Stack,
19 produces x: Item
20)
21 requires |s | > 0
22 ensures #s = <x> * s
23 operation length (
24 preserves s: Stack
25) : Integer
26 ensures length = |s |
27 end StackContract

Each module can export zero or more types. In the case
of a module that exports more that one type, the types are
identified using a type identifier2.

The global context of this contract introduces other mod-
ules or facilities that this component uses. In this partic-
ular example, StackContract makes use of an Integer com-
ponent, and therefore imports the standard realization of
that component (StandardIntegerFacility). In programming
language terms, the global context serves the same pur-
pose as Java import statements or C# using statements.

The parameters to this template are specified in its para-
metric context. In this example, StackContract is parame-
terized by the type of item that is contained in a stack. In
general, parameters can be of four different kinds: con-
stants, types, facilities, and math definitions. In this pa-
per, we only deal with type and facility parameters, al-
though the ideas can be easily extended to the other types
of parameters as well. A type parameter lets the client
specialize the template by supplying a specific type, as
in our current example. A facility is an instance of some
template. Thus, a facility parameter allows the client set
up an integration-time relationship between components.
The client can provide realizations of specific contracts
that the template can use. Template parameters can also
be restricted — the actual parameter could be required to
implement certain functionality in a valid binding.

2.2 SpecifyingSerfs in RESOLVE
The contract in Listing 3 specifies that it requires, as

part of its global context, the standard integer facility. Re-
call that a facility is an instance of a template, all of whose
2For the sake of simplicity, in this paper we only deal with
Serfs that export exactly one type, and so we will no longer
refer to the type identifier [10].

93

Listing 4: The contract for StackSerf

1 contract StackSerfContract
2 context
3 global context
4 service facility StandardIntegerSerf
5 parametric context
6 service facility ItemSerf
7 defining type Item
8 interface
9 type Stack is modeled by string of Item

10 exemplar s
11 initialization
12 ensures |s | = 0
13 operation push (
14 alters s: Stack,
15 consumes x: Item
16)
17 ensures s = <#x> * #s
18 operation pop (
19 alters s: Stack,
20 produces x: Item
21)
22 requires |s | > 0
23 ensures #s = <x> * s
24 operation length (
25 preserves s: Stack
26) : Integer
27 ensures length = |s |
28 end StackSerfContract

formal parameters have been bound to actuals. In order to
accommodate run-time binding of parameters, we intro-
duce new notation to the RESOLVE language. A service
facility is an instance of a template that is bound to its
parameters dynamically, rather than statically.

Further, we unify all the different kinds of parameters
that can be part of the parametric context of a RESOLVE
template to be service facilities. In the case of type param-
eters, for instance, we specify in the parametric context a
service facility that defines the required type.

Substituting service facilities for facilities, we can trans-
late the RESOLVE StackContract (Listing 3) into StackSer-
fContract (Listing 4). It is easy to see that the Stack and
StackSerf C# interfaces (Listing 1) can be generated from
StackSerfContract. All the information needed to generate
these interfaces is available in the contract. In general,
the type exported by a SerfContract is used to generate the
type interface (Stack in the example), and the interface
part of the contract, along with the parametric context is
used to generate the Serf interface.

2.3 Realizing RESOLVE Contracts asSerfs

Abstract RESOLVE components are expressed in the
Serf approach as interfaces. In the languages that we con-
sider (Java and .NET languages3), interfaces are first-class
constructs in the language. Interfaces in these languages
are comprised of method signatures. There is a direct map-
ping from the interface in the RESOLVE specification to
the programming language interface. Further, the tem-

3All languages that respect the Common Type System of
the Microsoft .NET Common Language Runtime have the
same set of features [7]. Henceforth, whenever we want to
refer to .NET languages, we will use C# as the represen-
tative.

plate parameters listed in the concept’s parametric con-
text are also represented by methods in the interface. Each
facility parameter in the concept corresponds to two meth-
ods — one setter, and one getter4. For example, Listing 1
shows the C# interface for a StackSerf component.

2.4 Reasoning About Service Facilities
Now let us see how we can augment Serf interfaces with

contract checking in order to enforce the proper use of Serfs
as parameterized components. We will handle the two re-
quirements, R1 and R2, separately.

R1. Enforcing Instantiation.Before the Serf can be used
to create data objects, we require that the Serf has been
properly instantiated, i.e., all the template parameters have
been set. For each template parameter that appears in the
parametric context of the component, the data members
that correspond to that parameter must have been set to
values other than their initial values5.

In order to make sure that by the time we use a Serf
it is properly instantiated, we include a check to make
sure that all the parameters have actually been set in the
pre-condition of each method, including the create method.
So, in accordance with design by contract [6], clients that
want to use a Serf object have to first instantiate it by sup-
plying appropriate actual parameters.

R2. Enforcing Restrictions.In the foregoing discussion,
we have presented one way of making sure that a Serf is
actually instantiated before it is used. However, how do
we make sure that the parameters that have been sup-
plied are appropriate from the type-checking standpoint?

To a limited extent, we can use the compiler to do these
checks for us. In Listing 1, the method used to set Item-
Serf takes a parameter of type ServiceFacility. So any legal
(according to the C# compiler) invocation of this method
should pass in a parameter that implements the Service-
Facility interface. This works, but only as long as we can
bundle up all the restrictions on a particular template pa-
rameter into a single interface. But this is not possible in
most cases. The following example illustrates this further.

Consider a Sort extension to StackSerf, StackSorterSerf.
This component creates stacks that can be sorted6. For
such a Serf, we have two separate restrictions on the Item-
Serf parameter. First, this parameter, as in the regular
StackSerf, should implement the ServiceFacility interface.
Second, data objects created by this ItemSerf must be com-
parable to each other. That is, we should be able order
these data objects according to some policy. Such a policy
can be enforced by requiring this parameter to also imple-
ment the AreInOrder interface, presented in Listing 5.

A correct ItemSerf parameter to StackSorterSerf must im-
plement both the ServiceFacility and AreInOrder interfaces.
A naive way to enforce this using the C# compiler is to
make AreInOrder extend ServiceFacility. Then, we can make

4Again, we ignore the slight complication of allowing a sin-
gle component to export multiple types.
5In this case, we will just use the initial value conventions
of Java/C# — for example, Object type variables are ini-
tialized to be null, and int variables are initialized to 0.
6We do not care why someone would sort a stack. The pur-
pose of this example is to illustrate problems with check-
ing restrictions on parameters.

94

Listing 5: AreInOrder interface
1 public interface AreInOrder
2 {
3 public bool AreInOrder(Data x1, Data x2);
4 }

the type of the ItemSerf property StackSorterSerf to be AreInOrder.
This way, the C# compiler could make sure that the pa-
rameter ItemSerf actually implements both interfaces. How-
ever, this solution is not desirable since in introduces a
spurious inheritance relationship between ServiceFacility
and AreInOrder where none really exists.

A better solution would be to create a new interface that
extends both ServiceFacility and AreInOrder, and change the
type of the ItemSerf() property such that it implements this
new interface. While this solution works, and does not cre-
ate bad inheritance hierarchies, it is cumbersome, requir-
ing the creation of too many new interfaces.

Moreover, certain kinds of restrictions are semantic re-
strictions that cannot be enforced by the compiler. As an
example, if a template takes two parameters that have to
be related in some way, thee is no way for such a relation
to to be encoded syntactically in C# (or Java).

The solution we advocate is again to rely on design by
contract. We embed the restrictions on parameters in the
specification of the component. From these specifications,
we can then create instantiation-checking wrapper com-
ponents that check whether a particular Serf has, in fact,
been instantiated completely. These components are sim-
ilar in spirit to checking components that ensure that the
behavioral contract of the component is respected [3]. The
difference here is that we check template instantiation.

Each of the parameters in the parametric context may
be annotated with restrictions. For instance, in the Stack-
SorterSerf example, we impose a restriction on the Item-
Serf parameter that it implement the AreInOrder interface.
This requirement, however, is stated in the RESOLVE con-
tract, but not in the corresponding C# interface for reasons
cited earlier in this section. Instead, the requirement is
encoded as part of the instantiation-checking component.
The setItemSerf method in the instantiation-checking wrap-
per for StackSorterSerf will now have a precondition that
the parameter it gets passed implements the AreInOrder
interface.

This precondition can be checked during execution us-
ing the Reflection API in C# and Java. The setItemSerf
method uses reflection to query the parameter it gets passed
to see the list of interfaces that parameter object imple-
ments. If AreInOrder is not part of this list, the check fails,
and the instantiation does not complete successfully. This
failure in instantiation is viewed as a failure to meet the
contract, and is handled in the same way as in [1].

Apart from these, there are two more things that need
to be checked as well. First, the object that is passed in as
a parameter to the setItemSerf method is itself a Serf, and
so we need to check if that Serf object has been properly in-
stantiated. In order to perform this check, we include an-
other method in the instantiation-checking wrapper that
can be used to query if the Serf that is wrapped in it has
been fully instantiated. This method returns a boolean
value, after checking (locally) all of the parameters to the

Serf. Second, in each method in the Serf, the parameters
passed to the method must be checked to see if their run-
time types match the expected type. For example, the pa-
rameter x to push in StackSerf must be of type Item.

The kinds of assertions that we are dealing with in check-
ing instantiation are all actually checkable at run-time.
They do not include arbitrary boolean predicates, but are
very constrained — of the form “object implements a given
interface”, or “object’s dynamic type is X”, etc.

3. CONCLUSION
In this paper, we have presented a framework for rea-

soning about parameterized components whose parame-
ters are bound at run-time. We have illustrated the use of
this framework in the context of the Service Facility pat-
tern, which is a design pattern that supports the construc-
tion of dynamically-bound parameterized components. The
components are first specified using RESOLVE, and then
realized as Serfs in an implementation language (C# in
this paper). Further, we have outlined wrapper compo-
nents that can check whether a particular Serf component
has, in fact, been properly instantiated before it is used.

4. ACKNOWLEDGMENTS
This work has been supported by the National Science

Foundation (NSF) under grant CCR-0081596, and by Lu-
cent Technologies. Any opinions, findings, conclusions or
recommendations expressed in this paper are those of the
authors and do not reflect the views of the NSF or Lucent.

5. REFERENCES
[1] S. H. Edwards. Making the case for assertion

checking wrappers. In Proceedings of the RESOLVE
Workshop 2002, number Tech. Report TR-02-11,
pages 28–42, Blacksburg, VA, June 2002.

[2] S. H. Edwards, W. D. Heym, T. J. Long,
M. Sitaraman, and B. W. Weide. Specifying
Components in RESOLVE. SEN, 19(4):29–39, 1994.

[3] S. H. Edwards, G. Shakir, M. Sitaraman, B. W.
Weide, and J. Hollingsworth. A framework for
detecting interface violations in component-based
software. In Proceedings: Fifth International
Conference on Software Reuse, pages 46–55, 1998.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.

[5] J. Goguen. Parameterized programming. IEEE TSE,
SE–10(5):528–543, September 1984.

[6] B. Meyer. Design by contract, chapter 1. Prentice
Hall, 1992.

[7] Microsoft. Microsoft Visual C# .NET Language
Reference. Microsoft Press, Redmond, WA, 2002.

[8] D. Riehle. Composite design patterns.
[9] N. Sridhar, S. M. Pike, and B. W. Weide. Dynamic

module replacement in distributed protocols. In
Proc. ICDCS-2003, May 2003.

[10] N. Sridhar, B. W. Weide, and P. Bucci. Service
facilities: Extending abstract factories to decouple
advanced dependencies. In Proc. ICSR-7, pages
309–326, April 2002.

[11] H. Thimbleby. Delaying commitment. IEEE
Software, 5(3):78–86, May/June 1988.

95

SAVCBS 2003
DEMONSTRATION ABSTRACTS

96

Specifications in the Development Process: An AsmL
Demonstration

Mike Barnett Colin Campbell Wolfgang Grieskamp Yuri Gurevich
Lev Nachmanson Wolfram Schulte Nikolai Tillmann Margus Veanes

Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399
USA

{mbarnett,colin,wrwg,gurevich,levnach,schulte,nikolait,margus}@microsoft.com

ABSTRACT
AsmL is a specification system for software modeling, test
generation, test validation, and implementation verification.
It comprises a formal specification language, a set of li-
braries, and a test tool. It is integrated into the .NET
Framework and Microsoft development tools. It has multi-
ple source notations that can be used in a literate program-
ming style either in an XML format or embedded within
Microsoft Word. Specifications written in the system are
executable, a novel feature which allows for semi-automatic
test-case generation. In addition, the system can dynami-
cally monitor an implementation to ensure that it conforms
to its specification.

1. INTRODUCTION
There has been no lack of specification languages and sys-
tems for verifying properties of specifications and also for
verifying that an implementation is correct with respect to
its specification. What has been lacking (with several no-
table exceptions) are any results that have affected the “nor-
mal” programmer and the “normal” software development
process. Our group, The Foundations of Software Engineer-
ing [4], is engaged in making specifications a part of the
normal software development process at Microsoft. What
we have found is that the area in most need of the kind of
help specifications can provide is, perhaps surprisingly, test-
ing and not development. Testers are often in the position of
needing to understand the overall functionality of a system
in order to design proper tests, yet this is often unavailable in
any form other than the source code. A usable specification
allows testing to begin earlier in the development process,
concurrently with the coding effort. Currently, the natural
language descriptions that serve as specifications suffer from
ambiguity and imprecision. Finally, the most pressing need

testers have, a test oracle can be provided by a specification.

We first describe the basics of AsmL specifications, then
their use for test-case generation. A test-case consists of a
sequence of calls to the modeled system, each call must be
provided with a set of parameters. Then, when an imple-
mentation is available, the test-case can be applied to it and
the results checked against its specification.

2. SPECIFICATIONS
AsmL is based upon the theory of Abstract State Machines
(ASMs) [7, 8], which is a formal operational semantics for
computational systems. A specification written in AsmL is
an operational semantics expressed at an arbitrary level of
abstraction. We call such an operational semantics a model
program; we use the terms model and specification inter-
changably. AsmL incorporates the following features:

Nondeterminism AsmL provides a carefully chosen set
of constructs with which one can express nondeter-
minism. They allow the specification of a range of
behaviors within which the implementation must re-
main. Overspecification can be avoided without sacri-
ficing precision.

Transactions AsmL is inherently parallel: all assignment
statements are evaluated in the same state and all of
the generated updates are committed in one atomic
transaction. Updates that must be made sequentially
are organized into steps; the updates in one step are
visible in following steps and steps can also be orga-
nized hierarchically. Limiting the number of steps to
prevent unnecessary sequentialization also helps pre-
vent overspecification. The next state of the compo-
nent is fully specified without making implementation-
level decisions on how to effect the changes.

Additionally, AsmL provides a rich set of mathematical data
types, such as sets, sequences, and maps (finite functions),
along with advanced programming features such as pattern
matching and several types of comprehensions.

It is also a full .NET language; AsmL models can inter-
operate with any other .NET component, e.g., written in

97

C�, VB, or C++. There are two source notations, a VB-
like style in which white space is used to indicate scoping
and which looks very similar to pseudo-code, and another
style which is a superset of C�. Both notations can be used
within a literate programming system; AsmL models are
embedded in Word documents where they appear in spe-
cial style-blocks. AsmL models can be also authored from
Visual Studio .NET, where they are represented as XML
documents in a particular schema. Bi-directional conver-
sion between XML and Word format is supported. AsmL
models can be compiled and directly executed from within
Word or Visual Studio. AsmL specifications can be made
at the interface level or for individual classes. More details
on the use of AsmL specifications can be found in several
papers [1, 6].

3. PARAMETER SELECTION
Our method for selecting test-case parameters is based on
Korat [3]. The user adds annotations to the model to de-
scribe possible values for types and method parameters.
From these annotations, the tool derives parameter sets.
The annotations consist of values associated with param-
eters and fields of basic types, as well as a set of predicates
that serve as filters on the cross-product of the combinations
of parameters and define invariants for complex types. A
technique called access driven filtering is used to enumerate
the parameter sets in an efficient way that avoids generating
redundant combinations.

4. SEQUENCE SELECTION
The tool exhaustively explores the reachable state space of
the model, by executing methods with all associated param-
eters [5]. By necessity, the exploration must be pruned to
some finite bound. We utilize a variety of cooperating tech-
niques. One technique is a bound for the branch coverage.
Another one can be considered as ”state space” coverage,
and is based on grouping the states (variable bindings) of
the model into equivalence classes and bounding the number
of representatives visited during exploration for each equiv-
alence class. Finally, direct filtering of states can also be
indicated; any state violating a filter is discarded and not
considered as part of the reachable state space.

5. CONFORMANCE CHECKING
The use of AsmL specifications for conformance checking
has been described elsewhere [2]. Conceptually, we run the
specification and the implementation in parallel and check
that the behavior of the latter is a possible behavior of the
former. We track objects as they are created, returned from
an implementation and then have their instance methods
called. In this regard, the specification functions as a test
oracle; this increases the efficacy of testing. Arbitrary con-
formance relations can be specified between the state of the
model and the state of the implementation to allow a finer-
grain checking than just comparing return values.

The conformance checking works both for test sequences
derived from the model and those that are externally sup-
plied. The implementation is instrumented at the IL level
(the platform-independent language of the .NET virtual ma-
chine); this allows any .NET implementation, irrespective of
its source language, to be checked relative to an AsmL spe-
cification.

6. CONCLUSION
One crucial decision made in the development of AsmL was
to not limit its expressiveness. This has the consequence
that general AsmL models are not directly amenable to
static verification, such as model checking. However, we
are investigating several methods for enforcing restrictions
to enable at least some static verification.

We also are continuing to refine the source notations and the
test tool itself in close collaboration with several product
groups. We strongly believe that the timing is right for
formal specifications to become an integral part of industrial
software development.

Acknowledgements
This work would not have been possible without the efforts
of visiting researchers and interns that have spent time in
the Foundations of Software Engineering group at Microsoft
Research. We also are indebted to the product groups that
have worked with us and provided valuable feedback.

7. REFERENCES
[1] M. Barnett and W. Schulte. The ABCs of specification:

AsmL, behavior, and components. Informatica,
25(4):517–526, Nov. 2001.

[2] M. Barnett and W. Schulte. Runtime verification of
.NET contracts. Journal of Systems and Software,
65(3):199–208, 2003.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. Software
Engineering Notes, 27(4), 2002.

[4] Foundations of Software Engineering, Microsoft
Research, 2003. http://research.microsoft.com/fse.

[5] W. Grieskamp, Y. Gurevich, W. Schulte, and
M. Veanes. Generating finite state machines from
abstract state machines. Software Engineering Notes,
27(4):112–122, 2002. From the conference International
Symposium on Software Testing and Analysis (ISSTA)
2002.

[6] W. Grieskamp, M. Lepper, W. Schulte, and
N. Tillmann. Testable use cases in the abstract state
machine language. In Asia-Pacific Conference on
Quality Software (APAQS’01), Dec. 2001.

[7] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In
E. Börger, editor, Specification and Validation Methods,
pages 9–36. Oxford University Press, 1995.

[8] Y. Gurevich. Sequential Abstract State Machines
Capture Sequential Algorithms. ACM Transactions on
Computational Logic, 1(1):77–111, July 2000.

98

1

ABSTRACT
We present Mae an architectural evolution environment, built

upon a system model that combines architectural and configura-
tion management concepts into a single representation. Through
Mae, users can specify architectures (in terms of their constitu-
ent components, connectors, and interfaces) in a traditional man-
ner, manage the evolution of the architectures using a check-out/
check-in mechanism that tracks all changes, select a specific
architectural configuration, and analyze the consistency of a
selected configuration.

1. ARCHITECTURAL CHANGE
Consider the following scenario. An organization specializ-

ing in software development for mobile platforms is commis-
sioned by a local fire department to produce an innovative
application for “on the fly” deployment of personnel in situa-
tions such as natural disasters and search-and-rescue efforts. Fol-
lowing good software engineering practices, the organization
first develops a proper architecture for the application in a suit-
able architectural style, then models this architecture in an archi-
tecture description language (ADL), refines the architecture into
a module design, and, finally, implements the application impec-
cably. The new application is an instant hit, and fire and police
departments across the country adopt it. Motivated by this suc-
cess, as well as by demands for similar capabilities from the mil-
itary, the organization enters a cycle of rapidly advancing the
application, creating add-ons, selling upgrades, adapting the
application to different hardware platforms (both stationary and
mobile), specializing the application for its various customers,
and generally increasing its revenue throughout this process.

Configuration management (CM) systems have long been
used to provide support for these kinds of situations. This, how-
ever, leads to problems with the above scenario: as the applica-
tion evolves, so does its architecture. These architectural
changes must be managed in a manner much like source code,
allowing the architecture to evolve into different versions and
exhibit different variants. One solution is to store the entire
architectural description in a single file and track its evolution
using an existing CM system (called coarse-grained versioning).
An alternative solution is to version each architectural element in
a separate file (called fine-grained versioning). Problems associ-
ated with each of these approaches reduce their effectiveness in
managing architectural evolution. These problems are briefly
discussed in Section 2.

Any solution to managing architectural evolution must sup-
port an architect in using: 1) multiple versions of a single archi-
tectural element that are part of the same configuration, 2)
optional elements, 3) variant elements, 4) elements that are both
optional and variant, and 5) relations among optional and variant
elements. To address these issues and to mitigate the problems
associated with use of traditional CM systems, we have devel-
oped a novel approach called Mae. Mae combines techniques
from the fields of software architecture and configuration man-
agement to make two unique contributions: 1) an architectural
system model that facilitates capturing the evolution of an archi-
tecture and its constituent elements, and 2) an integrated envi-
ronment that supports managing the evolution of architectures.
Details of the system model may be found in [2]. We propose to
demonstrate Mae’s architectural evolution environment and its
functionality in designing, analyzing, and evolving software
architectures.

2. EXISTING APPROACHES
Even though it is possible to manage the evolution of the

architectural artifacts using traditional CM systems, we argue
that this cannot be done effectively.

2.1. Coarse-grained Versioning
One possible approach to using an existing CM system for

managing architectural evolution is to store and version the
entire architectural description as a single file. This solution is
akin to storing and versioning the entire source code of a soft-
ware program as a single file. Clearly, managing artifacts at such
a coarse-grained level leads to severe problems since any single
change would result in a new version of the entire architectural
specification. Moreover, the presence of multiple optional and
variant elements leads to a combinatorial explosion of branches,
due to the fact that each potential combination must be explicitly
specified. Finally, this approach prevents the use of multiple ver-
sions of the same artifact within a single architecture. In sum,
these shortcomings make versioning an entire architectural spec-
ification as a single artifact a highly undesirable solution for
managing architectural evolution.

2.2. Fine-grained Versioning
Versioning fine-grained artifacts is considered a better

approach to managing source code evolution than coarse-grained
versioning. However, the analogy does not hold when applied to
architectural evolution. Fine-grained versioning leads to serious
consistency problems due to the fact that the architectural speci-
fication and the CM system capture duplicate information about
the architectural configuration. Any change in the composition
of the architectural configuration must be reflected in the CM
system, and vice versa. Given that much of architectural design
resolves around composing an architectural configuration, this
becomes a recurrent and potentially error-prone activity.

This approach also requires extensive use of branching to
manage optionality and variability. Traditional CM techniques
that support branching (e.g., differencing and merging) work
well for source code. However, they simply do not work for

 Mae
An Architectural Evolution Environment

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.
roshande@usc.edu

Roshanak Roshandel

99

2

architectural specifications, because of a difference in the level
of granularity (i.e., lines of code in a source file versus compo-
nents, connectors, links, and so on in an architectural specifica-
tion). As a result, using a traditional CM system would force an
architect into storing each potential architectural configuration
on a separate branch. Finally, this approach requires breaking up
an architectural specification into numerous small files to be
managed separately. Even for a medium-sized application, this
results in hundreds of small files that must be managed. While
automated tools could be created to address this problem, the
aforementioned problem of keeping the architectural specifica-
tion and the CM system synchronized remains a significant
obstacle.

To summarize, neither coarse-grained nor fine-grained ver-
sioning provides an adequate solution for capturing and manag-
ing architectural evolution. We have developed a system model
that addresses the above issues. The system model captures
architecture in terms of types and instances of constituent com-
ponents, connectors, and their interfaces; leverages behaviors,
constraints, and subtyping relationships among them; employs
revisions and inter-file branches to support linear and diverging
paths of evolution; and uses guarded expressions to denote
optionality and variability of the artifacts. Finally it supports
hierarchical composition of components and connectors in the
system. The full discussion may be found in [2].

In the next section we present our architectural evolution
environment, which relies on the above system model, and
addresses the architectural evolution problem.

3. MAE ENVIRONMENT
Mae's architecture evolution environment provides and

enforces the specific procedures through which an architecture is
created and evolved. The environment does so by providing a
tightly-integrated combination of functionality that covers both
architectural aspects, such as designing and specifying an archi-
tecture or analyzing an architecture for its consistency, and CM
aspects, such as checking out and checking in elements that need
to change or selecting a particular architectural configuration out
of the available version space.

As shown in Figure 1, the Mae architectural evolution envi-
ronment consists of four major subsystems. The first subsystem,
the xADL 2.0 data binding library [1], forms the core of the
environment. The data binding library is a standard part of the
xADL 2.0 infrastructure that, given a set of XML schemas, pro-
vides a programmatic interface to access XML documents
adhering to those schemas. In our case, the data binding library
provides access to XML documents described by the XML sche-
mas that represent Mae’s integrated system model. In essence,
thus, the xADL 2.0 data binding library encapsulates our system

model by providing a programmatic interface to access, manipu-
late, and store evolving architecture specifications.

The three remaining subsystems each perform separate but
complimentary tasks as part of the overall process of managing
the evolution of a software architecture:

• The design subsystem combines functionality for graphically
designing and editing an architecture with functionality for
versioning the architectural elements. This subsystem sup-
ports architects in performing their day-to-day job of defining
and maintaining architectural descriptions, while also provid-
ing them with the familiar check out/check in mechanism to
create a historical archive of all changes they make.

• The selector subsystem enables a user to select one or more
architectural configurations out of the available version space.
Once an architecture has started to evolve, and once it con-
tains a multitude of optional and variant elements, the burden
of manually selecting an architectural configuration becomes
too great. To overcome this burden and automatically extract a
single architecture based upon a user-specified set of desired
properties, Mae provides the subsystem as an integral part of
its environment.

• Finally, the analysis subsystem provides sophisticated analy-
ses for detecting inconsistencies in architectural configura-
tions. This subsystem typically is used after a particular
architectural configuration has been selected, and helps to
ensure that the architectural configuration is not only structur-
ally sound, but also consistent with the expected behaviors
and constraints of each and every component and connector in
the selected configuration.

4. EVALUATION
Mae has been successfully used in three different settings as

the primary architectural development and evolution environ-
ment. The collective experiences not only show that Mae is
effective in circumventing the problems that occur when using a
traditional CM system, but also demonstrate that it is a usable
and scalable solution that is applicable to real-world problems.

As a first experience, we used Mae to create and evolve the
architecture of an audio/video entertainment system patterned
after an existing architecture for consumer electronics. Our eval-
uation focused on usability, and in particular on whether the
presence of configuration management functionality hinders or
obscures the process of designing an architecture. Our second
experience with Mae involved creating and evolving the soft-
ware architecture of the Troops Deployment and battle Simula-
tions system. The evaluation focused on evaluating the
scalability of Mae. While the system contains a moderate num-
ber of component and connector types, the number of compo-
nent and connector instances can be in the 100’s. Finally, we
evaluated Mae's applicability to real-world settings through
independent use by another research group at the University of
Southern California. This group collaborates with NASA's Jet
Propulsion Laboratory (JPL) in modeling and analyzing the
evolving software architecture of the SCrover application, which
is the on-board software of a rover system built using JPL's Mis-
sion Data System (MDS) framework

5. REFERENCES
[1] Dashofy, E.M., van der Hoek. A., Taylor R.N., An Infra-

structure for the Rapid Development of XML-based Archi-
tecture Description Languages, in Proceedings of the 24th
International Conference on Software Engineering
(ICSE2002), Orlando, Florida.

[2] Roshandel R., van der Hoek A., Mikic-Rakic M., Medvi-
dovic N., Mae - A System Model and Environment for
Managing Architectural Evolution, Submitted to ACM
Transactions on Software Engineering and Methodology
(In review), October 2002.

xADL 2.0
Data Binding Library

Analysis SubsystemSelector SubsystemDesign Subsystem

XML Architectural
Specification

xADL
Schemas

Figure 1. Mae’s Architecture

100

Runtime Assertion Checking Using JML

Roy Patrick Tan
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA

rtan@vt.edu

public class IntMathOps3 {

//@ requires y >= 0;

public static int isqrt(int y)

{

return (int) Math.sqrt(y);

}

}

Figure 1: A simple specification requiring the pa-
rameter to be non-negative

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—programming by contract, assertion checkers, class
invariants; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—
pre- and post-conditions, invariants, assertions; D.2.3 [Soft-
ware Engineering]: Coding Tools and Techniques—object-
oriented programming ; D.2.5 [Software Engineering]:
Testing and Debugging—debugging aids; D.3.2 [Program-
ming Languages]: Language Classifications—JML

General Terms
Languages

Keywords
JML, Java, run-time checking, design by contract

1. INTRODUCTION
JML, the Java Modeling Language, is a language that al-
lows programmers to specify the detailed design of Java pro-
grams. A software developer can use JML to add specifica-
tions such as method preconditions and postconditions, and
class invariants to clearly indicate their correct behavior.

SAVCBS ’03 Helsinki, Finland

//@ model import org.jmlspecs.models.*;

public class IntMathOps2 {

/*@ public normal_behavior

@ requires y >= 0;

@ assignable \nothing;

@ ensures -y <= \result && \result <= y;

@ ensures \result * \result <= y;

@ ensures

@ y < (Math.abs(\result) + 1)

@ * (Math.abs(\result) + 1);

@*/

public static int isqrt(int y);

}

Figure 2: A complete specification

JML annotations are written in the form of specially com-
mented sections of the code. Figure 1 shows a lightweight
JML specification for an integer square root method, requir-
ing that the input be non-negative [4]. While specifications
can be as simple as that, JML has sophisticated features
that allow programmers to write full, abstract, model-based
specifications. Figure 2 shows a complete specification for
the integer square root method [4].

2. THE JML COMPILER
Jmlc, the JML compiler, is one of several tools support the
JML notation [2]. Jmlc takes JML annotated source files
and compiles preconditions, postconditions, invariants, and
history constraints into bytecode that checks these specifi-
cations at runtime, making jmlc an ideal design-by-contract
tool.

Runtime monitoring of contract assertions has many well
known advantages. One particularly useful feature of run-
time assertion checking is that an error is likely to be found
at the point of contract violation; the error does not propa-
gate such that when it is detected, the point of failure is in
correctly implemented code.

The lack of assertions in early versions of the Java language,
and the lack of design-by-contract checking of preconditions,
prostconditions, and invariants in the current version (JDK

101

1.4) has led to many runtime assertion checking tools for
Java, such as iContract [3], and Jass [1].

However, JML has features not found in other runtime check-
ers. For example, JML’s facility for specification-only fields
and methods allows programmers to create specifications
using an abstract model of the object’s state. The JML
compiler allows programmers to use formal specification as
a practical tool for debugging and testing software compo-
nents.

3. CONCLUSIONS
Any developer of Java components and applications may
benefit from the use of JML tools. JML has an easy adop-
tion path, since classes and methods need not have full spec-
ifications. The programmer can begin by putting the odd
precondition or postcondition check and then code in more
complex specifications as his proficiency in the language im-
proves. JML has been put to practical use in industry. Par-
ticularly, nearly all the API of Java Card, a dialect of Java
for use in smart cards, has been specified in JML [5].

JML was originally developed in Iowa State University by
Gary Leavens and his students. It is now an open source
project with developers from all over the world actively con-
tributing to improve the tools and the language. The JML
homepage can be found at http://jmlspecs.org.

Acknowlegements
We gratefully acknowledge the financial support from the
National Science Foundation under the grant CCR-0113181.
Any opinions, conclustions or recommendations expressed in
this paper do not necessarily reflect the views of the NSF.

4. REFERENCES
[1] D. Bartetzko, C. Fischer, M. Mller, and H. Wehrheim.

Jass - java with assertions. In K. Havelund and
G. Rosu, editors, Electronic Notes in Theoretical
Computer Science, volume 55. Elsevier, 2001.

[2] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T.
Leavens, K. Rustan, M. Leino, and E. Poll. An
overview of JML tools and applications. In Eighth
International Workshop on Formal Methods for
Industrial Critical Systems (FMICS ’03), volume 80,
pages 73–89. Elsevier, 2003.

[3] R. Kramer. iContract — the Java design by contract
tool. In TOOLS 26: Technology of Object-Oriented
Languages and Systems, pages 295–307, 1998.

[4] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. Technical Report 98-06v,
Department of Computer Science, Iowa State
University, May 2003.

[5] E. Poll, J. van den Berg, and B. Jacobs. Specification
of the JavaCard API in JML. In J. Domingo-Ferrer,
D. Chan, and A. Watson, editors, Fourth Smart Card
Research and Advanced Application Conference
(CARDIS’2000), pages 135–154. Kluwer Acad. Publ.,
2000.

102

