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Abstract. Framing is important for specification and verification, especially in programs that mutate data struc-
tures with shared data, such as DAGs. Both separation logic and region logic are successful approaches to fram-
ing, with separation logic providing a concise way to reason about data structures that are disjoint, and region
logic providing the ability to reason about framing for shared mutable data. In order to obtain the benefits of
both logics for programs with shared mutable data, this paper unifies them into a single logic, which can encode
both of them and allows them to interoperate. The new logic thus provides a way to reason about program
modules specified in a mix of styles.
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1 Introduction

In Hoare-style reasoning framing is important for verification. A method’s frame indirectly describes the locations
that the method may not change [[16]. Framing allows verification to carry properties past statements such as
method calls, since properties true for unchanged locations will remain valid.

Two approaches to framing are more central to the problem addressed in this paper. Region logic (RL) [4/1]
uses ideas that are similar to dynamic frames [29J30]], allowing region variables, but restricts specifications so that
only first-order logic is needed for verification. Separation logic (SL) [52] features primitives (notably separating
conjunction) that make specification of disjoint regions easy and concise.

However, SL does not make specification of unrestricted sharing among mutable data structures easy. Framing
in SL depends on disjointness (the use of separating conjunction); the frame rule preserves the value of pred-
icates that are separated from assertions in preconditions. Data structures with deep sharing, such as directed
acyclic graphs and unrestricted graphs, complicate local reasoning because one has to figure out that how the local
changes affect other parts of the program. For example, changes to the left descendants of a dag may affect its right
descendants.

In this paper, we limit our study to sequential imperative programs. The goal of our work is to show how
to combine the advantages of RL and SL into one logic for reasoning about framing. We consider mutable data
structures that are defined by classes, but we do not consider the object-oriented features of subtyping and dynamic
dispatch. In our previous work we defined fine-grained region logic (FRL) [7]], a logic adapted from RL. It specifies
frames for both methods (procedures) and predicates (like JML [32] model methods) as write effects and read
effects. Write effects of methods are specified using expressions that denote variables and sets of heap locations,
called regions. Regions are also used to specify the read effects of predicates, which are the variables and locations
that the predicate depends on. The logic has ways to specify disjointness; if the write effects of a method are
disjoint from the read effects of a predicate, then the validity of the predicate is preserved by a call to the method.
Moreover, inductive data types can be reasoned about using the dynamic frames approach [29/30], i.e., by writing
the effect specifications using the values of dynamically-updated ghost fields of type region. (A ghost field is a
specification-only field that can be manipulated by the specification as the program runs.)

One drawback of specifications written in FRL is that they are not as concise as those in SL, particularly
when expressing disjoint data structures, e.g., binary trees or disjoint linked-lists, for which SL is very concise.
For example, when specifying a binary tree, in SL one need only specify the abstract values contained in the
data structure; the use of points-to predicates and separating conjunction implicitly describes the shape of the data
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structure and its disjointness properties. By contrast, when specifying a binary tree in FRL one needs to both specify
the abstract values and separately specify the dynamic frame of the data structure, which is less concise than the
corresponding SL specification. Another drawback of FRL is that the specification must be written to explicitly
update the ghost field(s) that specify its dynamic frame; this increases the annotation burden and is error-prone.

The problem we address in this paper is how to provide a formal technique for combining specifications in
both FRL and SL, which would allow a single mechanism to reason about specifications written in both logics or
in a mixed combination of these logics, which also supports the specification of framing for shared mutable data.
FRL and SL represent different methodologies, and we know of no previous work connecting them formally.

The approach we use to overcome the differences between FRL and SL is to define a semantics for intuitionistic
SL in terms of the program’s heap and a region, as these are the core concepts in FRL, and we show that this
semantics is equivalent to SL’s original semantics. Intuitively, the region used to determine the validity of an SL
assertion is its semantic footprint, which is the greatest lower bound of the set of heap locations that determine the
assertion’s validity; to make this possible, we limit our study to a commonly-used subset of SL which has such
lower bounds; these are the supported assertions from the work of O’Hearn et al. [47]. We call the resulting subset
of SL Supported Separation Logic (SSL). An important result in making this connection is Theorem which
says that there is a way to compute semantic footprints syntactically and express them as region expressions in
FRL. With those footprint expressions we are able to: encode SSL assertions, define read effects for them, and use
FRL’s framing judgment to verify programs specified with SSL.

In order to unify FRL and SSL’s specification languages, we define Unified Fine-Grained Region Logic (UFRL),
which merges region expressions, read and write effects, and separation. UFRL is a generalization of FRL, thus
FRL is trivially embedded into UFRL. To show that UFRL also captures the meaning of SSL specifications, we
map SSL’s axioms and proof rules into those of UFRL, and show that they are derivable in the UFRL proof system.

We use our results to make specifications both more concise and more expressive, by combining the advantages
of FRL and SL. For example, when specifying data structures whose parts are disjoint, one can use SL idioms.
To specify data structures with shared parts, one can use FRL-style specifications and dynamic frames. When it
is convenient, dynamic frames can be computed by footprint functions. Moreover, our results allow specifications
written in FRL and SL to interoperate with each other.

1.1 Contributions

This paper provides a way to locally reason about framing for shared mutable data structures in sequential object-
based programs. It does this by combining two successful logics for framing: a commonly used subset of SL
and a fine-grained variant of region logic, FRL. The combined logic, UFRL, is enriched by features of both SL
and FRL: separating conjunction is combined with explicit write and read effects specified by region expressions.
Specifications written in these two styles can interoperate with each other as they are both encoded into UFRL.
Thus, specifying and verifying one module can use other modules’ specifications written in different styles. The
FRL and SL assertion languages have been formalized in the KIV theorem prover [23]]. Lemmas and theorems that
are not formally proved in the paper have been proved in KIV. These machine-checked proofs have been exported
and are available online [Sl6]. Table[I on the following page|shows the correspondence between the theorems and
lemmas defined in the paper and those defined in the KIV projects [Sl6].

1.2 Outline

The next section motivates this work with examples. Background on the semantics of heaps in Section 3] Section[4]
presents the programming language for which we formalize the programming logic. Section [5] presents the asser-
tion language, semantics of effects, immune and separator. Section [f] presents the program correctness in FRL, i.e.,
proof axioms and proof rules. Section [/| presents the program correctness in UFRL, i.e., proof axioms and proof
rules. Section[8 shows that FRL is an instance of UFRL. Section[9]shows the semantic connection between UFRL
and SL. Section [I0] and Section [IT]encode SSL assertions and specifications into UFRL assertions and specifica-
tions, and shows that SSL proofs are preserved by the encoding. Section[I2]extends our results with SSL inductive
predicates. Section [I3]extends the UFRL proof system with separating conjunction. Section [T4] presents potential
applications of UFRL. Section[I5]discusses the idea of encoding magic wand. Section [T6]discusses related work.
Finally, Section[I7) gives conclusions and future work.
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in the paper in the KIV project ‘
Theorem [%] sl-semantics/equivalence/sem-equivalence ‘
Lemma @ frl-sep-expr-proof/expr-rsl-semantics/rsla-stable ‘
Lemma @ frl-sep-expr-proof/semantic-footprint-rsl/* ‘
Corollary frl-sep-expr-proof/translation/fpt-a-restrictive ‘
Lemma @ Lemma @ Theorem I@] frl-sep-expr-proof/translation/sem-preservation ‘
Theorem [W] frl-sep-expr-proof/translation/sfpt-fpt ‘
Theorem I@ frl-sep-expr-proof/translation/sem-preservation-ex ‘
Lemma IE frl-sep-expr-proof/effects-rsl/sep-tr-effs ‘
Lemma I;E] frl-sep-expr-proof/translation/fv-preservation ‘
Lemma @ frl-sep-expr-proof/effects-rsl/efs-fv ‘

Fig. 1: The correspondence between the theorems and lemmas defined in the paper and those defined in the KIV
projects [SL6]].

2 Motivation

This section sketches some examples to illustrate problems with separation logic and fine-grained region logic and
our approach to solving them.

2.1 Data Structures with Unrestricted Sharing

Fig.[2 on the next page|specifies directed acyclic graphs (DAGs), where sharing is permitted between sub-DAGs,
but cycles are not permitted. A predicate dag describes its structure written in the style of SL. The use of the
conjunction (instead of separating conjunction) indicates that sub-DAGs may share some locations.

In SL, the introduction of separating conjunction leads to its frame rule:

s {a} S {d}
Fs{axc}S{a’«xc} wheremods(S)nEV(c)=

(FRM)

where FV(c) returns the set of free variables in c¢. Local reasoning can be achieved by this frame rule, since it
allows a specification to solely describe the partial state that programs use. Other disjoint states are untouched and
can be preserved by applying the frame rule. The side-condition is needed since separating conjunction does not
describe separation in the store, but only in the heap.

However, the SL’s frame rule cannot be directly used when verifying data structures with unrestricted sharing
[25]] because of the use of conjunctions, e.g., the definition of the predicate dag in Fig. 2 on the next pagel The
left and the right descendants of a DAG may not be disjoint. Thus, changes in the left descendants may affect the
value of the right descendants.

FRL supports local reasoning by the means of effects. The effects may be variables in stores or regions in
heaps. FRL’s frame rule uses effects to distinguish what is preserved, shown as follows:

. {P} S {P'}[¢] P, dfrmQ
Fr AP & Q) S {P & Q}[e]

(FRM.,.) where P && Q = &'/

The formula ¢ is the write effect that denotes the set of locations (variables and regions) that may be modified by
S. The formula ¢ is the read effect that denotes the set of locations that the assertion @) replies on. The formula
-/ denotes the disjointness of the two sets of locations. The frame rule says that to preserve the validity of the
assertion () after executing the statement S, one has to prove that the locations in S$’s write effects are disjoint with
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the locations that () depends on. In the conclusion of the frame rule, P is connected with ) by the conjunction that
allows one to use the frame rule directly when reasoning with unrestricted data structures.

For example, in Fig.[2] a recursive procedure, mark, marks all reachable nodes in a DAG, starting from a given
node d. In the body of the procedure, the field d.mark is updated to 1 if it is not a null reference, and is not
already marked, i.e., d.mark—0, then mark is recursively invoked on its left sub-DAGs and right sub-DAGs,
e.g., mark (d.1l) and mark (d.r). Its write effect is specified by a helping function unmarked that collects
un-marked locations of a DAG whose root is d , and returns them through the variable ret with type region. The
body of unmarked collects locations of the form region{d.mark}, where d is not null and not marked. Then
it recursively collects un-marked locations on d’s left sub-DAGs and right sub-DAGs. The decreases clause
specifies a termination condition. It requires that the footprint of the DAG argument becomes strictly smaller each
time there is a recursive call. The footprints of a DAG are also bounded so that the sequence of arguments in
such recursive calls cannot decrease forever. In our example, the bound is the empty set that is the footprint of
dag(null).

class Dag { wvar mark : int; wvar 1 : Dag; var r : Dag };

predicate dag(d:Dag)
reads fpt (dag(d));
decreases fpt (dag(d));
{ d# null = 3 i, j,k.(d.mark—i % d.1l—7 * d.r—k * (dag(d.l) && dag(d.r)))}

function unmarked(d: Dag) : region
requires dag(d);
reads fpt (dag(d));
ensures YV n:Dag. (region{n.mark} < fpt(dag(d)) && n.mark—0
<= region{n.mark} < ret);
decreases fpt (dag(d));

if (d == null) then { ret := region{}; }
else {

ret := region{};

if (d.mark = 0) then {

ret := ret + region{d.mark};

t

ret := ret + unmarked(d.l);

ret := ret + unmarked(d.r);

method mark (d: Dag)
requires dag(d);
requires d # null DRAND d.mark—1 =
V n:Dag. (region{n.mark} < fpt(dag(d)) = n.mark—1l);
modifies unmarked(d);
ensures d # null = V n:Dag. (region{n.mark} < fpt(dag(d)) = n.mark—1);
decreases fpt (dag(d));

if (d # null && d.mark = 0) then {
d.mark := 1; mark(d.l); mark(d.r);

Fig. 2: Specification of marking a DAG written in UFRL.
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When proving the body of the procedure mark, right after the procedure call mark (d. 1), one proof obliga-
tion is to show that d. r is still a DAG, i.e., the structure of the right descendants is preserved. The SL’s frame rule
cannot be directly used as the left and the right descendants may not be disjoint. But the FRL’s frame rule can be
applied as long as its side condition satisfied, which is true. We show a proof later.

2.2 Separation

One of the scenarios in which separation has been used is describing non-shared data structures, e.g., acyclic
linked-lists and binary trees. For a methodology with explicit frames like FRL, separation is described by set theo-
retic operations. For example, suppose that we want to prove that the node, this, does not share locations with the
following node. Proving this involves showing that the two regions that frame a node and its successor are disjoint.
A set of locations, R, frames an object o if the o’s observable behavior only depends on the values in R. For exam-
ple, region{n.x} frames a Node <T> object n. The first region is region{this. *}, which frames the object
this. The second region is region{this.next . repr}, which frames the following node. The disjointness
of these two regions, specified in the predicate valid, is written region{this.«}!!this.next.repr,in
UFRL.

Separation can be concisely expressed by separating conjunction (*) in SL. As we show later, UFRL can
support separating conjunction either directly or by treating it as a syntactic sugar that is desugared into assertions
with region expressions. As an example of the latter approach, the assertion x. f — 5s#y.g — 6 in SL asserts that the
two points-to assertions hold on the two disjoint heaps. It can be encoded into UFRL as follows z. f = 5&&y.g =
6&& (region{z.f}! ! region{y.g}), since region{x.f} frames z.f = 5 and region{y.g} frames y.g = 6.

With UFRL one can specify the linked-list with an SL-style inductive predicate, as shown in Fig.
Adopting the convention of VeriFast [27], ?v and ?v1st declare (universally-quantified) variables v and
v1st respectively that scope over the entire specification of append. Its precondition specifies the separating
conjunction 1st (n, [?v]) * lst (this, ?v1st), which can be desugared into UFRL as:

1st (n, [?2v]) && 1st (this,?vlst) & (fpt(lst (n, [v]))!!£fpt (lst (this,vist))).

As can be seen, the use of separating conjunction greatly simplifies the specifications. A node’s dynamic frame
need not be stored in a ghost fields, but can computed by the built-in £pt function. The semantics of £pt(a)
is a’s semantic footprint, which is the smallest set of locations on which a depends. (This is defined when a is
a supported separation logic (SSL) assertion.) In the example a node n’s dynamic frame is the set of locations
that stores the list starting with the node n, and can be computed by a £pt function, e.g., £pt (1st (n, [v])).
No flexibility in specification is lost, because dynamic frames can still be stored in a region variable, e.g., repr
:= fpt (1lst (this) ), and manipulated as needed. However, in most cases, as in our example, ghost fields and
ghost statements can be avoided, as in Fig. [3 on the next page|

2.3 Mixed styles of specifications

In software engineering, modularization allows large projects to be decomposed into smaller components. Another
contribution of our work is that UFRL allows one to specify and verify programs from components specified in
different logics, i.e., FRL and SSL (SSL being the supported variant of SL that we consider in this paper); as we
show later, both of them can be encoded into UFRL. Consider the example in Fig. Module Cel1S
is specified by SSL: method setSX and getSX may only access (write or read) a memory location this.x
if it has been requested by a points-to assertion in their preconditions. Adopting the convention of VeriFast [27],
the expression this . x—_is an abbreviation of 3y . (this.x—y); again ?v in get SX declares a (universally-
quantified) variable v that scopes over the entire specification of get SX. Module Cel11R is specified by FRL.
Method addOne may only write a memory location region{this.x}, as specified in its frame. According to
our results, the specification of set SX can be encoded into UFRL as:

[reads region{this.z}]
{Fy.this.z = y}setSX (v) ; {this.z = v}
[modifiesregion{this.z}]
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predicate lst (n : Node<T>, se : seqg<T>)
reads fpt (lst(n, se));
decreases |[se];

(n = null = se = []) && (n # null = n.val—se[0] * lst(n.next, sel[l..])

predicate lstseg(s: Node<T>, e : Node<T>, se : seqg<T>)
reads fpt (lstseg(s, e, se));
decreases |[se];

(s = e && se = [1) ||
(s # e && (s.val—se[0] #* lstseg(s.next, e, sel[l..])))

class Node<T> {
var val: T; var next: Node<T>;

method append (n: Node<T>)
requires lst(n, [?v]) #* lst(this, ?vlst);
modifies region{last () .next};
ensures this.valst = old(this.valst) + [n.val]l;
ensures this.repr = old(this.repr) + n.repr;
ensures this.valid();

var curr: Node<T>;
curr := this;;

while (curr.next # null)
invariant lstseg(this, curr) * lst(curr, ?cvlst);
invariant fpt (lstseg(this, curr))+fpt(lst (curr, cvlst))
= fpt(lst(this, vlst));

curr := curr.next;

}

curr.next := n;
function last () : Node<T>
{ /* ... */}

/* ... other methods omitted =*/

Fig. 3: A linked-list example written in UFRL with separating conjunction.
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where [reads region{this.x}] specifies read effects, which is followed by a Hoare triple giving the
method’s pre- and postconditions, and [modifies region{this.x}] specifies write effects. The union of
these two effects specifies the locations that the program can access. It is also valid to encode the specification of
set SX as the following in UFRL:

[(P1{3 y. this.x = y} setSX(v); {this.x = v} [modifies region{this.x}],

as the union is still region{this.x}. And the specification of addOne (sCell) can be encoded into UFRL
as:

[reads alloc]|]

{c¢ # null} addOne (¢ : Cells); {this.z = c.getSX() + 1}

[modifies region{this.z}].

Here alloc| means all the locations that are contained in the domain of the heap. Since the union of alloc| and

[region{this.x}] is alloc|, the encoded specification allows the program to access the whole heap; that is
consistent with the semantics of a Hoare-formula in FRL. Then, because the write effects of addOne separate from
the read effects of get SX’s postcondition, by using UFRL’s frame rule (FRM,,), we can prove that the assertions
are true in the following example.

var sCell; sCell := new CellS; wvar rCell; rCell := new CellR;
sCell.setSX(5); rCell.addOne (sCell);
assert sCell.getSX () = 5; assert rCell.getRX() = 6;

The theoretical foundation for this proof technique has been provided by the work of Banerjee et al. [4], from
which FRL is adapted.

class CellS/{ class CellR{
var x : int; var x : int;
method CellS () method CellR()
ensures this.x—0; ensures this.x = 0;
{ this.x := 0; } { this.x := 0; }
method setSX(v: int) method addOne(c : CellS)
requires this.x—_; requires c # null;
ensures this.x—v; modifies region{this.x};
{ this.x := v; } ensures this.x = c.getSX()+1;
{ this.x := c.getSX()+1; }
method getSX () : int
requires this.x—?v; method getRX () : int
ensures this.x—v % ret = v; modifies (J;
{ ret := this.x; } ensures ret = this.x;
{ ret := this.x; }

} }

Fig.4: The class Ce11S is specified in the style of separation logic. The class Ce11R is specified in the style of
UFRL.

3 Background

This section provides some background on the semantics of heaps, which are used in later sections.
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3.1 Store, Heaps and Regions

Some common semantic functions are defined in this subsection. A program state is a pair of a store and a heap. A
store, o, is a partial function that maps each variable to its value. A heap, h or H, is a finite partial map from Loc
to values. The set Loc represents locations in a heap. A location is denoted by a pair of an allocated reference, o,
and its field name, f. We call a set of locations a region, written R. Heaps and regions are manipulated using the
following operations.

Definition 1 (Heap and Region Operations). Lookup in a heap, written H o, f], is defined when (o, f) € dom(H);
Ho, f] is the value that H associates to (o, f).

H, is extended by Ho, written Hy S Hs, means: for all(o, f) € dom(Hy) :: (o, f) € dom(Hs)and (Hy[o, f] =
HsJo, f]).

H, is disjoint from Ho, written Hy L Hs, means dom(Hy) n dom(Hs) = .

The combination of two partial heaps written Hy - Ho, is defined when H1 1 Ho holds, and is the partial heap
such that: dom(H, - Hy) = dom(H,) v dom(Hs), and for all (o, f) € dom(H; - H) :

_ Hl[ovf]vlf(oaf)Edom(Hl)’

(Hl ! HZ)[O7 f] a {HQ[Ov f]? l'f(O, f) € dom(HQ)

Let H be a heap and R be a region. The restriction of H to R, written H | R is defined by: dom(H | R) =
dom(H) n R and for all (o, f) € dom(HIR) :: (H|R)[o, f] = H|o, f]. |

4 Programming Language

This section presents the programming language for which we formalize the programming logic.

4.1 Syntax

Fig. [5 defines the syntax of the language. There are two distinguished variable names. One is this that is the
receiver object; another is ret that stores the return value of a method if the method one.

The syntactic category E describes expressions, RE describes region expressions, and S describes statements.
A class consists of fields and methods. A field is declared with type integer, a user-defined datatype, or region. A

Prog ::= Class S

Class ::= class C { Member }
Member ::= Field | Method

Field ::= var f:T;

Method ::= method m(x:7T) [returns (x:T)1 { S }

T == int | region | C | C<T>

E:=n| x| null | E1 @ E;

RE ::=x | region{} | region{x.f} | region{x.x} |if E then RE; else RE;
| filter{RE,T,f} | filter{RE,T} | RE: ® RE,

F:=E | RE

S = skip; | var x:T; | x:=F; | xi:=x2.f; | x.f:=F; | x:=new C;
| if E then {S;} else {S2} | while E {S} | $iS2

@Du== |+ | — | =] < ...

®u=+ | — | =

Fig.5: The syntax of the programming language, where 7 is a numeral, x is a variable name (or a pseudo-variable,
such as alloc), and f is a field name. We use T’ to indicate a non-empty sequence of types.

method is declared in a class. In a method implementation, there are local variable declarations, update statements,
condition statements, and loop statements.
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Expressions and region expressions are pure, so cannot cause errors. There is a type region, which is a
set of locations. The region expression region{} denotes the empty region. The region expression of the form
region{z.f} denotes a singleton set that stores the location of field f in the object that is the value of . The
region expression of the form region{x.x} denotes a set that contains the abstract locations represented by the
reference x and all its fields. E] The conditional region expression, 1f £ then RF, else REj, is stateful; it
denotes that if E is true, then the region is RF;, otherwise the region is RE5. A region expression of the form
filter{RE, T, f} denotes the set of locations of form (o, f) in RE, where each object reference, o, has the type
T. A region expression of the form £ilter{RE, T} denotes the subset of RE with references of type T. For
example, let RE = {o1.f1,01.f2,09.f}, where only o has type T, then £ilter{RE,T} = {o;1.f1,01.f2}. The
operators +, —, and * denote union, difference and intersection respectively. The statement for garbage collection
or deallocation are excluded in our statements.

Fig. [6] shows semantic notations that are used in this paper but not formalized here; some are used in examples
or are used only at the meta level. The generic mathematical types seq and map are adopted from Dafny [35136].

Notation Meaning

alloc the domain of the heap

this: C assert that the variable this has type C

seq<T> sequence type

| the length of the sequence s

s[1] the element at index ¢ of the sequence s if 0 < ¢ and ¢ < |s|

sfi..] generate a new sequence that has the same elements in the same order as s
but starting at index ¢, if 0 < ¢ < |s]

sfi..7] generate a new sequence that has 5 — ¢ elements, and elements in the same
order as s but starting with the element s3], if ¢ < |s| and 0 < ¢ < j < |s]

S1+ S2 sequence concatenation

map<K, V> map type

m[k] the value of a given key k in a map m, if k is in the domain of m

kem test whether the key £ is in the domain of the map m

k¢&m test whether the key k is not in the domain of the map m

ml[k := v] generate a new map that adds k to the domain of map m and
associates the key k with the value v

mapi|i € m &&i # k :: m[i]|generate a new map that is the same as the map m excluding the key k.

Fig. 6: Some features that are not formalized in this paper.

For simplicity, we do not formalize functions and pure methods, but rely on the formalization in Banerjee et
al.’s work [2]. We use I" for type environments, which map variables to types:

I' € TypeEnv = var — T.

For brevity we omit a boolean type: the guards for if-statements and while-statements has type int, zero value
is interpreted as false and non-zero value is interpreted as true. The auxiliary function fields takes a class name
and returns a list of its declared field names and their types. The predicate isClass returns true just when 7 is a
reference type in the program. The typing rules for expressions is defined in Fig. [/| for region expressions are
defined in Fig. |8 on the next page] and for statements are defined in Fig.[9 on the next page]

3 Since FRL does not have subclassing or subtyping, the fields in region{z.x} are based on the static type of the reference
denoted by x, which will also be its dynamic type.
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I'—x:T where (I'z) =T I' - null : T where isClass(T) I'n:int

I'—-E:Th I'—Es: Ty I'-~®:17Ty >1T, —->T
FI—El@EQZT

Fig. 7: Typing rules for expressions.

I'~x:T isClass(T) (f : T') € fields(T) I'~2:T isClass(T)

I' + region{} : region
gion{} g I'  region{z.f} : region I'  region{z.x} : region

I'-E:int I' - RE; : region I' - RE> : region
'+~ if Ethen RF; else RE> : region

I' + RE : region isClass(T) (f :T) € fields(T) I' - RE : region isClass(T)
I'+ filter{RE,T, f} : region I' + filter{RE,T} : region

I' - RFE: : region, I' - RE> : region
I'—RE1 @ RE> : region

Fig. 8: Typing rules for region expressions.

I'x: T, '-F:T

r kip;: ok(I" r Ti:ok(lx: T
- skip;: ok(I") Fvarz:T;:ok(l,z:T) Tz = Firok(l)
'taxi T, I'+22: T (f : T) € fields(T") 'z:T (f : T) € fields(T") I'-F:T
'z = za.f;: 0k(I") I'txz.f = F;:ok(I')

I'2:C,I'+new(C:C T'-E:int, I'+ S1:0k(I"), I' - Sa : ok(I") T'-E:int, I'+ S : ok(I")
I'-z := newC;: ok(I') I' - if Ethen {S:} else {S2} : ok(I") I' - while E {S} : ok(I")

' S1:ok(I), I - S2 : ok(I")
'+~ 5155 : Ok(F/)

Fig.9: Typing rules for statements.
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4.2 Semantics

Fig. [10] shows the semantics of expressions and region expressions. The set Loc represents locations in a heap.
Each field’s location is represented by a pair of an allocated reference and a field name. The semantics uses a store
o, which is a partial function that maps a variable to its value, and a heap H, which maps from an object reference
and a field name to that location’s value. A Value is either a Boolean, an object reference (which may be null), an
integer or a set of locations: Value = Boolean + Object + Int + PowerSet(Loc).

Pure expressions evaluate to Values; thus the semantics of E; = E5 and E; # E5 have no need to check for
errors. Region expressions evaluate to regions, i.e., sets of locations, and may also fault. The pair (null, f) is not
allowed in the regions of our language’s semantics. The value of region{z.f} is an empty set in a state (o, H),
where o (z) = null.

The special variable, alloc, is treated in the semantics as a variable that contains the domain of the heap; it
is only updated whenever the storage is allocated (by the new statement). The program semantics maintains the
invariant: c(alloc) = dom(H). So the value of alloc can be looked up in the store.

A I'-state contains a store and a heap: I'-State=Store x Heap, where dom(c) = dom(I"), and forallz : T e I',
o(x) agrees with the type T'. Type is a function that takes a reference and a store and returns the type of the
reference. The semantics of statements is standard.

& : F — Store — Value
Elzl(o) = o(x) Enullf(c) =null  E[n](c) = Mn]
E[E1 @ E2]|(0) = E[E1][(0) MO[@] E[E2]|(0)

El1(0) = o (1)
E[region{}](c) = &
E[region{z.f}]|(0) = if o(z) = null then Felse {(o(z), f)}

E[[region{z.x}]|(c) = if o(x) = null then J

else {(0, f) | 0o = o(z) and T = Type(o,0) and (f : T) € fields(T')}
E[[if E then RE; else RE;:]|(0) = if E[E]|(c) then E[[RE ]|(0) else E[[RE2]|(0)
Efilter{RE, T}] (o) = {(o, f)|(o, f) € E[RE] (o) A Type(o,0) =T}

5[[filter{RE, T7f}]](0) = {(07 f/)‘(ov f/) € 5[[RE]](O’) A=A Type(o,0) = T}
E[RE:1 ® RE:]|(0) = E[RE](c) MO[R] E[RE] (o)

Fig. 10: Semantics of properly typed expressions. A/ is the standard meaning function for numeric literals. The
function MO gives the semantics of operators.

Assume a semantic function, M, for a statement that relates an input state to possible output states, or an
error state, 1. An error happens when statements attempt to access of a location not in the domain of the heap. We
consider the form skip; S to be identical to S. We assume a function Extend(o, x, v) that extends o to map x to
value v if z ¢ dom(c). The semantics of statements are defined in Fig.[I1 on the next page}

5 Assertion Language

In this section, an assertion language is formalized.

5.1 Syntax and semantics of assertions

The syntax of assertions is shown in Fig.[12 on the next pagel We call the first three atomic assertions. Quantifi-
cation is restricted in the syntax. Quantified variables may denote an int, or a location drawn from a region. The

typing rules for assertions are in Fig. [[3] on page[I4] The semantics of assertions is shown in Fig.
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MS : § — State — State U {1, err}
MS|[skip;]|(o, H) = (0, H)
MS|var z : T;||(o, H) = if x ¢ dom(o) then (Extend(o,x,default(T)), H) else err
MS(z := F;]|(0,H) = (o[z — E[F](0)], H)
MS[x.f :=F;]|(o, H) = if o(x) # null then (o, H[(c(z), f) — E[[F](c)]) else err
MS[[x1 :=x2.f;]|(0, H) = if 0(z2) # null then (o[z1 — H[(c(z2), f)]], H) else err
MS[[z := new C;]| (0, H) =
let (I, H') = allocate(C, H) in
let (fi:Th,...,fn:Tn) = fields(C,CT)in
let o’ = o[z +— I][alloc — dom(H')]in
(o, H'[('(x), f1) — default(Ty), ..., (o' (x), fn) — default(T},)])
MS[if E then{S:}else{S2};]|(c, H) = if E[E]|(0) then MS[S1]|(o, H) else MS[S:]|(o, H)
MS|[[while E {S};]|(0, H) =
fir(Ag.As. letv = E[E](o) in
ifv # O then lets’ = MS[[S](s)ingo s
else if v = O then s else err)(c, H)
MS[[S1S2]|(0, H) =let s’ = MS[S1]|(o, H) inif s # err then MS[S2](s') else err

Fig. 11: The semantics of statements. The allocate function takes a class name and a heap, and returns a location
and a new heap.

The assertion REy < RE; checks that RE; is a subregion of RE5. The assertion RE; ! ! REs checks that RE; and
RE, are disjoint. The semantics of assertions identifies errors (err) with false, and is two-valued. For example,
x.f = 5is false if z.f is err.

P = E1 = E2 ‘ X.f = FE | RE1 < REQ ‘ RE1!!RE2 ‘ —P | P1 8(&5[)2 | Pl‘ ‘PQ | Vx:int::P
| Vx:T:region{x.f} < RE:P | 3x:int::P | Ix:T:region{x.f} < RE:P

Fig. 12: The syntax of assertions

5.2 EFFECTS

FRL uses effects to specify frame conditions and to frame formulas. The grammar for effects is given in Fig. [T3]
The keyword modifies specifies write effects and reads specifies read effects. The keyword,
modifies or reads, is omitted when the context is obvious, or when listing the same type effects, e.g.,
(modifies xz, region{y.f}) is short for (modifies z, modifies region{y.f}). The effect fresh(RE)
means all the locations in RE did not exist (were not allocated) in the pre-state. We introduce a conditional effect:
if F then ¢, else e9; it denotes that if £ # 0, the effect is €1, otherwise the effect is 5.

The latter five forms are called atomic effects. We omit modifies and reads when the context is obvious.
For example, we write 1f F then RE else z instead of if £ thenmodifies RE else modifies x. And
the effect, 1£ E then ¢, is an abbreviation of 1 £ £ then ¢ else (.

Effects must be well-formed (wf) for the type environment ['; for example, reads z is meaningless if x in not
in the domain of I".

Definition 2 (Well-formed Effects). Let I" be a type environment, and & be an effect. The effect § is well-formed
in I if,

1. forall (M z)€ ¢ :: x € dom(I'),
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I'~E:T, TwrE:T 'x:T, (f:T)efieds(T"), T+—E:T
I'+—Ey = Es : bool I'+x.f = E:bool
I' - RE; : region, I' - RE> : region I' — RE; : region, I' - RE> : region
FI—RE1 < REgibOOl F}—RE1!!RE2:bool
I'+— P; :bool, '~ P : bool I' - P; : bool, '~ P, : bool '~ P :bool
I' - P & P, : bool I'~ Py || P> : bool I' - =P :bool
Iz :int - P : bool I' — RE : region, Iz : T+ P:bool Iz :int - P : bool
I' = Vz:int :: P :bool I'-Vz:T: region{z, f} <RE: P :bool I' =3z :int :: P : bool

I' - RE : region, I'x: T+ P:bool
I'+3z:T:region{x, f} <RE: P :bool

Fig. 13: Typing rules for assertions.

o, HED E1 = B2 — E[E1](0) = E[[E2](0)
o, HE o.f = E < (0(2), f) € dom(H) and H[o(z), f] = E[E] (o)
o, H =7 RE1 < RE> <= E[[RE1](0) < E[[RE2]|(o)
o, H =" RE, | \RE; < E[[RE1]|(0) N E[RE:2](0) = &
o H=l P& Py = o, HEY Pirando, H =D Py
o HE P || P = o,HE Pioro, HET Ps
o Hel =P = o, H' P
o, HE="Voint = P < forallv : o[z — v],H 7= p
o,HE" VY2 :T:region{z.f} <RE: P < forallo: (o, f) € E[RE](c) and Type(o,0) =T :
olz — o], HE="=T P
o,HE=" 3z int = P < existsv :: o[z > v], H 25" P
o,HE=" 3z : T : region{z.f} <RE: P « existso: (o, f) € E[RE](c) and Type(o,0) =T :
(o[z — o], H) DT P

Fig. 14: Semantics of assertions. Note that assertions with errors are false, so this is two-valued logic.

2. forall (M region{x.f}) € d :: x € dom(I"), and
3. forall (M region{x.x}) € d :: x € dom(I'),

where M is either reads, modifies, or fresh.

A correct method must have an actual write effect that is a sub-effect of its specified effectE] We use a subeffect
rule defined in Fig. to reason about such cases; it encodes the standard properties of sets.
To streamline explanations, we define the following functions on effects in Fig.[T6]

— writeR discards all but region expressions in write effects; for example, writeR(reads x, modifies y,
modifies region{x.f}) is equal to region{x.f}.

— readR discards all but region expressions in read effects; e.g., readR(reads z, reads region{z.f}) =
region{x.f}.

— freshR discards all but region expressions in fresh effects; e.g., freshR(modifies region{x.f}, fresh
region{y.x}) = region{y.*}.

* The sub-effect rules are also applicable for read effects.



Unifying Separation Logic and Region Logic to Allow Interoperability

g,0 =
| modifies x | fresh (RE)

15

& | e1,e2 | if E then ¢; else &2 | reads RE | reads x | modifies RE

Fig. 15: The grammar of effects.

— readVar discards all but variables in read effects; for example, readVar(reads x, reads region{z.f}) =

x.

— rwR unions together all the region expressions in both read and write effects; for example, rwR(reads =,
modifies region{x.f}, reads region{y.f}) = region{z.f} + region{y.f}.

writeR : € — RE

writeR(J) = &

writeR(g1,€2) = writeR(g1) + writeR(g2)

writeR(if E then ¢, else ¢3)
if E then writeR(e1) else writeR(e2)

writeR(modifies RE) = RE

writeR

writeR(reads RE) = region{}

writeR(reads z) = region{}

writeR(modifies z) = region{}
(

fresh RE) = region{}

freshR : ¢ — RE
freshR(Z) = &
freshR(g1,e2) = freshR(e1) + freshR(e2)
freshR(if E thene| elsesy) =
if E then freshR(e1) else freshR(e2)
freshR(modifies RE) = region{}
freshR(reads RE) = region{}
freshR(reads x) = region{}
(
(

freshR(modifies z) = region{}
freshR(fresh RE) = RE

"WR : e — RE

rwR() =

readR : ¢ — RE
readR(J) = &
readR(e1,e2) = readR(e1) + readR(e2)
readR(if E then e else¢y) =

if E then readR(e1) else readR(e2)
readR(modifies RE) = region{}

readR(reads RE) = RE
readR(reads ) = region{}
readR(modifies z) = region{}
readR(fresh RE) = region{}

readVar : € — var
readVar(J) = &
readVar(e1,e2) = readVar(e1) L readVar(e2)
readVar(if E then e, elsec;) =
if E then readVar(e,) else readVar(ez)
readVar(modifies RE) = (J
readVar(reads RE) =
readVar(reads ) = {x}
(
(

%)

1%}

readVar(modifies )
readVar(fresh RE) =

r'wR(e1,e2) = rwR(e1) + rwR(g2)

if Ethene; elsec;) = if E then rwR(e1) else rwR(e2)

modifies RE) = RE

rwR(reads RE)

=RE

rwR(
rwR(

rwR(reads z) = region{} rwR(modifies z) = region{}
(

rwR(fresh RE) = region{}

Fig. 16: The definitions of the functions on effects.

Definition 3 (Changes allowed by write and freshness effects). Let ¢ be effects in I', and (o, h) and (o', h’) be

I''-states for some I 2 I'. € allows change from (o, h) to (o', h'), written (o, h)—

1. forall x € dom(I""), either o(x)
2. forall (o, f) € o(alloc), either hlo, f] = h'[o
such that o = o(x);

3. for all RE such that fresh(RE) is in e, E[RE](0’) < o’

(¢/, 1) & € if and only if:

=o'(x) ormodifies v isine;
, f] or there is x such that modifies region{x.f} isin ¢,

(alloc) — o(alloc).
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/. .
€' is a write or read effect

Fe<e Fe e <ée ; I freshRE,c < ¢ false - e < €'
Fe<e e
Pler e Plex<es P=P Plei<es Plei<er
Ple1<es Plre <e Pt e1,e <éeg,e
- modifies RE:, RE>; < modifies RE: + RE» I reads RFE,,RE> < reads RE| + RE»
- modifies filter{RE,T, f} <modifies RE I modifies filter{RE,T} < modifies RE
RE, < RE> - modifies RFEy < modifies RF> RFE, < RE> - reads RE, < reads RE>

P8&&E # 08&F2 #0 e1 < e3 P8&&E) = 08&FE2 # 0 e3 < €3
P&&E1 # 0&&FE2 =0 ¢e1 < &4 P&&E1 = 0&&E2 = 0 e < &4

- if Fthenec; elsecy < €1,¢€2 - .
P if E; thene) elsecsy; < if Es theneselsecy

Fig. 17: Subeffect rules.

5.3 Framing

Let R be the region that the frame condition of a method, m, specifies in a given state; these locations may be
modified by m. The locations that are preserved are the complement of R, written R. Let R’ be locations that
may be used in evaluating an assertion, P, written reads R’ frm P.If R’ < R,ie., R'!' 'R, then P’s validity is
preserved after m is called. We use efs(—) in Fig. to define R’ for expressions, region expressions, and atomic
assertions in a given state. The frame judgment, P 7" § frm Q, means that in the type context I", § contains the
locations that are needed to evaluate () in a I'-state that satisfies P. Note that we use ¢ to denote read effects and
¢ to denote write effects, and I" is omitted when the type context is the same in the judgment. Fig.
shows the judgment for non-atomic assertions.

efs(z) = reads z

ofs(n) -

efs(null) =

efs(E1 ® E) = ¢fs(E1), efs(E2)

efs(region{}) =

efs(region{z.f}) = readsz

efs(region{x.x}) = reads z

efs(if E then RFE; else RE,) = ¢fs(E) + if E then ¢fs(RE) else ¢fs(RE>)
efs(Eilter{RE, f}) = ¢fs(RE)

efs(Eilter{RE,T, f}) = efs(RE)

efs(RE1 ® RE>) = ¢fs(RE1), efs(RE2)

efv(El E2) = efv( ) efs‘(EQ)

efs(x.f =E) = reads z, region{z.f}, ¢fs(E)
efs(RE1 < RE3) = efs(RE1), efs(RE2)

efs(RE1! 'RE>) = efs(RE1), ¢fs(RE2)

Fig. 18: Read effects of expressions, region expressions and atomic assertions.

Definition 4] says that if two states agree on a read effect, d, then the values of the expressions that depend on ¢
are identical.
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FRMFTPT

pPi . FRMSUB
1S atomic R - 61fer Q = 51 < (52 . » R
true - efs(P) frm P P s frmQ where P =
FRMCONJ FRMDISJ
P+ §frmQa P&&Q1 + 0 frm Q2 P 6frmQa P 6frm Q2
P = 5frm Ql&(&CQQ P = 5frm Q1||Q2

FRMFTPTNEG FRMY1 )

P is atomic P 1®Et § reads z frm Q
true - efs(P) frm —P Prl§frmvVa:int = Q
FRMY

P | reads ¢fs(RE) < 0 P&&region{z.f} < RE """ (g, z) frm Q
ProfrmVz:T:region{z.f} <RE:Q

FRM3, ‘
P 1™t 5 reads z fim Q
Prléfrm3az:int = Q
FRM3;
P+ reads ¢fs(RE) < 6 P&&region{z.f} < RE """ (8,z) frm Q
Préfrm3z:T:region{x.f} <RE:Q

Fig. 19: Rules for the framing judgment.” is omitted when it is the same in the judgment.

0/ & = true
&) e = true
readsy /modifiesz =y #z
reads y / modifies RE = true
reads RE; /modifies z = true
reads RE; / modifies RE; = RE:1! ! RE»
5 (e,2') = (87 £)&te(d/ )
(0,0) ) = (0/)&ke(d" ) €)
0/ (if Ethenc; elsecy) = if Ethen (0 /) c1)else (0 '/ e2)
(if Ethend; else ;) /e = if Ethen (4, /. ¢) else (d2 /- €)

Fig. 20: The definition of separator. In this figure J is a read effect and ¢ is a write effect.

Definition 4 (Agreement on read effects). Let & be an effect that is type-checked in I'. Let I" 2 I'and I'" 2 T

Let (¢’ ') and (", h") be a I''-state and a I'"'-state respectively. Then (¢’, h') and (o, h") agree on §, (o', h')
(a”,h"), if and only if:

[l

1. forall reads x €6 :: 0'(x) = o"(x)
2. for all reads region{x.f} € 6: 0 = o(x) and 0o = ¢”(x) and f € dom(fields(Type(0), CT)) : H'|o, f] =
H'|o, f]-

Agreement is used to define when a read effect frames an assertion, under some condition, in the following defi-
nition. For example, using the notation described in the following definition, z = y " (readsy, region{z.f})
Sfrm (z.f = 5) is valid.

Definition 5 (Frame Validity). P 1" § frm Q is valid, written P =1 6 frm Q, if and only if for all I'-states (o, h),
(o' 1), if (o,h) 2 (o' k') and o, h =" P&&Q, then o', h' =1 Q.
Lemma 6 (Frame Soundness of Expressions). Let (o, h) and (', k') be arbitrary I'-states. Let E be an expression.

1 (0, h) " (o' 1), then E[E] (o) = E[E] (o).
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Proof. The proof is straightforward by structural induction on expressions. O

Lemma 7 (Frame Soundness of Region expressions). Let (o, h) and (o', h') be arbitrary I'-states. Let RE be a

region expression. If (o, h) FEF) (o', 1)), then E[RE] (o) = E[[RE](c”)

Proof. The proof is straightforward by structural induction on atomic region expressions. O
Lemma 8 (Frame Soundness of Assertions). Every derivable framing judgment is valid.

Proof. By induction on a derivation of a framing judgment P " 6 frm Q. O

5.4 Separator and Immune

We use /- to define the disjointness on effects in Fig. 20 on the previous page] d /- € means that the read effects in
4 are disjoint with the write effects in €. We treat reads J, where ¢ is not a conditional effect, as reads if true
then § else (J. For example, let RE be if x.f=0 then region{y.f} else region{}. Suppose = # y and
x.f # 0. The separation of reads region{y.f} and modifies RE can be derived to reads region{y.f}
'/-modifies region{} by the rule ConMask introduced in the next section.

Lemma 9. Let RE; and RE, be two regions. Let (o, h) be a state. If o, h =1" RE, ! |RE,, then reads RE; '/
modifies RE;and reads RE,‘'/ modifies RE;.

The following lemma says if read effects, d, and write effects, € are separate, then the values on § are preserved.

Lemma 10 (Separator Agreement). Let £ and ¢ be effects that are type-checked in I'. Let I'" 2 I'. Let (o, h) and
(0!, 1) be I" states, such that (o/,h') = MS[S]|(o,h). Let ¢ be the write effect of executing S, and (o, h) =1

§ )<, then (o, h) = (o', ).
Proof. According to Definition ] there are two cases.

1. Let reads x € § be arbitrary. Since (0, H) ! § /. ¢, modifies x ¢ £. So we have o(z) = /().
2. Let reads RE € § be arbitrary. Since (o, H) ! § /. ¢, for all modifies RE' € ¢, wehave RE !'! RE'. So
we have for all (o.f) € E[[RE](¢), we have H]o, f] = H'|o, f]

O

To prevent interference of the effects of two sequential statements, immunity of two effects under certain
condition is introduced. Consider the statement: z := y;x.f := 5. The write effect of the first statement is
modifies z, and that of the second statement is region{z, f}. The effect of their composition is not necessarily
modifies (z, region{z, f}), as region{x.f} may denote different locations after x is assigned to the value
of variable y. To reason about this example, a rule of state-dependent effect subsumption is used, ascribing to x.f
:= 5 the effect modifies region{y.f} which is sound owing to the post-condition of x :=y, which is x = y.
The effect modifies region{y.f} is immune from updating x. Immunity is used in the proof of Theorem

Definition 11 (Immune). Let RE be a region expression, P be an assertion, and € and § be two effects. Then RE is
immune from € under P, written RE is P /e-immune, if and only if P implies efs(RE)/c.
Effect § is immune from ¢ under P, if and only if for all modifies RE in § :: RE is P /c-immune. |

This notion is used to prevent naive accumulation of write effects. To explain this, let €; and €3 be the two
write effects of two sequential statements. Intuitively, if the variables and regions that €1 contains overlap with the
variables and regions that €5 depends on, then €5 is not €1-immune.

Consider the example x.f := x; x.f := x;. Assume the precondition of the first update statement is = # null.
The write effects of both update statements, ¢; and e, are modifies region{x.f}. We now show that e is
2 # null/e;-immune. Informally, the write effect &5 relies on the variable x. But, the write effect £; does not
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contain modifies x. Therefore, modifies region{z.f} is « # null/modifies region{z.f}-immune.
We can calculate a proof of this as follows.

modifies region{x.f}is x # null/modifies region{z.f}-immune
iff ~ {by the definition of Immune (Def. |11 on the previous page))
forallmodifies RE inmodifies region{z.f} :: RE is x # null/modifies region{z.f}-immune
iff ~<(byREis region{x.f})
region{z.f} is  # null/modifies region{z.f}-immune
iff ~ (by the definition of Immune (Def. |11 on the previous page))
x # null implies efs(region{z.f}) /modifies region{x.f}
iff ~ {by the definition of read effects (Fig.[18 on page 16))

2 # null implies reads x'/modifies region{z.f}

iff  (by the definition of separator (Fig.[20 on page 17))

true

However, note that if the first statement were z := y, then the effect modifies region{z.f} would not be
x # null/modifies z-immune.

To make a comparison, consider another example x.f.g := x; x.f := x;. (This is not syntactically correct, but one
can desugaritto z := x.f; z.g = x; x.f := x, where z is fresh.) Assume the precondition of the first update statement
is x # null && z.f # null. In this case, £1 ismodifies region{z.f.g}, and e; ismodifies region{z.f}.
The following shows that modifies region{z.f.g}is « # null/modifies region{x.f}-immune is false.

modifies region{z.f.g}is « # null/modifies region{z.f}-immune
iff ~ (by the definition of Immune (Def. |11 on the previous page))
forallmodifies RE € modifies region{z.f.g} :: REis x # null/modifies region{z.f}-immune
iff ~ {byREis region{x.f.g})
region{x.f.g} is ¢ # null/modifies region{z.f}-immune
iff  (by the definition of Immune (Def.|[11 on the previous page))
x # null implies efs(region{z.f.g})/modifies region{z.f}
iff ~ (by the definition of read effects (Fig. 18 on page 16))
x # null implies (reads z, region{z.f})/modifies region{zx.f}

iff ~ {by the definition of separator (Fig.[20 on page 17))
false

Lemma 12. Let ¢ an effect, RE be a region expression, and P be an assertion, such that RE is P /e-immune. Then
Y(RE) = X'(RE) for any X, X' such that ¥ — X' = ¢ and X = P.

The following lemma is used in proving Theorem [I5]

Lemma 13 (Effect Transfer). Let X, X1, X5 be states. Let 1 and €9 be two effects, and P and P’ be two
assertions. Suppose the following hold:

]. EO = PandEl = Pl,'

2. Yo—= X1 Eerand X1 — s E g9, modifies RE;

3. &9 is P/ey-immune;

4. forall fresh(RE) € ¢ :: RE is P/(e2, modifies RE)-immune;
5. X1(REy) n Xy(alloc) = .

Then 20—>22 = £1,¢&2.

Proof. We need to prove that Yy — X5 = €1, €9 satisfies the conditions defined in Deﬁnition@

For condition (1) in Definition [3] let x be a variable, such that Xy(x) # Xo(x). It is the case such that either
Yo(z) # Xy1(x) or Xy (x) # Xo(z) or both. By assumption 2, modifies z is either in €1 or in 2 or both.

For condition (2) in Definition[3] let (o, f) € Xy(alloe), such that o (o, f) # X2(o, f). There are two cases:
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1. Xo(o.f) # X1(o.f): By assumption 2, there is some RE, such that modifies RE € &1 and X(RE) =
{(o, f)}. By assumption 3 and Lemma|[I2] X} (RE) = X5(RE). So Xy — X = &1, &2

2. Xi(o.f) # X3(o.f): By assumption 2, there is some RE, such that modifies RE € &3 and X1 (RE) =
{(0,)}. S0 Zp— 25 k= €1, €2

For condition (3) in Definition |3} there are two cases:

1. Suppose fresh(RE) € ¢;. By assumption 2, X (RE) < X)(alloc) — Xy(alloc), and Xy (alloc) <
XY>(alloc). By assumption 3, X1 (RE) = X5(RE). So X5(RE) € X5(RE) — Xy(alloce). So Xy — X E
£1,€2.

2. Suppose fresh(RE) € eo. By assumption 2, X5(RE) < Ys(alloc) — Yi(alloe), and Xy (alloc) C
Eo(alloc). So EQ(RE) c EQ(RE) — Eo(alloc). So Yyg— 2 E eq,69.

O

6 Program Correctness In FRL

The correctness judgment of FRL, a Hoare-formula of form {P; }S{P,}[], means that S is partially correct, its
write effects are contained in ¢, and the locations specified to be fresh in € are newly allocated. Following the work
on RL [4/1] a statement .S is partially correct if it cannot encounter an error when started in a pre-state satisfying
the specified precondition, however .S may still loop forever.

Definition 14 (Valid FRL Hoare-Formula). Let S be a statement, let P, and P> be assertions, let € be effects,
and let (o, H) be a state. Then { P} S {P2}[e] is valid in (o, H), written o, H =L" {P1} S {P»}[¢], if and only if
whenever o, H =1 Py, then

1. MS[[S]|(o, H) # err;
2. if (o/,H") = MS[S]|(0, H), then
-, H = p
— forall x € dom(o):: o' (x) # o(x) implies modifiesx € ¢
— forall (o, f) € dom(H):: H'|o, f] # HJo, f] implies (o, f) € E[JwriteR(e)] (o)
— forall (o, f) € E[[freshR(e)]|(c"):: (o, f) € (dom(H') — dom(H)).

A Hoare-formula { P} S{ Py }[e] is valid, written =1 { P} S{P2}|[e], if and only if for all states (o, H) :: o, H =L
{P1} S {P2}[e]. n

Note that the region expressions in the write effects are evaluated in the pre-state, since frame conditions only
specify changes to pre-existing locations, not changes to freshly allocated ones. On the other hand, the region
expressions in the fresh effects are evaluated in the post-state. Note that write effects are permissions to change
locations, as write effects may leave the values in locations unchanged, but specified fresh effects are indeed
obligations.

From now on, I” is omitted in the judgment when it is clear in the context. Fig. 21| shows the axioms and rules
The axioms for variable assignment, field access, field update and allocation are “small” [45] in the sense that the
union of write effects and read effects describe the least upper bound of variables and locations that S accesses,
and the write effects describe the least upper bound of the variables and locations that S may modify. The fresh
effects in the rule of the new statement accounts to a newly allocated objects.

6.1 The Sequence Rules

This subsection explains the use of the two sequence rules with examples. The rule SEQ,. may look complicated.
However, the complication arises from the side conditions that handle how effects of §1.55 are collected from those
of S; and S5. To understand SEQ/,., it may be helpful to consider two cases:
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(SKIP;) Fr {true}skip; {true}[]
(VAR,) tr {true}var z : T;{z = default(T)}[ ]
(ALLOC,) -, {true} z := new C; {new,(C,z)}[ modifies z,modifies alloc, fresh(region{z.%})]
(ASGN,) +, {true} x := F; {x = F'} [modifies x| where z ¢ FV(F)
(ACC,) {2’ # null} x := 2'.f; {x = 2’.f} [modifies x| where z # 2’
(UPDy) tr {x #null} z.f := F; {x.f = F}| modifies region{z.f}]

Fr {P}S1 {P1}[e1, fresh(RE)] » {P1} So {P'}[e2, modifies RE:]

r {P} S1S2 {P'}[ 1,2, Eresh(RE)]
where S| # var x : T}, is fresh-free, £2 is P/e1-immune, RE is P; /(e2,modifies RE;)-immune and
P1 = RE1 < RE

(SEQI+)

Fr {P&&x = default(T)} S {Q}[ modifies z,¢]
Fr {P}varz:T;S {Q}[¢]

(SEQ2;)

b {P&&E # 0} S1 {P'}[e] Fr {P&&E = 0} S2 {P'}[¢]

(IFr) i, {P}if (E) then {Si} else {S2}{P'}[¢]

(WHILE.) Fr {P&& E # 0} S{P} ¢, modifies RE]| here P frosht
r . — where P = RE'! !r, ¢ is fresh-free,
r {Pdder = alloc}while (E) {S}H{P L& E = O} [e] , ¢ is P/e-immune, and modifies r ¢ ¢

Fig.21: Correctness axioms and rules for statements in FRL.
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1. S; allocates some new objects, which are updated by Ss. This is the case where the freshly allocated region RE
is not empty. Then the write effects of S1S2 can drop RE from the write effects of So. For example, consider
the sequence: x := new C;x.f := 5;. We assume f is the only field of the class C' for simplicity. Using the
axioms ALLOC, and UPD,., we have

b {true}x := new C; {new,(C,z)}[ modifies r,modifies alloc, fresh(region{z.x})|] (1)

Fr {z # null}x.f :=5;{z.f = 5}[ modifies region{x.[}] (2)
Then, we use the SubEff, rule to loosen the write effect of Eq. (2)), and get

b {z # null}x.f := 5;{z.f = 5}[ modifies region{xz.x}| (3)
Then, we use the CONSEQ, rule (in Fig. on Eq. (I), and get

Fr {true}lx := new C; {z # null}[ modifies z,modifies alloc, fresh(region{z.x})] (4)

In order to use the SEQ1, rule on Eq. (@) and Eq. (3), it is instantiated with RE := region{z.x}, RE; :=
region{xz.x}, ¢; := modifies zr,modifies alloc and ¢y := (. Then, we check the immune side
conditions, which are:

modifies z is true/modifies r,modifies alloc-immune 5

and
& is true/modifies r,modifies alloc-immune (6)

Eq. (6) is obviously true. By the definition of immune (Def. [TT on page T8, to prove Eq. (3) is to show

forallmodifies RE € (modifies x) :: RE is true/modifies x,modifies alloc-immune (7)

Eq. ((7) is vacuously true, since no region expression RE can be a variable . Now we can use the rule SEQI,
and get
= {true}x := new C;x.f := 5;{z.f = 5}
" [modifies z,modifies alloc, fresh(region{z.x})|
In this case, the write effect of the second statement, modifies region{z.*}, is dropped in that of the

sequence statement, as the fresh effect of the first statement become the fresh effect of the sequence.
2. Sp does not allocate any new objects. Then the sequence rule can be simplified as:

= AP} S1 {P1}[en] Fr {P1} So {P'}[e2]

l_'r {P} 3152 {Pl}[51752]
where ¢ is fresh-free and 5 is P/e;-immune

The two side conditions on immunity are to prevent interference of the effects of two sequential statements. For
the write effect, variables and regions that €; contains have to be disjoint with those that €5 depends on. Ex-
amples have been given in Section Similarly, for the read effect, variables and regions that £,
contains have to be disjoint with those that d depends on. Consider the statements: y := z;z := y.f;. The
read and write effects of the first statement are reads z and modifies y respectively, and the read effect
of the second statement is reads y, reads region{y.f}. The read effects of their composition may not be
(reads z, reads y, reads region{y.f}), as region{y.f} may denote a different location after y is assigned
to the value of z. To reason about this example, a rule of state-dependent effect subsumption is used, ascribing to
x = y.[; the read effect reads region{z.f}, which is immune from updating y.

Consider again the example in Section x.f := x;x.f := x;. There, we have shown ¢5 is P/e;-immune,
where ¢; and e2 are both modifies region{z.f}, and P is  # null. Here, we show s is P/eq-immune as
follows, where ¢, is reads .

reads z is ¢ # null/modifies region{z.f}-immune
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iff ~ {by the definition of Immune (Def.|[11 on page 18))

for all reads RE € reads x :: RE is ¢ # null/modifies region{z.f}-immune
iff ~ (by there does not exist such RE)
true

The following example shows the use of the rule SEQ2,. Consider the program vary : int; y := 5;. After
using the axiom VAR,, we get

- {true}vary : int; {y = 0}[] (8)
After using the axiom ASGN,., we get:
Fp {true} y :=5; {y = 5} [ modifies y]| )
By the rule CONSEQ, on Eq. (9), we get
Fr {y =0ty :=5; {y = 5} [modifies y] (10)

Using the rule SEQ2, on Eq. (8) and Eq. (10), we get +, {true}vary:int;y:=5; {y = 5} [J]

6.2 The Loop Rule

For the rule WHILE,., P is the loop invariant and r stores the locations in the pre-state of the loop. The side
condition P = RE'! !r indicates that RE specifies the locations that may be allocated by the loop body. We use
an example to show how to instantiate r in the rule WHILE,.. Consider the following program in program context
I' = alloc: region, f : region,y : int,z : C:

def

B'= z:=new(C; f:= f + region{z.x}; y:=y —1;
def

S = f:=region{}; y:=5; while (y) {B}

We want to prove
- {true} S{y = 0}[ modifies f,modifies alloc,modifies z,modifies y, fresh(f)] (11)
After using the axiom ASGN,., once for each of the following, we get

b {true} f := region{};{f = region{}}[modifies f] (12)

b {true} vy := 5;{y = 5} modifies y| (13)
After using the rule FRM, on Eq. (13), we get

- {f = region{}} y:=5;{f = region{}&&y = 5} modifies y| (14)

From Eq. and Eq. (14), the rule SEQ/, is instantiated with RE := region{}. As the immunity conditions
are vacuously true, we can get

b, {true} f := region{}; y := 5; {f = region{}&&y = 5}[ modifies f,modifiesy| (15)

Now we consider the loop. Let variable g be fresh; g is used to snapshot the initial value of alloc. For the loop
body B, we want to derive

Fr{g!!f}B{g!!f}[modifies f,modifies z,modifies y,modifies alloc]| (16)
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From Eq. (16), the rule WHILE, is instantiated with r := g and RE = region{}. Because the immunity condi-
tions are vacuously true, we can get

{g" ! f&&g = alloc} while (y) {B} {g! ! f&&y = 0}

" [modifies z,modifies y,modifies f,modifies alloc | an
The rule PostToFr, is instantiated with r := g and RE := f. We get
L {g! !j:&&_zg = alloc.:} wfvhile (y) {B} {g! !f&&g_/ = 0} (18)
[modifies x,modifies y,modifies f,modifies alloc, fresh(f)]
After using the rule CONSEQ,. from the above, we get
{g!! f&&g = alloc}while (y) {B} {y = 0} (19)

Fr [modifies x,modifies y,modifies f,modifies alloc, fresh(f)]

The postcondition of Eq. (T3] implies the precondition of Eq. (I9). After using the rule CONSEQ, on Eq. (15), we
get
b {true} f := region{}; y :=5;{g! ! f&&g = alloc}[modifies f,modifies y]| (20)

From Eq. and Eq. (19), the rule SEQI, is instantiated with RE = region{}. As the immunity conditions are
vacuously true, we can get Eq. (TT).
Now we show the proof of Eq. (I6). After using the axiom ALLOC,., we get:

- {true} z := new C; {new,(C,z)}[ modifies r,modifies alloc, fresh(region{z.x})] (21)
Then by the rule FRM,. from the above, we get

{g!! f}z :=newC; {new,(C,x)&&g! ! f}

Fr [modifies z,modifies alloc, fresh(region{xz.x})] (22)

The rule FrToPost, is instantiated with r := g and RE = region{z.x}. And reads g /. (modifies z,
modifies alloc) is true. After applying the rule, we get

{g!! f} z :=newC; {new,(C,x)&&g! ! f&&g! ' region{r.x}}

e [modifies z,modifies alloc, fresh(region{xz.x})] 23)

Let f/ be a fresh variable and is used to snapshot the initial value of f. Then the assignment statement is written as
[ :=f'+ region{x.x};. After using the rule ASGN,., we get:

b {true} f:= f' + region{z.x}; {f = f' + region{z.%}} [modifies f] (24)
After using the rule FRM,., we get

{new, (C,z)&&g! ! f&&g! ' region{x.}}
f:=f + region{x.x};

e {f = [+ region{z.x}&&new, (C, z)&&g! ! f&&yg! ' region{zr.x}}
[modifies f]

(25)

From Egq. and Eq. (23), the rule SEQ1, is instantiated with RE = region{}. As the immunity conditions are
vacuously true, we can get

g/}
z:=new(C; f:= ' + region{z.x};
Fr {f = '+ region{z.«}&&new, (C,z)&&g! ! f&&g! ' region{z.«}}

[modifies f,modifies z,modifies alloc, fresh(region{z.x})]

(26)
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Then by the rules CONSEQ, and SubEff .., we get

- {g!'f}z:=newC; f:=f + region{z.x};{g!! [} 27
" [modifies f,modifies x,modifies alloc]|

Let 3/ be a fresh variable and is used to snapshot the initial value of y. Then the assignment is written as y := 3’ —1;.
Then, using the axiom ASGN,., we get +, {true}y =y — 1;{y = ¢y — 1}[ modifies f] Then, by the rules
FRM,, SEQI, and CONSEQ,, we get Eq. (16).

6.3 Soundndess

Theorem 15. Let S be a statement, P and Q be assertions, and ¢ be effects. If +, {P}S{Q}[e], then =,
{P}S{Q}e].

Proof. The proof is done by induction on the derivation and by cases on the last rule used. In each axiom, we show
the judgment is valid according to the statement’s semantics. In each inference rule, we show that the proof rule
derives valid conclusions from valid premises when its side conditions is satisfied. Let S be a statement and (o, h)
be an arbitrary state, and without loss of generality, let (¢/, k') = MS[S]|(o, h). We assume 1" {P} S {Q}[¢].
and o, h =" P. Then we must prove o/, h/ =1 ' @, and that all the changed locations are in ¢. There are 6 base
cases.

1. (SKIP,) In this case, S is skip;, P is true, Q is true, € is JJ. By the program semantics Fig.
o' =0,k =handI" = I Thus, o/, i/ =1" true. For the frame condition, S does not change anything, thus,
itis .

2. (VAR,) In this case, S is varxz : T, P is true, Q is = default(T) and ¢ is . By the program semantics
Fig.RI| I" = I',(z : T), 0/ = Extend(o, z,default(T)) and i/ = h. Thus (o', 1) entails Q. For the frame
condition, as the statement does not change anything existing in the prestate, thus, it is ¢J.

3. (ALLOC,) In this case, S is  := new C;, P is true, Q is z.f = default(T) and ¢ = modifies z,
alloc, fresh(region{z.*}). By the program semantics Fig. I'="I,0" =0z~ l)and b =
R'[(1, f) — default(T)], where (I, ") = allocate(C, h). Thus, (o’, h') entails Q.

For the frame condition, S only updates the variable  and alloc. By the semantics, the function allocate
returns a new heap. So fresh(region{z.x}) is the fresh effect.

4. (ASSGN,) In this case, Sis ¢ := F;, Pisz = 2/, Q is {x = F/(x — 2/)} and ¢ = modifies z, where
z ¢ FV(F). By the program semantics Fig.21 on page 21} I = I, (¢/, H') = (o[xz — E[F](o)], H), which
entails Q).

For the frame condition, this statement only updates variable x. Therefore, € is modifies z is correct.

5. (UPD,) Inthis case, Sisz.f := F;, Pisx # null, Qisz.f = F and ¢ ismodifies region{z.f}. By the
program semantics Fig.R1 I = I, (¢/, H') = (o, H[(E[z](0), f) — E[F](c)]), which entails Q.

For the frame condition, this statement changes the singleton heap location (o (x), f). Thus, ¢ is modifies
region{z.f} is correct.

6. (ACC,) In this case, Sis x := 2'.f;, Pis 2’ # null, Q isx = x1.f, and € is modifies x, where z # 2’. By
the program semantics Fig.R1| I'" = I', (¢/, H') = (o[z — H[(E[[2'](0), f)]], H), which entails Q.

For the frame condition, this statement only updates variable x. Therefore, ¢ = modifies x is correct.

The inductive hypothesis is that for all substatements S;, if 1 {P} S; {Q:}[e:], and oy, h; =1¢ P, then
0';, h; ':Fl, Qi~

1. (IF,) In this case, S is if (E) then {S;} else{S;}. We consider are two cases:
- E # 0. By the inductive hypothesis, we have o, H =" P&&E # 0, (o, H') = MS[[S1]|(c, H), which
entails @. And the frame condition is correct.
- E = 0.By the inductive hypothesis, we have o, H £/ P&&E = 0, (0", H") = MS[[S2]|(o, H), which
entails (). And the frame condition is correct.
By the program semantics Fig. 21} if P holds in the prestate, no matter which path the program takes, if the
program terminates, () holds.
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2. (WHILE,) In this case, S is while (E) do {S}. P = I, Q = I && E # 0 and the frame conditions is . The

premise is , {I && E # 0} {S} {I}[e].
By the program semantics Fig. let g be a recursive point function, such that

g =As.if E[[E # 0] (o) then let s' = MS[S]|(c, H)in g o s else s

By definition, fiz is a fixed point function, so fiz(g) = g. Then we prove fiz(g)(o, H) =1 I by fixed-point
induction.

Base Case: L =!I holds vacuously. It requires to prove all members in L implies I, but there is nothing in
1. Hence it is vacuously true.

Inductive Case: Let (0, H”) ="" I hold for an arbitrary iteration of g, and ¢ is the frame condition. Then we
prove that fiz(g)(o”, H") =" T holds, and the changed locations on the heap is .

There are two cases:

- E # 0. By the semantics, fiz(g)(c”, H") = g(MS[S]|(¢”, H")). By the inductive hypothesis, we know
that g(MS[[S](¢”, H")) = I holds. Hence fiz(g)(c”, H") =1 I holds. For the frame condition,
since the fixed point function always returns the same function g, which is framed by ¢ by the induction
hypothesis, therefore ¢ is the frame condition for an arbitrary iteration.

— E = 0. By the semantics, fiz(g)(c”, H") = (¢”, H"). Therefore, by the inductive hypothesis, we know
that fiz(g)(c”, H") =" I holds. For the frame condition, since the state does not change, the frame is
region{}, which is the subset of .

Now we conclude that if the loop exits, which means that E = 0 holds, the loop invariant I holds. Therefore,
@ holds and ¢ is its frame condition.

. (SEQI,) In this case, S is S1So, where S; # var z : T;. Let (o, H) be a state, such that (o, H) =1 P. By

the inductive hypothesis for S; and S, (0, H") = MS[[S1]|(0, H), and (¢”, H") =" Py. By the second
premise and the semantics, (o, H') = MS[[Sa](¢”). Hence (o', H') 7" P'.
For the frame condition, we must show (o, H) — (¢/, H') k&, €1,£2, fresh(RE), which is proved by
Lemma [13] It is instantiated with RE; := REy, Xy := (0,H), ¥y := (0", H"), &1 := (e, fresh(RE)).
The following conditions, which are required by the Lemma, are satisifed:

- (0,H) =" Pand (6", H") =" Py from the above;

- (0,H)—(¢",H") = (e1, fresh(RE)) by the inductive hypothesis;

- (¢",H")— (o', H') & (e2,modifies RE1) by the inductive hypothesis.

— &9 is P/e;-immune by the given side condition;

— for all fresh(RE) € &1 :: RE is P/(¢2,modifies RE;)-immune by the given side condition.

- E[RE1]|(¢”) n o(alloe) = &, RE are freshly allocated regions by Sy, such that E[[RE;[|(¢”) <

(¢”(alloc) — o(alloc)).

. (SEQ2,) In this case, Sis varx : T'; So. This case follows the inductive hypothesis and the program semantics.
. (SUBEFF,) By the inductive hypothesis, =L {P}S{Q}[¢]. Hence when applying the frame condition &’ > &,

the locations that may be changed are also contained in &’. Therefore €’ is a correct frame.

. (FRM.,.) In this case, by the inductive hypothesis, we have =L {P}S{Q}[¢]. And by the assumption, we have

P ET §frm Q and P& R = & /.. We must show that =L’ { P&& R}S{Q&& R}[]. Because P&& R implies
P, Thus, we have =" { P& R}S{Q}[e]. Let (o/, H') = MS[[S] (o, H). We must show that (¢/, H') =I" R.
By (0, H) ! P&& R and the side condition P&&R = §-/-, we have (o, H) =1 §/c. As the write effect

is (0,H) — (¢/, H') = ¢, we have (o, H) 2 (o', H'). By the definition of framing (Def. |5 on page 17) and
(0, H) =7 P&& R, we conclude that (¢/, H') =7 R.

. (CONSEQ,) In this case, by the inductive hypothesis, we have =L {P'}S{Q’}[¢]. By the premise, P = P’

and Q' = Q. Hence =L {P}S{Q}[¢] is valid.

O
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. {P} S {P'}[e] PEF6frmQ
- {P&&Q} S {P'&&Q}[e] where P&&Q = 4/

(FRM )

- {P} S{P'}[e] Pre<¢

(SUBEFF';.) (P} S (P[]

e {P1} S {Pi}[e]
Fr {P2} S{P;}[¢] where P> = P; and P{ = Pj

(CONSEQ,)

o {P&&E # 0} S {P'}[e1]  Fr {P&YE = 0} S {P'}[es]

ConEff 7
(ConEffr) - {P}S{P'}[if Ethene elsec;]|
(ConMaskl,) - {P}S {P'}[E,modifies/if Ethenc elsecy|
Fr {P} S {P'}[e,e1] where P = E # 0
(ConMask2,) - {P}S {P'}[s,modifieslif Ethence; elsee;|
Fr {P} S {P'}[e,e2] where P = E =0
r» {P&&r = alloc} S {P'
(PostToFr) o {Pldor — a °c% {P3lel
b {P&&r = alloc} S {P'}[e, fresh(RE)]
where 7 is fresh and P’ = RE! !r and reads r/¢
» {P} S {P'}[e, fresh(RE
(FrToPosty) —— P15 AP }|¢, Eresh(RE)]

- {P} S {P'8&&r! | RE}[e, fresh(RE)]
where reads /¢

. {P} S{P'}[if Ethenz,¢; else 2]
- {P} S{P'}[if E then¢; elsecs]
where P= : =E,P= 2 #0,P|| P’ = z = y, P&&z # 0 = reads y/.(z,¢),
andmodifies z ¢ (€1,¢€2)

(VarMask1 )

b {P} S{P'}[if Ethen¢; else z,¢2]
- {P} S {P'}[if E then¢; else ¢;]
where P = 2 =E P= 2=0,P||P = 2=y,PAz=0= readsy/(z,¢)
and modifies z ¢ (e1,€2)

(VarMask2,)

b {P} S{P'}[e,if E thenmodifies region{z.f},c1 else &]

, {P} S{P'}[e,if Ethen¢; else 2]
where P = 2 =E,P= 2 #0,P|| P = z.f =y, P&z # 0 = reads v'/ modifies ¢
P'&&z # 0 = reads y/modifies ¢ and and modifies z ¢ (g,€1,¢62)

(FieldMaskl )

. {P} S{P'}[e,if Ethene; elsemodifies region{z.f},e2]
Fr {P} S{P'}[e,if E thene; else &]
where P= : =E,P=2=0,P||P = z.f =y, P&z = 0 = reads v’/ modifies ¢
and P'8&z = 0 = reads y/modifies c andmodifies z ¢ (&,¢1,¢2)

(FieldMask2,)

Fig. 22: Structural rules in FRL.
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7 Program Correctness In UFRL

Unified Fine-Grained Region Logic (UFRL) was created to enable using FRL and SL together. UFRL has explicit
read and write effects. It is a generalization of FRL; thus UFRL’s assertion and programming languages are the
same as those in FRL. In particular, it inherits the special variable alloc as well.

However, Hoare-formulas in UFRL are different. The correctness judgment has the form [0]{P;}S{P>}[e].
where § are read effects (on the heap) and ¢ are write effects; thus (¢, §) contains all the heap locations that S may
access. Note that  and £ may have locations in common.

Validity of UFRL Hoare-formulas uses the same notion of partial correctness as in FRL: statements must not
encounter an error when started in a pre-state satisfying the specified precondition, but may still loop forever.

Definition 16 (Validity of UFRL Hoare-formula). Let S be a statement. Let P; and P, be assertions. Let € be
effects and 0 be read effects, let (o, H) be a state. Then [0]{P1}S{P2}[e] is valid in (o, H), written 0, H =,
{P1}S{P2}[e][0], if and only if whenever o, H =, Py, then:

1. MS[S||(o, HIE[[rwR(e,6)]|(0)) # err, and
2. if (0!, H') = MS[S]|(o, HIE[[rwR(e, 6)]|(0)), then the following all hold:
- O'/, H =, P,
— forall x € dom(o):: o'(x) # o(x) implies modifies x € ¢,
— forall (o, f) € dom(H):: H'|o, f] # H|o, f] implies (o, f) € E[writeR(e)]| (o), and
- forall (o, f) € &E|freshR(e)]|(c"):: (o, f) € (dom(H') — dom(H)).

A UFRL Hoare-formula [§]{ P, }S{P»}[] is valid, written =,, {Py1}S{P>}[][0], if and only if for all states (o, H)
o, H =y {PL}S{P2}e][6]- |
The above definition limits the heap that a statement can access. Consider the following formula

[reads region{z.f}]|{x # null}y := z.f;{y = z.f}[ modifies y]. (28)

Eq. is a valid UFRL Hoare-formula, because rwR(reads region{z.f},modifies y) = region{z.f}.
The region region{x.f} is the least set of locations that the statement needs to make sure that its execution does
not cause an error. On the contrary, the formula [F]{z # null}y := z.f;{y = z.f}[modifies y] is not a valid
UFRL Hoare-formula, because rwR(reads (J,modifies y) = region{}. As another example, consider the
following formula:

[Pz # null}zx.f :=y; {x.f = y}[ modifies region{z.[}]. (29)

Eq. is a valid UFRL Hoare-formula, because rwR((f,modifies region{z.f}) = region{z.f}.

For the purpose of framing, which is the focus of this work, there is no need to track read effects, although
the above definition does limit what the statement can access on the heap. However, read effects (on the heap) are
needed for future work; e.g., for framing of specifications with pure method calls [2].

7.1 Proof rules for UFRL

In this section we describe the proof rules for proving statements correct in UFRL. Fig. 23 on the next page| and
Fig. show the axioms and rules; these are based on FRL, but with read effects (6 and 7) specified.

In the rules, we use the shorthand new, (C,z) to mean z.f, = default(T))&& ... &&x.f, = default(T,),
where the f; : T; are defined by (fy : T1,..., fn : T) = fields(C, CT). The function, default, takes a type and
returns its default value. The predicate true is syntactic sugar for 1 = 1.

The axioms for variable declaration, variable assignment, field access, field update and allocation are “small”
[45] in the sense that the union of write effects and read effects describe the least upper bound of variables and
locations that S accesses, and the write effects describe the least upper bound of the set of variables and locations
that § may modify. The proof system does not split the store, as variables are discarded by rwR (Def.[I6). The fresh
effects in the rule of the new statement account for the newly allocated locations.
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(SKIP,) . [B]{true}skip; {true}[]
(VAR,) Fu [D){true}var z : T; {x = default(T)}[Z]
(ALLOC,,) t [&]{true} z := new C; {new,(C,z)}[ modifies z,modifies alloc, fresh(region{z.+})]
(ASGN.) - [n]{true} z := F; {zx = F} [modifies x| where x ¢ FV(F) and 17 = efs(F)
(UPD,) v [z,n]{z # null} z.f := F; {z.f = F}[modifies region{z.f}]where n = efs(F)
(ACC.) Fu [n){a’ # null} & := &' f; {x = 2’.f} [modifies x|, where z # 2’ and n = efs(z’.f)

Fu [S{P &L E # 0} $1{Q} [e]  Fu [OI{P && E = 0} $2{Q} [¢]
Fu [0, 06]{P} if (E) {Si1}else{S2}{Q} [£] where dg = efs(E)

(Fy)

Fu [01]{P} S1 {P1}[e1, fresh(RE)] o [02, reads RE1]{P1} S2 {P'}[ e2,modifies RE>]

u [(51, 62]{P} S182 {Pl}[&‘17 E2, fresh(RE)]
where S1 # var x : T, ¢1 is fresh-free, 2 is P/e1-immune, €5 is P/e1-immune,
RE is P1/(modifies REj3,e2)-immune, RE; < RE and RE2 < RE

(SEQ1.)

Fu [0, reads z|{P && = = default(T)} S {Q}[ modifies z,¢]

(SEQ2.,) Fu [6]{P}varz: T;S {Q}[e]

Fu [0]{P && E # 0} S{P} [e,modifies RE]

Fu [0,0E]{P && r = alloc} while (E) {S} {P && E = 0} [¢]
where 0g = ¢fs(E), P = RE! ! r,¢ is fresh-free, modifies r ¢ ¢, is P/e-immune and ¢ is P/e-immune

(WHILE.,)

Fig. 23: Correctness rules and axioms for statements in UFRL.
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Fig. shows structural rules. The FRM,, follows the FRM,. rule. The rule SubEff, allows ap-
proximation of effects; it can be used to match up the effects for the rule IF,,, where different branches may have
different effects. SubEff,, also allows a correctness proof to switch from a smaller to a larger heap. The rule CON-
SEQ,, is the standard consequence rule. The rule FrToPost, and PostToFr, are dual; the first allows one to add
fresh effects and the second allows one to eliminate fresh effects. To make the PostToFr,, rule clear, we can derive
the following from the rule FrToPost,, as follows:

Fu [0]{P} S {P'}[e, fresh(RE)]
o [0]{P} S {P'&& r! | RE}[¢]

where P = r = alloc

by using the subeffect rule, because rwR(d, fEresh(RE),c) < rwR(d, ¢), as rwR ignores fresh effects.

The Sequence Rules We discuss the complication arouse from read effects. Consider the case where S; allocates
some new objects, which are read by S>. This is the case where the freshly allocated region RE is not empty.
Then the read effects of S1S2 can drop RE from the read effects of S». For example, consider the sequence:
z := new C;y := x.f, where x # y. We assume f is the only field of class C' for simplicity. Using the rules
ALLOC, and ACC,, we have

o [D{true}lx := new C; {new, (C, z)}[ modifies z,modifies alloc, fresh(region{z.x})] (30)

b [reads z, region{xz.f}|{z # nullly := z.f;{y = 2.f} modifies y]| (31)
Then, we use the SubEff, rule to loosen the read effect of Eq. (31)), and get

. [reads z, region{z.x}|{z # nullly := z.f;{y = z.f} modifies y]| (32)
Then, we use the CONSEQ,, rule (in Fig. on Eq. (30), and get
Fo [D]{true}x := new C; {z # null}[ modifies z,modifies alloc, fresh(region{z.x})] (33)

In order to use the SEQI,, rule on Eq. and Eq. , it is instantiated with RE := regoin{z.x}, RE] :=
region{x.x}, RE; := region{}, £; := modifies z,modifies alloc and ¢; := modifies y. Then, we
check the immune side conditions, which are:

reads z is true/(modifies z,modifies alloc)-immune 34)
and
modifies y is true/(modifies z,modifies alloc)-immune (35)
By the definition of immune (Def. [TT on page T8)), to prove Eq. (34) and Eq. (35) is to show
for all reads RE € (reads x) :: RE is true/(modifies x,modifies alloc)-immune (36)
and

forallmodifies RE € (modifies y) :: RE is true/(modifies x,modifies alloc)-immune  (37)
Eq. (36) and Eq. are vacuously true. Now we can use the rule SEQ/,, and get

[reads z]
Fo {true}x := new C; y := x.f;{y=ux.f}
[modifies x,modifies alloc,modifies y, fresh(region{xz.x})}

In this case, the region{x.x} of the read effect in the second statement is dropped in that of the sequence state-
ment, as the fresh effects of the first statement become the fresh effect of the sequence.
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Fu [0{P}S{P'}[e] PrnfrmQ
o [6]{P&&Q} S {P'8&Q}[¢] where P&&Q = 1/

(FRM.)

Fu [61{P}S{P2}[e]  Pite<¢

(SubEff ) .y [6/]{P1}S{P2}[E/] where P, = rwR(e,d) < ”WR(EI’(S/)

Fu [0]{P1} S {P1}[e]
Fu [6]{P2} S{P;}[¢c] where P, = P; and P{ = P

(CONSEQ.)

Fu []{P&&E # 0} S {P'}[e1] o [6]{ P&&E = 0} S {P'}[e2]

(ConEffw) o [6]{P} S {P'}[if E then¢; else 2]

Fu [6]{P} S {P'}[e,if E thene| elsecz]
Fu [0{P} S {P'}[e,e1] where P = E # 0

(ConMaskl.,,)

b [6]{P} S {P'}[¢,i£ E then¢; else &]

ConMask2,, 7
(ConMaskZ.) v [01{P} S {P'}[z, 22] where P = E — 0

Fu [6]{P&&r = alloc} S {P'}[¢]
Fu [6]{P&&r = alloc} S {P'}[e, Eresh(RE)]
where 7 is fresh and P’ = RE! !r and reads r/¢

(PostToFr,,)

Fu [6]{P} S {P'}[e, fresh(RE)]
. [6]{P} S {P'}[e, £resh(RE)]
where reads r/.c

(FrToPost,,)

. [6]{P} S {P'}[if E thenmodifies z,c1 else ¢2]
Fu [6]{P} S {P'}[if E thene elseea]
where P = : =E,P= 2 #0,P|| P = x = y, P&z # 0 = reads y/(z,¢),
andmodifies z ¢ (e1,¢€2)

(VarMask1 ,,)

Fu [6]{P} S {P'}[if Ethenc; elsemodifies 7, ¢2]
o [6]{P} S {P'}[if E thene¢; else ;]
where P = 2 =E,P= 2=0,P|| P = 2 = y, P&&2 = 0 = reads y/(z,¢)
andmodifies z ¢ (£1,€2)

(VarMask2.,)

Fu [6]{P} S {P'}[¢,if E thenmodifies region{z.f},¢1 else &]

o [6]{P} S {P'}[c,if E thene; else 2]
where P = 2 =E,P= 2 #0,P|| P = z.f =y, P&z # 0 = reads r'/ modifies ¢
P'&&z # 0 = reads y/modifies ¢ and and modifies z ¢ (g,€1,¢62)

(FieldMaskl )

Fu [6]{P} S {P'}[e,if Ethene; elsemodifies region{z.f},e2]
o [6]{P} S {P'}[¢,if E then¢; else ¢]
where P= : =E,P=2=0,P||P = z.f =y, P&z = 0 = reads '/ modifies ¢
and P'8&z = 0 = reads y/modifies ¢ andmodifies z ¢ (&,¢1,¢2)

(FieldMask2,,)

Fig. 24: Structural rules.
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7.2 Soundness

Theorem 17. Let S be a statement. Let P and Q) be assertions. Let € be effects and § be read effects. If 1+,

[61{P}S{Q}[e], then = {P}S{Q}[e][0]-

Proof. Using the result of Theorem the proof only needs to check the read effects. Let S be a
statement and (o, h) be an arbitrary state. We assume +,, [§]{P} S {Q}[¢] and o, h =1" P. Then we must show
that MS[[S] (o, h1E[[rwR(e,)]|(0)) # err.

1.

2.

8

(SKIP,) In this case, S is skip;, P is true, and 6 and ¢ are . As hE[[rwR(e,0)](o) = O, by the program

semantics Fig.|[11 on page 13| MS[skip;] (o, &) # err.

(VAR,,) In this case, S is varz : T, P is true, and § and ¢ are &J. As h [ E[rwR(e,d)]|(0) = &, by the

program semantics Fig.[11 on page 13| MS[[varz : T;||(o, &) # err.

. (ALLOC,) In this case, S is ¢ := new C;, P is true and ¢ = § = . As h[E[[rwR(g,6)](0) = &, by the

program semantics Fig.[11 on page 13| MS[[z := new C;[|(c, &) # err.

. (ASSGN,,) In this case, Sis x := F';, Pisx = 2’ and 4 is ¢fs(F) and ¢ is modifies x, where x ¢ FV(F).

Since h|E[rwR(g,0)](0) = &, by the program semantics Fig. |11 on page 13| MS[[z := F;]|(c, &) # err.

. (UPD,) Inthiscase, Sisx.f := F;, Pisx # null § is (readsz, efs(F')) and e ismodifies region{x.f}.

By the precondition, we know that o(x) # null. Since E[[rwR(e, d)](c) = {(o(x), f)}, by the program

semantics Fig.[IT on page 13) MS[[x.f := F;]|(o, hl{(c(x), f)}) # err.

. (ACC,) In this case, Sis x := 2’.f;, Pis @’ # null, § is (reads 2/, region{z’.f}) and ¢ is modifies «,

where z # . By the precondition, we know that o (') # null. As E[rwR(e, ) ]|(0) = {(o(2’), f)}, by the

program semantics Fig. |11 on page 13| MS[[z := 2’.f;]|(o, h/{(c(2'), f)}) # err.

Other inductive cases follow inductive hypotheses.

The Relationship between FRL and UFRL

The following lemma shows that FRL Hoare formulas can be translated into UFRL by using the read effect
reads alloc|.

Lemma 18. Let S be a statement, and let Py and P be assertions. Let ¢ be effects, and let (o, H) be a state. Then

o, H &=, {P1}S{P:}[e] iff o, H =y, [reads alloc|]|{P;}S{P:}[z].

Proof. We prove the lemma as follows, starting from the left side.

iff

o 1 =, (P} S {Pa)e]
(by the definition of FRL valid Hoare-formula (Def. >
o, H = Py implies MS[S]|(0, H) # err and if (¢, H") = MS[S]|(o, H),
then (o/, H' = P and (for all x € dom(o) :: o'(z) # o(x) impliesmodifies x € €) and
forall (o, f) € dom(H) :: (H'[o, f] # H]o, f] implies (o, ) € E[[writeR(e)]| (o) and
forall (o, f) € E[freshR(e)]|(0") :: (o, f) € (dom(H") — dom(H)))
(by H = Hldom(H),dom(H) = E[[rwR(e,alloc|)](c))
o, H = P, implies MS[[S]|(c, H) # err and if
(o', H') = MS[S]|(o, HIE[[rwR(e,alloc])](o)),
then (o', H' & P,) and (for all x € dom(c) :: ¢/ (x) # o(x) impliesmodifies x € ) and
(for all (o, ) € dom(H) :: (H'[o, f] # H|o, f] implies (o, f) € E[[writeR(¢)]|(c))) and
(for all (o, f) € E[freshR(e)]|(a”) :: (o, f) € (dom(H') — dom(H))))
(by the definition of UFRL valid Hoare-formula (Def.[16))
o,H &, [reads alloc|]|{Pi} S {P:}[¢]
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Corollary 19. Let S be a statement, and let Py and P»> be assertions. Let € be effects, and 1 be read effects. Then
o, H t=y [n[{P1}S{ P2} [e] implies o, H =, {P1}S{P,}[e].

Def. 20| shows a syntactic mapping from the axioms and rules of FRL to those of UFRL. Recall that the
assertions in FRL and URL have the same syntax.

Definition 20 (Syntactic Mapping from FRL to UFRL). Let P, and P, be assertions in FRL. Let € be effects. We
define a syntactic mapping TRg[[—]| from FRL rules to those of UFRL below:

For the FRL axioms: TRR[[ Fr {P1} S{P:}[e]]]| = Fu [readsalloc|]{P1}S{P:} ]

For the FRL rules, let hy, . .., h, be hypotheses and c be a conclusion; then the syntactic mapping from a FRL
rule to a UFRL rule is defined as follows:

Frhiooo 5 by TRRH = hl]]-~-TRRII = hn]]
TRe(l 1=
rcC TRR[ = C]]

Theorem 21. Let S be a statement. Let Py and P, be assertions. Let € be effects. Then
Fr {P1}S{P2}e] iff o [reads alloc|]{P;}S{P:}[e]

Proof. We first prove that the left hand side implies the right hand side; i.e., that if there is a proof in FRL, then
there is a encoded proof in UFRL. The proof is by in the induction on the FRL derivation and by cases on the last
rule used. There are 6 base cases.

1. SKIP: In this case, we suppose that the FRL proof consists of the axiom SKIP,, i.e., |, {true}skip; {true}[].
Then, we must prove that

. [reads alloc|]|{true}skip; {true}[].

The conclusion is derivable by using the rule SubEff,,, with the hypothesis of the UFRL axiom SKIP,,, which
is o [F{true}skip; {true}[T].

2. VAR: In this case, we suppose that the FRL proof consists of the axiom VAR, which is +, {true}var x :
T; {x = default(T)}[]. Then, we must prove that

. [reads alloc|]|{true}var x : T;{x = default(T)}[].

The conclusion is derivable by using the rule SubEff ., with the hypothesis of the UFRL axiom VAR,,, which
is o [D{true}var z : T; {z = default(T)}[ ]

3. ALLOC: In this case, we suppose that the FRL proof consists of the axiom ALLOC,., whichis +, {true}z :=
new C; {new,(C,z)}[modifies z,alloc, fresh(region{z.*})]. Then, we must prove that

. [reads alloc||{true} z := new C; {new,(C,x)}[modifies z,alloc, fresh(region{xz.*})].

The conclusion is derivable by using the rule SubEff,,, with the hypothesis of the UFRL axiom ALLOC,,
whichis , [J]{true} x := newT; {new,(C,z)}[modifies z,alloc, fresh(region{z.+})].

4. UPD: We suppose that the FRL proof consists of the axiom UPD,., whichis +, {z # null}z.f := E; {x.f =
E}[region{z.f}], where = ¢ FV(E) Then, we must prove that

. [reads alloc|]{z # null} z.f := E; {z.f = E}[region{z.f}], where z ¢ FV(E). (38)

That conclusion is derivable by using the rule SubEff,,, with the hypothesis of the UFRL axiom UPD,,, which
is t [reads z,n|{z # null} x.f := E; {z.f = E}[region{x.f}], where x ¢ FV(E) and n = ¢fs(E).
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5. ASGN: We suppose that the FRL proof consists of the axiom ASGN,.: +, {true}z := E; {x = E} [z], where
x ¢ FV(E). Then, we must prove that

. [reads alloc|]|{true} z := E; {x = E} [x] , where = ¢ FV(E)

The conclusion is derivable by using the rule SubEff,,, with the hypothesis of the UFRL axiom ASGN,,, which
is by [n]{true} z := E; {x = E} [z], where z ¢ FV(E) and 1 = ef5(E).

6. ACC: We suppose that the FRL proof consists of the axiom ACC,, whichis —, {z' # null} x := 2'.f; {x =
a’.f} [z], where x # 2’. Then, we must prove that

b [reads alloc||{z’ # null} x := 2'.f; {x = 2’.f} [z] , where z # 2’

The conclusion is derivable by using the rule SubEff,,, with the hypothesis of the UFRL axiom ACC,,, which
is by [n[{z' # null} z .= 2'.f; {x = 2'.f} [x], where x # z’ and i = efs(z’.f).

The inductive hypothesis is that for all substatements S;, +, {P;}S;{Q;}[e:]iff Fu [readsalloc||{P;}S:{Q:}|e:]

1. IF: In this case, we suppose that the FRL proof consists of the rule /F,., which is

b {P && E # 0} S; {P'}[e] b {P && E = 0} Sz {P'}[¢]
. {P}if (E) then {S;} else {Sy}{P'}[¢]

Then we must prove that

. [reads alloc||{P && E # 0} Sy {P'}[e]
. [reads alloc||{P && E = 0} Sz {P'}[¢]

. [reads alloc||{P}if (E) then {S;} else {S>}{P'}[¢] 39)

By inductive hypothesis, the two premises Eq. (39) are assumed. After using the rule IF,,, we get

. [reads alloc||{P && E # 0} S1{Q} [¢] . [reads alloc||{P && E = 0} S2{Q} [¢]
. [reads alloc|,p]{P} if (E) {S:}else{S:}{Q} [¢] ’

where §p = efs(E). Then, using the rule SubEff,,, we can the conclusion of Eq. .
2. WHILE: Suppose that the FRL proof consists of the rule WHILE,.

- {P && E # 0} S{P} [e, fresh(RE)]
. {P} while (E) {S} {P && E = 0} [¢]’
where ¢ is fresh-free, € is P/e-immune, and modifies alloc ¢ ¢

Then we must prove that

. [reads alloc||{P && E # 0} S{P} [e, fresh(RE)]

. [reads alloc||{P} while (E) {S} {P && E = 0} [¢]’ (40)
where ¢ is fresh-free, € is P/z-immune, and modifies alloc ¢ «.

By the inductive hypothesis, the two premises of Eq. are assume. After using the rule WHILE,,, we get

. [reads alloc||{P && E # 0} S{P} [e, fresh(RE)]

. [reads alloc|,dg]{P} while (E) {S} {P && E = 0} [¢]’
where ¢ is fresh-free, € is P/e-immune, and modifies alloc ¢ ¢,

where dp = efs(E). Then, the conclusion of Eq. is derivable by using the rule SubEff,.
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3. SEQI: We suppose that the FRL proof consists of the rule SEQ1,

}—T {P} Sl {Pl}[&"l, fresh(RE)] I_r {Pl} Sg {Pl}[EQ,RE]

b {P} S152 {P'}| 1,2, fresh(RE)|
where S| # var x : T;,¢; is fresh-free, e5 is P/ej-immune, and RE is P;/(modifies RE,ey)-immune

Then we must prove that

. [reads alloc||{P} S; {Pi}[e1, fresh(RE)] +, [reads alloc||{Pi} Ss {P'}[e2, RE]

Fo {P} 8152 {P'} 1,¢c2, fresh(RE)][reads alloc|] @41
where ¢, is fresh-free, reads alloc| is P/ej-immune, s is P/e;-immune and
RE is P, /(modifies RE,cs)-immune

By inductive hypothesis, the two premises of Eq. (1)) are assumed. To use the rule SEQ1,,, we check the side
conditions reads alloc| is P/e;-immune. However, it may not be true. Thus, for all x € mods(S1) and =
in FV(Py), there exists z, such that P; implies © = z and z ¢ mods(S;). We substitute z for z in alloc|.
Then the second premise of Eq. is re-written as:

. [reads alloc| [Z/mods(S1)][{P1} S2 {P'[e2] 42)

Now, we can derive the conclusion of Eq. (41)) by using the rule SEQ1,,.
4. SEQ2: We suppose that the FRL proof consists of the rule SEQ],.:

Fr {P && © = default(T)} : S {Q}[modifies z,¢]
. {P}varz:T;S{P'}| €]

Then, we must prove that

Fu [0, reads z]{P && = = default(T)} S {Q}[ modifies x,¢|
o [0){P} varz: T;S {P'}| ¢] (43)

By the inductive hypothesis, the premise of the above equation is assumed. Its conclusion can be derived by
using the rule SEQ?2,,.
5. FRM: We suppose that the FRL proof consists of the rule FRM,,.:

Hr {P}S{P}[e] PR 0frmQ
Fr {P &k Q) S{P" & Q}[e]

where P && Q = §/¢

Then we must prove that

. [reads alloc|]{P} S {P'}[¢] Pr4frm@Q
. [reads alloc||{P && Q} S {P' && Q}[¢]

where P && Q = /. (44)

By inductive hypothesis, the two premises of the above equations are assumed. Then, we can derive the con-
clusion by using the rule FRM,,.
6. SubEff: We suppose that the FRL proof consists of the rule SubEff
b {P}S{P'}[e] Pre<¢
Fr {P} S (P[]

Then we must prove that

. [reads alloc|]{P} S {P'}[¢] Pre<¢
. [reads alloc|]{P} S {P'}[¢]

(45)

By the inductive hypothesis, the premise of Eq. (#3) is assumed. Then, we can derive the conclusion by using
the rule The premise of the conclusion is derivable by using the rule SubEff,,, because, the side condition
rwR(e, reads alloc|) < rwR(¢’, reads alloc]) is true.
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. CONSEQ: We suppose that the FRL proof consists of the rule CONSEQ,.

Py=P b {P}S{P}le] Pl=PF

Then, we must prove that

P,= P . [reads alloc||{P1} S {P|}[¢] P =P

. [reads alloc||{ P} S{Ps}|e] (46)

By the inductive hypothesis, the premise of the above equation is assumed. Then, its conclusion can be derived
by using the rule CONSEQ,,.

. ConEff: We suppose that the FRL proof consists of the rule ConEff,

Fr {P & E # 0} S {P'}[e1] Fr {P & E = 0} S {P'}[es]
. {P} S{P'}[if Ethenc; elsecy]|

Then, we must prove that

b [reads alloc||{P && E # 0} S {P'}[e1]
. [reads alloc||{P && E = 0} S {P'}[e2]

b [reads alloc||{P} S {P'}[if Ethenc; else ¢y

(47)

By the inductive hypothesis, the premise of the above equation is assumed. Then, its conclusion can be derived
by using the rule ConEff,,

. ConMaskl: We suppose that the FRL proof consists of the rule ConMask1

. {P} S{P'}[e,if Ethene; else ;]
Fe AP} S {P"}e, 1]

where P = old(E) # 0

Then, we must prove that

. [reads alloc||{P} S {P'}[s,if E thene; else ;]
. [reads alloc||{P} S {P'}[e,&1]

where P = old(E) # 0 (48)

By the inductive hypothesis, the premise of the above equation is assumed. Then, its conclusion can be derived
by using the rule ConMask1,,
ConMask2: We suppose that the FRL proof consists of the rule ConMask2,

. {P} S {P'}[e,if Ethene| else &,
g {P} S {Pl}[avSZ]

where P = old(E) =0

Then, we must prove that

. [reads alloc||{P} S {P'}[e,if Ethenc; else ey

. [reads alloc|]{P} S {P'}[e, 2] where P = o1d(E) = 0 (49)

By the inductive hypothesis, the premise of the above equation is assumed. Then, its conclusion can be derived
by using the rule ConMask2,,.
PostToFr: We suppose that the FRL proof consists of the rule PostToFr,

PostToFr
Fr {P} S {P}[e]
b {P} S {P'}[e,if E then fresh(RF;) else fresh(RE>)]
where P = (E # 0 && RE;! 'old(alloc)) and P = (E = 0 && RE;! ' old(alloc))
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Then, we must prove that

. [reads alloc|]{P} S {P'}[e]

. [reads alloc|]{P} S {P'}|¢,if E then fresh(RE;) else fresh(RE,)] (50
where P = (E # 0 && RE; ! !old(alloc))and P = (E = 0 && RE;! ! old(alloc))

By the inductive hypothesis, the premise of the above equation is assumed. Then, its conclusion can be derived
by using the rule PostToFr,,.
FrToPost: We suppose that the FRL proof consists of the rule FrToPost,

b {P} S{P'}[e,if E then fresh(RE;) else fresh(RE,)]

r}
S

Fr {P' && (01d(E) # 0 = RE; ! lold(alloc)) && (old(E) = 0 = RE,! !old(alloc))}
[e,if E then fresh(RE)) else fresh(RFE>)]

Then, we must prove that

. [reads alloc||{P} S {P'}[c,if E then fresh(RF;) else fresh(RFE>)]
[reads alloc|]

{P}
Fu S
{P" &% (o1d(E) # 0 = RE; ! lold(alloc)) && (01d(E) = 0 = RE,! !old(alloc))}
[e,if Ethen fresh(RE,) else fresh(RE>)] (51)

By the inductive hypothesis, the premise of the above equation is assumed. Then, its conclusion can be derived
by using the rule FrToPost,,.
VarMask1: We suppose that the FRL proof consists of the rule VarMaskl .

b, {P} S{P'}[if Ethenz,c, elsec;]

. {P} S{P'}[if Ethenc; elsecy]
where P = E # 0,P v P’ = x = yand P && old(E) # 0 = reads y/(z,¢)

Then, we must prove that

b [reads alloc||{P} S {P'}[if E thenz,c; else ¢y

. [reads alloc||{P} S {P'}[if E then¢; else cs] (52)
where P = E # 0,P v P’ = z = y and P && old(E) # 0 = reads y/.(x,¢)

By the inductive hypothesis, the premise of the above equation is assumed. Then, its conclusion can be derived
by using the rule VarMaskl,,.
VarMask2: We suppose that the FRL proof consists of the rule VarMask2,.

b, {P} S{P'}[if Ethenc; else z,¢s]

. {P} S{P'}[if Ethenc; elsecy]
where P = E=0,Pv P =z =yand P & old(E) = 0 = reads y/(z,¢)

Then, we must prove that

. [reads alloc|]{P} S {P'}[if E thenc| else x, 5]

. [reads alloc||{P} S {P'}[if Ethenc; else ¢y (53)
where P = E =0,P v P’ = z =y and P && old(E) = 0 = reads y/(x,¢)

By the inductive hypothesis, the premise of the above equation is assumed. Then, its conclusion can be derived
by using the rule VarMask2,,.
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15. FieldMasklI: We suppose that the FRL proof consists of the rule FieldMaskl ,

. {P} S{P'}[e,if E then region{z.f},c1 else cs]
b {P} S {P'}[e,if Ethene; elsecs|
where P = E # 0,P v P' = z.f =y, P’ & 01d(E) # 0 = reads 2/ modifies ¢
and P’ && ol1d(E) # 0 = reads y'/modifiesc

Then, we must prove that

. [reads alloc||{P} S {P'}[c,if E then region{z.f},c; else &;]
b [reads alloc||{P} S {P'}[c,if Ethenc; else ¢y (54)
where P=E # 0,P v P' = z.f =y, P’ & 01d(E) # 0 = reads 2/ modifies ¢
and P’ && ol1d(E) # 0 = reads y'/modifiesc

By the inductive hypothesis, the premise of the above equation is assumed. Then, its conclusion can be derived
by using the rule FieldMaskl,,.
16. FieldMask2: We suppose that the FRL proof consists of the rule FieldMask2,

. {P} S{P'}[e,if Ethene; else region{z.f},és]
b {P} S{P'}[e,if Ethenc; else c]
where P=E=0,Pv P’ = z.f =yand P’ && 0ld(E) = 0 = reads z// modifies ¢
and P’ && 0l1d(E) = 0 = reads y/modifiesc

Then we must prove that

. [reads alloc||{P} S {P'}|c,if E thene; else region{z.f},é;]
. [reads alloc|]{P} S {P'}[¢,if Ethenc; else ;| (55)
where P=E=0,Pv P = z.f =yand P’ && 0ld(E) = 0 = reads 2/ modifies¢
and P’ && 01d(E) = 0 = reads y'/modifies ¢

By the inductive hypothesis, the premise of the above equation is assumed. Then, its conclusion can be derived
by using the rule FieldMask2,,.

Next, we prove it from the right side of the left side. It means that if there is a proof in UFRL with read effect
reads alloc|, then there is a proof in FRL. It is true because we can always approximate the read effects of any
proofs by using the rule SubEff

Fu [NH{PL} S { P2} €]
. [reads alloc||{P1} S {P}[e]

(56)

O
Corollary 22. The meaning of a FRL judgment is preserved by the syntactic mapping.
Corollary 23. Let S be a statement. Let P) and P, be assertions. Let € be effects and n be read effects. Then
o [M{PL}S{ P2} [e] implies +, {P1}S{P2}[].
The proof uses the subeffect rule to convert 7 into reads alloc| and then applies Theorem

9 Semantic Connection Between SL and UFRL

To understand the relationship between SL and UFRL, we connect their semantics by defining the semantics of
SL in terms of a heap and a region. This section is inspired by Parkinson and Summers’ work [51]. They connect
the semantics of separation logic and implicit dynamic frames [S7] by a “total heap semantics” [51]. However, our
heap is a partial function.
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9.1 Separation Logic Review

Separation logic introduces separating conjunction and magic wand (separating implication). The separating con-
junction, a; * ag, denotes that assertions a; and as hold in disjoint parts of the current heap. The separating
implication, a; — as, denotes that if assertion a; holds in an extra part of the heap, then as will hold in a heap that
is a combination of the extra heap and the current heap.

Definition 24 (SL Assertions). Let x be a variable and f be a field name. The syntax of assertions in separation
logic is as follows:

e = x | null | n
a=¢e¢=¢e¢ | x.froe | arxa| a = a | ara | ava | a = a | Ix.a

The semantics given below assumes that expressions and assertions are properly typed. Expressions are pure,
meaning that they are independent of the heap. We consider intuitionistic separation logic [26/50]. Recall that its
semantics [[17026150] is as follows.

Definition 25 (SL Semantics). Assuming that N is the standard meaning function for numeric literals and (o, h)
is a state, then the semantics of expressions in separation logic is:

Es : e — Store — Value

Ellzll(o) = o(x) Eslnll(o) =Nn] Esl[null]l(o) = null
And the semantics of assertions in separation logic is defined by:

&4 1 a — Store x Heap — {true, false}

Eule = (0. ) = £:[](0) = £[¢T(0)

Eall.f = ell(o, h) = (&[lz]|(0), f) € dom(h) and h[E;[z](0), ] = Es[e]l (o)

Eallar # az]|(o, h) = exists hy, hg :: (hy Lhy and h = hy - ha and E[Ja1]|(o, h1) and E,[Jaz] (o, hs)
Eallar —= az]|(o, h) = forall W' :: (W' Lh and E,[Ja1]|(o, h') implies E,[Jaz]| (o, h - B))

Eallar A az]l(o,h) = Elar]l(o, h) and Elaz](o, h)

Eallar v az]l(o, h) = Eular]l(o, k) or Ealaz]l (o, k)

Eullar = a2]|(o, h) = forall b’ :: (W' Lh and E,Jar]|(o, h - B') implies E,[[az]| (o, h - 1))
EaF3z.all(o, h) = existsv :: E,[la]|(o[x — v], h)

The satisfaction relation is defined by o, h =5 a iff € [[a] (o, h). |

The points-to assertion specifies the least segment of the current heap that makes it true. Magic wand and
logical implication both involve all possible extensions of the current heap.

9.2 Semantic connection

Given a fixed program state, assertions in UFRL are all evaluated by the same heap. However, in SL nested sub-
assertions of an assertion may be evaluated by a subheap, and the heap can be split and recombined during the
evaluation process. This splitting and recombining of heaps can be modeled in the semantics using a heap H,
various regions, and region operators along with the heap restriction operator ([) from Def.[I} Indeed the definitions
of the semantics of separation logic and validity of assertions can be given using this idea. That is, when r <
dom(H), define o, H |1 =4 a if and only if o, (H I7) k=5 a, however for clarity we use the following definitions of
validity for separating conjunction and implications.

Let r be a region such that dom(H ). The semantics for the separating conjunction expresses the required
splitting of partial heaps by restricting the heap to the split regions.

o, Hlr =g a1 x ag iffexists ri,ro 2 (rn nre = GJandr =1 vrey and o, Hlry g a1 and o, Hlre =g az)
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The semantics for the magic wand and logical implication consider all possible extensions of the partial heap H |r.
The extensions are not necessarily disjoint with the heap H, but must be disjoint with the subheap H |7, so that the
extended heap h'[r’ is disjoint; this is guaranteed when r’ N r = (.

o, Hlr =g a1 — ag iffforall W', r" :: (r' nr = & and o, W' |7’ =4 ay implies o, (HIr U W' 117) =g a2)
o, Hlr =g a1 = agiffforallh ;v :: (' nr = Fando,(Hr v hlr') =g a1 implies o, (Hlr v k' |1') =4 a2)

The following theorem is used to justify a semantic of SL in terms of a heap and a region.

Theorem 26. Let o be a store, h and H be heaps, and r be a region, such that r < dom(H) and h = H |r, then
o,hEsaiffo, Hlr Eg4 a.

The above theorem chooses dom(h) to be r, but this requires the user of the theorem to know exactly the heap
that a SL assertion talks about in order to encode it. However, the intuitionistic semantics of SL do not precisely
prescribe a unique solution to h, thus it is difficult to use Theorem Therefore, in the next section we find another
candidate for r that is more constructive.

10 Supported Separation Logic and Encoding Assertions

This section shows that the semantic footprint is another candidate for the region r needed in Theorem 26| More-
over, this section establishes the relationship between semantic footprints and supported separation logic (SSL),
which is a fragment of SL where all assertions are supported [47].

10.1 Semantic Footprints

The semantics of the points-to assertion, x. f + e in a state (o, h) indicates that there is a collection of heaps that
make it true and those are all supersets of the heap with the singleton cell {(o(z), f) — &s[[e]](o)}. Since we are
using intuitionistic SL, this heap is the greatest lower bound (glb) of the heaps in which the assertion holds. We
now define the semantic footprint for SL assertions that capture this glb. We say that validity is closed under heap
extension as are the semantics of the semantic footprint, as any extension to the glb will preserve validity. But some
assertions in SL do not have a semantic footprint, because the glb does not exist.

The semantic footprint of a SL assertion a is the glb of (heap) locations on which a depends. The notion of the
glb is formalized by the intersection of the regions of the given heap on which the given assertion a is true:

MinReg(a,0,h) = ﬂ{r | 7 < dom(h) and (o, h =5 a implies o, (h|r) s a)},

where (o, h) is a state. However, o, (h[MinReg(a, 0, h)) =4 a is not always true. For example, consider (z.f —
5) v (y.g — 6) in a state where both disjuncts are true; note that the intersection of regions whose domains are
{(o(z), f)} and {(c(y), g)} is an empty set. But o, (h| ) =5 (z.f — 5) v (y.g — 6) is false. So, some assertions
containing disjunction do not have a semantic footprint. Semantic footprints are defined as follows.

Definition 27 (Semantic Footprint). Let a be an assertion in SL, and (o, h) be a state. Then MinReg(a, o, h) is the
semantic footprint of a if and only if o, (h{MinReg(a, o, h)) =5 a. In this case we say a has a semantic footprint.
]

In general, formulas that use disjunction do not have a semantic footprint, neither do formulas that use negation,
due to DeMorgan’s law for conjunctions. Similarly, general existential assertions do not always have a semantic
footprint. Eliminating these types of assertions leaves a fragment of separation logic, which includes just the
supported assertions in the work of O’Hearn et al. [47]. We call this fragment supported separation logic (SSL).
This is the biggest subset of the syntax in Def.[24] where all assertions are necessarily supported. This syntax is
the core fragment of separation logic that contains or corresponds with the SL syntax used by automated reasoning
or analysis work [12,13,14,15,20,22,51]E] To avoid introducing new notations, we reuse the syntax of separation
logic (Def. 24). From now on, those notations mean supported separation logic.

5 For the work with classical separation logic, the emp predicate is needed.
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Definition 28 (Supported Separation Logic). The syntax of supported separation logic has expressions (e), Boolean
expressions (b) and assertions (a) defined as follows:

e = x | null | n
b= ¢ = e | e1 # e
ax=0Db | x.foe | a xax | ag A a | b= al 3 x.(y.froxxa) |

The first semantic lemma below states that the truth of assertions is closed under heap extension. That means
if an assertion a is true in a heap h, then it is also true in an extension of s. The proof of encoding separating
conjunction, a; * as, needs this property. Given the truth of a; *as on heap h, where a1 and a5 hold on partitions of
h, h1 and hs respectively, the evaluation of the encoded expression is on each partition’s extension to h. However,
the witnesses for h; and ho, regions 71 and o, must satisfy 71 U 19 = dom(h), which is required by its semantics.
Picking h [y as the witness for h; pushes the proof to take h | (dom(h) — r1) as the witness for ho. Lemma 29]
below can be applied in this scenario as hlry S hl(dom(h) —r1), as 11 < dom(h) and ro < dom(h).

Lemma 29. Let a be an SSL assertion, and (o, h) be a state. Let I/ be a heap, such that h = h'. Then o, h =y
a= ol Esa.

The semantic footprints for assertions in SSL are derived in Lemma[30|based on the SL semantics in terms of
a heap and a region.

Lemma 30. Let (0, h) be a state, and let e, b and a be an SSL expression, a Boolean expression, and an assertion.
Then:

MinReg(b,o,h) = (.

ifo,hies x.f — e then MinReg(x.f — e,o,h) = {(o(x), f)}.

ifo,h =5 ay * ag, then MinReg(ay * as, 0, h) = MinReg(ay, o, h) U MinReg(az, o, h).

ifo,h =5 a1 A as, then MinReg(ay A as,0,h) = MinReg(ay,o,h) U MinReg(as, o, h).
ifo,hi=sb=aando,h =, b, then MinReg(b = a,0,h) = MinReg(a,o,h).

ifo,h=s b= aando,h ¥, b, then MinReg(b = a,0,h) = .

if o,h =5 3x.(y.f = x * a), then MinReg(3x.(y.f = x xa),0,h) = MinReg(y.f — = *a,o[z —

hlEllyll(o), f11, h);
Moreover, o, h =, a iff o, (h{MinReg(a, o, h)) Es a.

NSRRI~

The proof from the left to the right of the above equivalences can be proved by cases on the structure of a,
which is the seven cases in Lemma [30} and the converse can be proved using Lemma 29

10.2 Supported Assertions in SL

O’Hearn et al. [47] note that for the soundness of proofs under hypothesis, assertions used in preconditions and
resource invariants need to be supported (Theorem 26 [47, p. 11:44]). Thus to reason about programs using specifi-
cations of other modules specified by SL, only supported assertions should be considered. This section establishes
the connection between supported assertions and assertions in SSL.

The following recalls the definition of supported and intuitionistic assertions in the work of O’Hearn et al. [47].

Definition 31 (Supported). An assertion a is supported if and only if for all states (o, h), when h has a subheap
ho S h such that o, hg =5 a, then there is at least subheap h, < h with o, h, =5 a such that for all subheaps
n < hifo,h =, a, thenh, < h'. |

The definition means that, given a state (o, k) and an assertion a, for any pair of A’s sub heaps, 1 and ho, such
that o, hy =5 a and 0, hy =5 a, if hy = hy N he and 0, h, =5 a, then a is supported. In other words, a has a
greatest lower bound heap that makes it a true, then a is supported.

The definition of semantic footprint can be interpreted in a similar way. Consider a given state (o, h), and any
pair of regions 7y and o where r; S dom(h) and 1o < dom(h), and a separation logic assertion a, such that
o, (hlr1) Es aand o, (h]r2) 5 a. Let r be the glb of 1 and ro, such that such that r  r1 N ro. If o, (h|r) =5 a,
then a has a semantic footprint. The following theorem summaries this. The proof is found in Appendix [A]
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Theorem 32. An assertion in SL is supported if and only if it has semantic footprint.

SSL assertions are supported by Theorem [32] This property provides the soundness of the hypothetical frame
rule for Hoare triple judgment under certain hypothesis [46/47]. See the discussion in Section[14.2]

10.3 Encoding SSL

This section constructs region expressions that can syntactically denote semantic footprints for SSL assertions, and
shows the translation from SSL to UFRL. The footprint of an implication b = a technically should include the
footprint of b. However, since b’s footprint is region{}, the definition ignores it.

Definition 33 (Semantic Footprint Function for SSL). Let e, b and a be an SSL expression, a Boolean expression,
and an assertion. Then the semantic footprint function for each SSL assertion is defined as follows.

fpt, (D) = region{}
fpty(z.f —e) = region{z.f}
ot (b= a) = ifb thenjpt (a) else region{}

fpts(a’l) +fpts(a2)
frt(ar A az) = fpt,(a1) + fpt (az)

=

5

[
*
Q

no

~—
Il

However, the defining clause for implication is technically suspect, because the SSL Boolean expression b
is technically not an UFRL expression. However, it is obvious that the identity map is a semantics-preserving
translation of pure Boolean expressions as shown below.

Definition 34 (Mapping from SSL to UFRL). We define a function TR that syntactically maps from SSL to UFRL
as follows:

TR[[z]] = « TR[[n]] = n TR[[null]] = null

TR[e1 = ea]| = TR[le1]] = TR[e2]

TR[[e1 # e2] = TR[e1]] # TR[ez2]

TR[z.f — €] = TR[z].f = TR[e]

TR[a; * az]] = TR[[a1]|&& TR[[az]|&& (fpt,(a1) ! !fpt (az))

TR[la1 A az]] = TR[la1 [|&& TR[[az]]

TR[[b = ] = TR[b]] = TR[a]

TR[3z.(y.f — z#a)] = Jz.(TR[ly.f — x]|&& TR[a] &&(region{y.f}! !fpt,(a))) 1

Lemma[335]and Lemma [36|state that the meaning of pure expressions and pure Boolean assertions are preserved
in this translation, and are preserved under heap extension. Hence, e and TR[¢e]|, as well as b and TR[[b]] can be
used interchangeably.

Lemma 35. Let o be a store. Let e be an expression in SSL. Then E[[e]|(o) = E[ TR e[l (o).

Lemma 36. Let (0, h) be a state, and H be a heap such that h = H. Let b be a pure assertion in SSL. Then
o,h s biffo,h =, TR[V] iff o, H =, TR[].

The following theorem shows that the semantics of the semantic footprint function, fpt,(a), is its semantic
footprint in a given state, where a is true. Its proof can be done by induction on the structure of assertions. With
this theorem we henceforth just call semantic footprint the “footprint™.

Theorem 37. Let a be an assertion in SSL, and let (o, h) be a state. If o, h =5 a, then a has a semantic footprint
in (o, h), and this semantic footprint is MinReg(a, o, h) = E[[fpt,(a)] (o).

The following corollary show that given a state where a is true, a’s semantic footprint is a subset of the domain
of the heap. This property is essential for the proof of the encoding for separating conjunction in Theorem 0]
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Corollary 38. Let a be an assertion in SSL. Let (o, h) be a state. If o, h k=5 a, then E[[fpt,(a)]|(o) S dom(h).

The following corollary shows that E[[fpz,(a)]| (o) is another candidate for the region r needed in Theorem
As fpt,(a) gives the semantic footprint for each a, the corollary can be proved by Lemma and Theorem

Corollary 39. Let a be an assertion in SSL. Let (o, h) be a state. Then o, h = a iff o, h|(E[[fpt,(a)] (o)) E=s a.

The following theorem shows that TR is an isomorphism of SSL assertions into UFRL in the sense that the
translation preserves validity. The proof about separating conjunction is the most interesting one as it partitions
heaps. The translated expression consists of two conjunctions. The first one checks the value of the two assertions.
The second one says that their footprints are disjoint. The proof for this separating conjunction case is found in
appendix [B] The proof for the existential case needs the substitution laws for assertions that are not surprising and
are found in the KIV formal proof [6], and thus are omitted.

Theorem 40. Let a be an assertion in SSL. Then o, h =5 a iff o, h =, TR[a]).

10.4 Summary and Conclusions

Fig. 25| summarizes our results. We find the 7 for the SL’s semantics in Section[9.2} which is E[[fpz, (a)]|(o); since
o,h s aif and only if o, H | (E[[fpt,(a)]|(0)) ks a, it must be that h = H | (E[[fpt,(a)](c)). In addition, by
Corollary we have o, h =, a iffo, h | (Efpts(a)](0)) Es a. Furthermore, by Theorem 40| twice, we have
o, b1 (Efpts(a)](0)) Es aiff o, bl (E]lfpt,(a)](0)) EuTRIal, and o, h =5 a iff 0, h =, TR[a]]. Therefore, by
transitivity, we have o, h =, TR[a] iff o, H(E[[fpt,(a)](0)) =u TR[a]) iff o, HI(E]fpt,(a)](0)) Es a.

Coroll 6
oy a B el @) e a o, HI(Elfpt,(a)](0)) st a
Theorem J] Theorem
o,h =, TR[a] o, h1(E[fpts(a)]| (o)) Eu TR[a]

Fig.25: A summary of results, where h = H[(E[[fpt,(a)](0)).

We need to translate each assertion in SSL into the one in UFRL that preserves its value in a heap that is an
extension of the partial heap used in the semantics of SSL. That requires us to prove that assertion’s value is closed
under heap extension. Unfortunately, this does not hold in general. Consider z.f +— 5 which is false in a state
where (o(z), f) ¢ dom(h). But its value is preserved if dom(h) contains (o(z), f). So if (o(x), f) € dom(h)
is assumed, then also the value false is preserved under heap extension. The location (o(x), f) is the semantic
footprint of z.f — 5. Thus, the necessary hypothesis of preserving the value of an assertion is the existence of the
assertion’s semantic footprint. The following theorem shows the hypothesis under which the value of an assertion
is preserved by the translation.

Theorem 41. Let a be an assertion in SSL. Let (o, h) be a state, and H be a heap, such that h < H. If
Ellfpt,(a)l(o) S dom(h), then o, h = aiff o, H =, TR[a].

The theorem shows that when the heap contains the locations that an assertion depends on, then the validity of the
assertion is closed under heap extension.

11 Encoding SSL Proofs

This section encodes SSL’s axioms and rules into those in UFRL, and shows that encoded SSL axioms are derivable
and that the encoding translates proofs in SSL into proofs in UFRL.
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11.1 SSL Proofs Review and Approach

The correctness judgment of SSL, a Hoare-formula {a} S {a'}, means that S is partially correct, and S can only
access the regions that are guaranteed by a. We consider the region guaranteed by a as its implicit frame. Thus we
will prove that the following encoding into UFRL is valid (in Section [T1.3):

[reads fpt,(a)]
(i) {TR[[a]] & 7 = fpt,(a)}
Fs {a}S{d'} iff o S
(R[]} oD
[ modifies (mods(S),fpt,(a)), Eresh(fpt,(a’) —r)]
where r is fresh and r ¢ mods(S)

where mods(S) is the set of variables that S may modify, and 7 snapshots the set of locations of fpr,(a) in the
pre-state. This translation is not the only way to establish the equivalence, e.g., the read effects can be anything
from & to fpt,(a). This encoding corresponds to the definition of validity for Hoare-formula in SSL, which we
present next.

The definition of validity for SL Hoare-formulas uses the notion of partial correctness we used for FRL and UFRL:
statements are not permitted to encounter errors in states that satisfy the precondition, but may still loop forever.

Definition 42 (Validity of SSL Hoare-formula). Let S be a statement. Let a and o' be assertions in SSL. Let (o, H)
be a state. Then {a}S{a’} is valid in (o, H), written o, H =4 {a}S{a’}, if and only if whenever o, H = a, then
MS|S](o, H) # errandif (o', H') = MS[S]|(0, H), then o', H' =5 o’

A SSL Hoare-formula {a}S{a’} is valid, written =, {a}S{a’}, if and only if for all states (0, H) :: 0, H
{a}S{a'}. |

The locality properties [47161] of SSL Hoare-formula are:

1. Safety Monotonicity: for all states (o, H) and heaps H’, such that H | H', ift MS[S](c, H) # err, then
MS[S)|(o,H - H') # err.

2. Termination Monotonicity: for all states (o, H) and heaps H’, such that H L H', if MS[[S](c, H) terminates
normally, then MS[[S](c, H - H') terminates normally.

3. Frame Property: for all states (o, Hy) and heaps H;, such that Hy L Hy, if MS[S](o, Hy) # err and
MS|S]|(e,Hy - Hy) = (o', H'), then there is a subheap H, < H’ such that Hy ! Hy, H) - H, = H’,
and MS|[[S]|(o, Ho) = (¢, H}).

Hoare-style proof rules for SSL are found in Fig. |26 on the next page] following Parkinson’s work [S0]. The type
environment I" is omitted. In the figure, the shorthand new,(C,x) means x.f1 — default(Ty) * --- = x.f, —
default(T,), where the f; : T; are defined by (f1 : T1,..., fn : Tn) = fieldsC. We use SSL expressions (e)
instead of FRL expressions (E) in the syntax of the statements, although the statements of SSL are those of FRL,
the expressions have the same syntax and meaning, by Lemma[35]

The following lemma states the frame property of SL. Hoare-formulas semantically. It is used in the proof of
Lemma 7] later. The proof is found in Appendix[C|

Lemma 43. Let a and o' be assertions and S be a statement, such that =4 {a}S{a’}. Let (o, H) be an arbitrary
state. If o, H =4 a and MS|[S](c, H) = (o', H'), then:

1. forall x € dom(o):: o' (z) # o(x) implies x € mods(S).
2. forall (o, f) € dom(H):: H'|o, f] # HJo, f] implies (o, f) € E[[fpt,(a)](0).
3. forall (o, f) € (Elfpt,(a)]l(0) — Efpts (a)](0)):: (o, ) € (dom(H') — dom(H)).

11.2 Some Properties

This subsection states several lemmas connecting the FRL and UFRL separation operator (-/-) to SL’s separating
conjunction operator (x). These lemmas are used to prove the frame rule case of our Theorem that the translation
between SSL and UFRL preserves provability (Theorem [49]in Section[T1.3).

The following lemma says that the footprints of assertions in a separating conjunction are also separated in the
sense of FRL’s separation operator.
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(SKIP,) +s {true}skip; {true}
(VAR,) s {true}var z : T; {x = default(T)}
(ALLOCs) +s {a} z := new C; {a * news(C,x)}, where z ¢ FV(a)
(ASGN) s {true} x := e; {x = e}, where = ¢ FV(e)
(UPDs) s {z.f— Yz.f:=¢ {z.f — €}
(ACCs) Fs iz’ fr2yx =o' fi{x =z2%a2'.fr 2}, wherex # 2’2’ # zand z # 2z

s {a ne#0}S:{a'}, s {ane=0}S2{a’}
s {a} if e {S1}else{S:} {a'}

(Fs)

o {I Ae#0}S{I}
. {I}whilee {S} {I A e =0}

(WHILE)

Fs {a} S1{b}, b {b} S2{a’}

(SEQ.) s {G,} S1S2 {a/}

mods(skip;) = mods(varz:T;) = mods(z := newC;) = {z}
mods(z :=e;) = {z} mods(z.f :==¢;) = mods(z :=z'.f;) = {z}
mods(if e then {S;}else {S2}) = mods(S1) U mods(S2)

mods(while e {S}) = mods(S) mods(S152) = mods(S1) U mods(S2)

FV(z) = {x} FV(null) = ¢J FV(n) = FV(ep = e2) = FV(e1) U FV(ea)

FV(er # e2) = FV(e1) U FV(e2) EV(z.f —e) = {z} U FV(e) FV(a % a2) = FV(a1) U FV(az2)
FV(a1 A az2) = FV(a1) U FV(az) FV(b= a) = FV(b) U FV(a)

FV@zy.f =z *a) = ({y} vFV(a)) — {z}

Fig. 26: Correctness rules and axioms for statements in SSL [50]. The type environment " is omitted.
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Lemma 44. Let a1 and as be assertions in SSL. Then
o,h =5 a1 * ag implies o, h =y, efs(TR[az]]) /modifies fpt (a1)

Informally, the proof goes as follows. By the semantics of separating conjunction, we know that a; and as hold
on disjoint heaps, say h; and hs, respectively. By Corollary [38, we know that E[[fpt,(a1)][(c) € dom(hy). So we
have

for all reads RE < efs(TR[[az]]) :: RE! ! fpt,(a1). (58)

In addition, by definition of separator (Fig.[20), we have
forall reads X < efs(TR[az]]) :: reads X -/modifies fpr (aq). (59)

Using Eq. together with Eq. and the definition of separator (Fig. 20), proves that efs(TR[[az]]) /-
modifies fpt, (a1).

The above lemma handles locations on the heap, but the frame rule also concerns variables, which are the subject
of the following two lemmas.

The following lemma states that free variables are preserved by the encoding. It can be proved by induction on the
structure of SSL assertions.

Lemma 45. Let a be an assertion in SSL. Then FV(a) = FV(TR[a]).

The following lemma shows that the set of variables in a framed assertion (c in the frame rule of SSL) are such
that readVar(efs(TR[[c]])) is a subset of FV(TR[[¢]]). The lemma is proved by induction on the structure of SSL
assertions.

Lemma 46. Let c be an assertion in SSL, then readVar(efs(TR[[c]|)) € FV(TR[c]).

11.3 Translating SSL Proofs into UFRL

The following theorem shows that SSL Hoare formulas of the form {a} S{a’} can be translated into UFRL, by
using read effect fpt, (a), write effect (fpr,(a), mods(S)) and fresh effect (fpt,(a’) — r), where r snapshots the set
of locations of fpt,(a) in the pre-state, and that the translation preserves validity. As can be seen in the lemma,
a kind of converse holds, as some forms of UFRL Hoare formula translate back into SSL. The proof is found in

Appendix

Theorem 47. Let S be a statement, and let a and o' be assertions in SSL, such that =4 {a}S{a’}. Let v be a region
variable. Let (o, H) be an arbitrary state. Then

[reads fpt (a)]

{TR[[a]] & 7 = fpt,(a)}
Fs {a}S{a’}iff o S

{TR[a]}

[ modifies (mods(S),fpt,(a)), fresh(fpt,(a’) — r)]
where 1 is fresh and r ¢ mods(S)

Def. 48] shows a syntactic mapping from the axioms and rules of SSL to those of UFRL. This mapping translates
SSL axioms and rules into those of UFRL, however, the encoded ALLOC rule is an exception. UFRL has a special
variable, alloc, that keeps track of the set of allocated locations globally; i.e. alloc is the domain of the heap. It
is updated when executing the new statement. However, SSL does not have such a variable. Thus, the write effect
of the encoded ALLOC adds “modifies alloc” to the frame condition.

Definition 48 (Syntactic Mapping from SSL to UFRL). Let a and a’ be assertions in SSL. We define a syntactic
mapping TRs[[—]| from SSL axioms and rules to those of UFRL below:
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TRs[[ 5 {a} x := new C; {a * new,(C,z)]| =
[reads fpi,(a)]
Fu {TR[[a]l}  := new C; {TR[a * news(C, z)]}
[ modifies x, modifies alloc, fresh(fpt,(news(C,x)))]

TRs[[ =5 {a} S {a'}] =
[reads fpt,(a)]
o {TR[a] && v = for, ()} S { R[]}
[modifies (fpt,(a), mods(S)), fresh(fpt,(a’) — r)]
where r is fresh,r ¢ mods(S)and S # = := newC};.
For the SSL rules, let hy,. .., h, be hypotheses and c be conclusion; then the syntactic mapping from a SSL rule
to a UFRL rule is defined as below:

T R TR|[ s ha]l,- .., TRs[[ s hn
et § = IRl ml o TR s

Fsc TRs[[ s c]

Theorem 49. Each translated SSL axiom is derivable, and each translated rule is admissible in the UFRL proof
system.

The proof is by the induction on the derivation and by cases in the last rule used, and can be found in Appendix [E]
The sequential case is not intuitive. We use an example to show that how to use SEQ1,, to prove that the encoded
sequence rule is admissible in UFRL. Particularly, we explain the proof strategy of proving the side conditions
on immunity. Consider the example x := y;x.f := 5;x.f := 6;. We assume y.f — 3 before executing the first
statement. In the proof, we have the following derivation in SSL.

Fs{y.f = 3la = yia.f =5 {r =y=*a.f— 5}
Fs{z=y=*x.f—5le.f:=6{x =y=*zx.f— 6}
Fs{y.f—3lei=ya.fi=5af:=6{r=yxx.f— 6}

(SEQs)

By Def.[48] the two premises are encoded to

[reads region{y.f}]
Fo {y.f =3&& r =region{y.f}} z:=y;x.f:=5; {x =y &&a.f =5} (60)
[modifies z,modifies region{y.f}, fresh(region{z.f} — )]

[reads region{z.f}]
Fo {z=y8&& z.f =58&& 1" = region{z.f}}x.f := 6;{x = y && z.f = 6} (61)
[modifies region{zx.f}, fresh(region{z.f} —1')]

And we want to show that from Eq. (60) and Eq. (6I)), the translated conclusion below can be derived.

[reads region{y.f}]
Fo {y.f =3&& r = region{y.f}} z:=y;x.f :=5;0.f :=6; {x =y&&x.f =6} (62)
[modifies z,modifies region{y.f}, fresh(region{z.f} — )]

The immune side conditions are not satisfied. However, according to the postcondition of Eq. (60), we know that
y = z and y is not modified by the statement in Eq. (60). Hence we substitute y for x in the effects of Eq. (61,
using the consequence rule, and get:

[reads region{y.f}]
Fo {z=y&& z.f =58&& 1" = region{y.f}}z.f :=6;{z =y && z.f = 6} (63)
[modifies region{y.f}, fresh(region{y.f} — )]



48 Yuyan Bao, Gary T. Leavens, Gidon Ernst

Now the side conditions about immunity are true. Eq. is derived by using the rule SEQI,,. Our proof strategy
generalizes the approach that we use in the example. Let S; S5 be a sequential statement. The effects of S is
re-written by replacing all the variables in mods(Sy), i.e., T, with the variables Z, such that ' = Z = T and
Z nmods(S1) = &, where @’ is the postcondition for S;. The detailed proof is shown in Appendix [E]

Corollary 50. The meaning of a SSL judgment is preserved by the syntactic mapping.

12 Recursive Predicates

Many examples in SL feature inductive predicates, as do some examples in this paper. Thus our connection between
SL and UFRL needs to treat such inductively-defined predicates. As part of this treatment, we extend UFRL with
a limited form of recursive predicates. We also show how to translate abstract function definitions and calls in SL
to recursive predicate definitions and calls in UFRL.

12.1 Recursive predicates in UFRL

The following grammar shows the extension of the UFRL syntax from Fig. [5] It allows predicate declarations and
calls to predicates in assertions (P).

Predicate ::= predicate p(x:T) reads 0; [decreases F;]1{ P }
P = ... | p(F) | xp(F)

where p is the predicate name and F' is either an expression or a region expression (as in Fig. [5). We assume
that predicate names are unique in each program. UFRL allows a restricted form of recursive definition; mutual
recursion is not allowed. The decreases clause is used to prescribe an argument that becomes strictly smaller
each time a recursive predicate is called. This treatment is similar to Dafny [3753]]. The body of a predicate is
just an assertion. To make sure the predicate is monotonic, recursive calls of predicates can only appear in positive
positions (e.g., not on the left side of an implication). And the recursive calls to predicates are not allowed inside
unbounded universal quantifiers [53].

To keep the spirit of a two-valued logic, a recursive predicate is allowed to be used only if it is provably terminating.
To prove it terminates, a well-founded relation on the domain of a recursive predicate is enforced, e.g., a subregion
relation (<) is defined on the type region. One of the proof obligations of its body is to show that the argument,
which the decreases clause specifies, to each recursive predicate call goes down in this ordering [S3].

The semantic function body maps a pair of a class name and a predicate name to its definition. Global predicates are
considered to be wrapped in a distinguished class Ob ject. The semantic function formals maps a predicate name
to its declared formal parameters. The semantic function »d maps a predicate name to its read effect. The notation
T — 7 means pointwise mapping. We introduce a semantic function &, : P — Store x Heap — {true, false}
which meaning is defined by the satisfaction relation: &,[P]|(c, H) iff o, H =L The semantics of a predicate call
is defined as follows, where fiz denotes the least fixed point.

é'p[[p(Fm(o, H) = (fizA(o’, H') . Ep[[body(Object,p)||(o’, H')) (o (formals(Object, p) — E,[[F] (o)), H)
Epllz.p(F)](o, H) = o(x) = 0 and o # null and

(fix Ao’  H') . Epllbody(T, p)](¢’, H')) (o (this, formals(T, p)) — (0, EL[EF (o)), H)
where T' = type(o, o)

The read effects of predicate calls are defined as follows, where I is a type environment.

efs, (p(F)) = efs, (F),d[F/z] where § = rd(Object, p) and Z = formals(Object, p)
efs, (z.p(F)) = reads z, efs, (F),d[(z, F)/(this, 7)] where ¢ = rd(I"(x), p) and Z = formals(I'(z), p)
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The rules Lintrol,, and Lintro2,, introduce the form of a predicate call to left-hand side of the judgment. The rules
Rintrol,, and Rintro2,, introduce the form of a predicate call to the right-hand side of the judgment. The type
environment I"(z) is omitted in the judgment.

P+, P _
(LIntrol,,)) ———— where P’ = body(Object, p)[F /formals(Object, p
T ( V[ formals( N
x # null&& P’ -, P , _
(LIntro2.,,) — where P' = body(I'(x), p)[F/formals(I'(z),p)]
z.p(F) o P
(RIntrol.) Pro P here P' = body(Object, p)[F /formals(Object, p)]
ntrol,) ——————=— where P’ = body(Object,p ormals(Object, p
P =y p(F)

P+, z #null & P’ _
(RIntro2,,) — where P' = body(I'(z),p)[F /formals(I"(x),p)]
Py, z.p(F)

Lemma 51. The rules LIntrol,,, LIntro2,, RIntrol,, and RIntro2,, are sound.

Proof. As the meaning of a predicate is defined by its body, i.e., the predicate is true if and only if its body is true,
the four proof rules are sound. O

12.2 Inductive Definition in SSL

The following grammar shows the extension of the SSL syntax given in Def. It allows predicate calls in
assertions.

a = ... | ps(e)

where p; is the predicate name and € are arguments. We apply the definition of “inductive definition set” from
Brotherston’s work [[17] to SSL as follows:

Definition 52 (Inductive Definition). Let an inductive predicate ps(z : T) in SSL. Then ps is a set of conjunction
of inductive cases. Each inductive case is in the form b = a. |

The following shows a valid inductive definition in SSL, which has two inductive cases, where Def. @] is instan-
tiated with b := (n = null), a1 := (se = []), b2 := (n # null) and az := (3 m. n.val — se[0] * n.next —
m = list(m, se[1..])), where se is a sequence.

list(n, se) Lef (n = null = se = [])&&(n # null = (Im. n.val — se[0] * n.next — m = list(m, se[1..])))
(64)
The semantic function idf maps a predicate name to its induction definition, which is the conjunction of inductive
cases. The semantic function formals maps a predicate name to its formal parameters. The semantics of inductive
predicate p,(€) is defined as follows:

Eallps(@)]l(o, h) = (fixA(o’, 1) . Eallidf(ps)[| (0", 1)) (o (formals(ps) — Es[lell (o)), k) (65)

Let b = a be one of the inductive cases of predicate ps(Z), then the rules Lintro, and Rintro, introduce the form
of a predicate call to the left-hand side and the right-hand side of the judgment respectively.

abga
(LIntros) ————— where a = (b = a)[e/formals(p;)]
ps(e) Fsa

/ . a
— where a = (b = a)[e/formals(ps)]

(RIntrog) ———
a Fs Ds (e)
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12.3 Encoding

We define the translation of recursive predicate call as follows:

TR[[ps (@] = ps(TR[e])- (66)

Assume an inductive predicate ps has n inductive cases. Fig.|27|shows the encoding of p,’s inductive definition to
a recursive predicate declaration in UFRL. The body of the generating recursive predicate is a conjunction of each
encoded inductive case. The notation RE;! ! --- ! | RE,, means pairwise region disjointness. For each inductive
predicate p; : z: T — bool, there is a region function with the signature region_ps : z : T — region that
computes the semantic footprint of the predicate p,’s definition. The function’s body is the semantic footprint of
ps’s definition. The region function is also used in the decreases clause. Fig. [28| shows the encoding of the
inductive predicate in Eq. (64). Note that the invalid syntax can be solved by program instruments.

function region_ps(z:71) : region
reads region_ps (Z);
decreases region_ps(Z));

{
ret := fpt (AL, b= ai);

}

TR[[ps] =
predicate p; (ﬁ)
reads region_ps (2);
decreases region_ps(Z);
{ &&?:1 TR[[bi :ai]] }

Fig. 27: Translation of inductive definition in SSL to recursive predicates in UFRL.

predicate list (n : Node<T>, se: sequence<T>)
reads region_list (n, se);
decreases region_list (n, se);

(n = null = se = []) &
(n # null = ( 3 m. n.val = se[0] && n.next = m && list(m, se[l..]) &&
region{n.val}!!region{n.next}!!region_list(m, se[l..]))
}
function region_list (n : Node<T>, se: sequence<T>)
reads region_list (n, se);
decreases region_list (n, se);

ret := if (n = null) then region{} +
if (n # null) then
region{n.val} + region{n.next} + region_list (n.next, sel[l..]);

Fig. 28: The encoding of Eq. .

By the definition of region,,, and the results in Section[10.3| we know that TR[[ps] t—., region_p, frm TR[[ps]].

Lemma 53. Let (0,h) be a state, and ps be an inductive predicate in SSL. Then E,[[ps(€)]|(o,h) =

Ell TR[ps (@)1 (0, h).
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The proof is found in Appendix [F} By the syntactic mapping from SSL to UFRL proofs Def.[48] the induction rule
in SSL (Lintro, and Rlntro) is encoded to the followings:

TR[[a]] v TR[d']

(TR[LIntros])) TR[[ps(e)] Fu TR[']

where a = (b = a)[e/formals(ps)]

TR[[']] Fu TR[a]
TR[a'] Fu TR[ps ()]

(TR[[RIntros])) where a = (b = a)[e/formals(ps)]

The encoded rules are admissible in the UFRL proof system by Theorem 0]and Lemma 53]

13 Extending the UFRL Proof System with Separating Conjunction

To allow SL and FRL to interoperate we want to allow users to write SL style assertions directly in UFRL (or FRL
itself), without using the somewhat verbose encoding of separating conjunction discussed previously. Thus this
section adds separating conjunction to the syntax of UFRL. We define the semantics of separating conjunction in
UFRL and show that it is equivalent to the one in SSL. Then we define the read effects of separating conjunction,
and show the soundness of the framing judgment, which is the key to the soundness of UFRL’s frame rule.

13.1 Extending the Syntax and the Semantics

To have the ability to write SL style specifications in UFRL, there is no need to add the points-to assertion to the
syntax, because the points-to assertion, z.f +— e, has the same semantics as UFRL’s equality assertion x.f = e.
Thus, we only need to extend the syntax of UFRL assertions, from Fig. [5] as follows:

P = ... | PixPy

Given a SSL assertion a, TR[[a]], which replaces each occurence of — in a with =, is a valid assertion in the
extended UFRL system. To ease the notational burden, we sometimes use the points-to assertion and the equality
assertion interchangeably in examples when the context is clear.

The separating conjunction is a supported UFRL assertion in the following sense.

Definition 54 (Supported UFRL Assertions). Let P be an assertion in UFRL. P is supported if there exists an SSL
assertion, a, such that P = TR[a].

Defining the semantics of separating conjunction, P; # P, in UFRL requires a definition of its footprint, fpt, ( Py *
P,). The semantics of fpt,, is defined by using the inverse of the translation function, TR™!. This inverse exists
because, by definition, TR is injective, as can be shown by induction on the structure of SSL assertions (see Def. [34).
So, for each supported UFRL assertion, P, by definition there is some SSL assertion a such that TR(a) = P; thus
for each supported UFRL assertion P, we define TR™! [ P]) to be the SSL assertion a such that TR(a) = P.

Using TR™!, we define the semantic footprint function for supported UFRL assertions, P, by fpt,(P) =

ot (TRTHLPY)).

Finally, the semantics of separating conjunction is defined as follows for supported UFRL assertions P; and Ps:
o,HE, P« Pyiffo,H =, Py and 0, H £, Py and 0, H =, fpt,,(P1)! ! fpt,(P2) (67)

The following lemma shows that Eq. is the correct semantics.

Lemma 55. Let (0, H) be a state. Let Py and P» be supported assertions in extended UFRL. Then

0,H &=y P+ Pyiffo, H =, TR '[P1] * TR [[P]).
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Proof. We assume o, H =, P; * P and calculate it as follows.

o,H =y P+ Py
if  (byEq. 7))
o,H &=, Pyand o, H =y Py and 0, H =, fpt,,(P1)! ! fpt,,(P2)
iff by definition fpt, (P) = fpt,(TR™'[P]))
o,H =, Pyand o, H =, Py and o, H =, fpt (TR P1]) ! ! fot, (TR P2])
iff  (by semantics of UFRL in Fig.
o,H =y Py & Py && fpt (TR P1]) ! U fpt, (TR P2]))
iff ~ (by definition of the syntactical mapping from SSL to UFRL (Def. , as Py and P, are supported)
o, H =, TR[TRH[P1] * TR P2]]]
iff ~ (by Theorem[40)
o, H s TR Pi] * TR P2

13.2 Effects, Framing and Separator for SSL Formulas

Recall that UFRL supports local reasoning by proving that the write effects of a statement are disjoint with the
read effects of the predicates that describe the property of the program state. We define the read effects for P, * P
as follows:

efs(Py = Py) = efs(Py), efs(P2) (68)

Lemma shows that the soundness of the frame validity (Def. , ie., true by efs(Py = Po) frm (P = Py) is
valid. The proof is by induction on the structure of assertions.

Lemma 56 (Frame Soundness of Extended Assertions). Let (o, h) and (', h') be arbitrary states. Let P be a

o efs(P) o,
supported assertion in extended UFRL. If (o,h) "= (o', '), then

Ellfpt, (P)](o) = Ellfpt,(P)(¢"), and o, h t=,, Piffo’, b =, P.
The separating conjunction proves some properties about the separator (defined in Fig. 20).
Lemma 57. Let (0, h) be a state. Let Py and Py be supported assertions in extended UFRL. Then
o,h iy Py % Pyimplies o, h =, efs(P2)/modifies fpt,(P;)

Note that it is not valid that o, h =, P * Py = 0, h =, efs(P):/modifies readVar(efs(Py)), readR(efs(P1)).
For example, let P; be z.f; = 4 and P, be z.fo = 5, and P, = P, is valid. Because efs(P;) = reads =,
region{z.f>}, and modifies readVar(efs(P1)), readR(efs(P;)) = modifies z, region{x.f,}, they are
not disjoint sets.

13.3 Proof Rules

In the following , we assume that all UFRL assertions involved in separating conjunctions are supported. This
section discusses the introduction rule for separating conjunction, which is as follows:

Fu [0]{P} S {Q}[e] P && R = efs(R)-/modifies fpt,(P),
Fu [01{P * R} S{Q = R}[e] where P && R = efs(R) /¢, and
Q && R = efs(R):/modifies fpr, (Q)

(Use)

The two extra side conditions are used to conclude P * R and @ * R, which is justified by the following lemma:

Lemma 58 (Soundness). 1. is admissible in the extended UFRL proof system.



Unifying Separation Logic and Region Logic to Allow Interoperability 53

Proof. I. can be derived as follows:

(FRM.,,) u LOJP) SHQ}E] where P && R = efs(R) /-

(CONSEQ.) Fu [6{P && R} S{Q && R}[e] whereP && R = efs(R)/modifies fpt, (P)
“ o [0[{P * R} S {Q * R}[¢] and Q && R = efs(R)/modifiesfpt,(Q)

O

Lemma 59. Let Py and P, be supported assertions in extended UFRL proof system, and (o, h) be a state. If
o,h =y Py and o, h =, Py and efs(P,)/modifies fpt,(Py), then o,h =y Py * Py.

Consider the example in Fig. |3 As it has explicit write effects, but no specified read effect, the read effect defaults
to reads alloc| (see Section[I4.2). In the body of append, right after the loop, we have:

(Ist(this, vist) & (Istseg(this, curr) = (Ist(curr, ?cvlst) & currnext = null))) = Ist(n, [v]), (69)
which (by the definition of the predicate 1st) implies:
(Ist(this, vist) && (Istseg(this, curr) = curr.val —7cv * curr.next — null)) = lst(n, [v]), (70)
which implies the precondition of the rule UPD,,. Using the rules UPD,, and SubEff,,, we derive:

[reads curr, alloc|]
o {curr # null} curr.next := n; {curr.next = n} (71)
[ modifies region{curr.next}|

By CONSEQ,, and I, we get:

[reads curr, alloc|]
{curr # null = lstseg(this, curr) = curr.val —?cv * lst(n, [v])}
. curr.next :=n; (72)
{curr.next = n = lstseg(this, curr) = curr.wal —?cv * lst(n, [v])}
[ modifies region{curr.next}|

and the postcondition of Eq. implies, by the definition of 1st
Ist(curr, [curr.val] + [v]) && lseg(this,n) (73)
To prove the postcondition, consider the second loop invariant in Fig. 3}
fpt(istseg(this, curr)) + £pt(lst(curr, [curr.val])) = £pt(lst(this, vist)), (74)
Together with Eq. (73)), we have at the end of the method body
fpt(Istseg(this, curr)) + £pt(Ist(curr, [curr.val] + [v])) = £pt(ist(this, vist + [v])), (75)

which implies the postcondition of the procedure.
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13.4 Encoding SSL specifications

Using separating conjunctions in the extended UFRL, we can encode the SSL Hoare-formulas by substituting =
for — as follows:

s {a} z := new C; {a = news(C, z) iff
[reads fpr, ()]
Fu {a[=/—=]} 2 := new C; {(a * new;(C, z))[=/—]}
[ modifies z, modifies alloe, fresh(fpt,(new;s(C,x)))]

st {a}S{d'} iff
[reads fpt,(a)]
_a[=/] & fory(a) = 7}
“ S {a[=/])
[modifies(mods(S),fpt,(a)), Eresh (fpt,(a’) — r)]
where 7 is fresh, r ¢ mods(S) and S # 2 := new C;

where mods(S) is the set of variables that S may modify, and = snapshots the set of locations of fpr,(a) in the
pre-state. The encoded ALLOC rule has the similar exception to Section

To avoid complicated formulas due to the translation, proofs of later examples use the rule I, if frames are
constructed by separating conjunctions, otherwise, we use the rule FRM,, in the examples. The places where the
rule /. is used can be considered as using the rule FRM,, as well due to our results.

13.5 Summary

We have introduced two approaches to supporting separating conjunctions: (1) encoding them into assertions in
UFRL,; (2) adding them to the syntax and extending the UFRL proof system. The second approach takes advantage
of the first one’s results, and makes the UFRL assertions more concise.

14 Applications

This section shows several potential applications of our results.

14.1 A Footprint Function

FRL can be further extended with a footprint function, say £pt, for supported assertions. However, such a footprint
function would not be well-defined for arbitrary FRL assertions, since not all are supported, and thus not all
footprints would be semantic footprints. Note that, by construction, an SSL assertion a and its translation TR[[a]]
have the same semantic footprints, i.e., fpt,(a) = fpt,(TR[a]]), where fpr, is the semantic footprint function for
FRL. The specification of the method mark (Fig. [2) is one example of using the £pt function. In this case,
fpt (dag (d) ) returns the set of locations of the DAG d that satisfy the predicate dag. Other examples can be
found in Section

14.2 Intraoperation of FRL and SSL within Modules

This section introduces a technique for verifying methods whose specifications are written in either UFRL, FRL,
or SSL.

1. If both the method’s read effect and write effect are specified, then the system verifies the body directly using
UFRL’s rules.
2. If the method’s read effects are not specified, then
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(a) If its write effects are specified, or if the specification uses the keyword pure (a shorthand for a frame of
modifies (), then the system considers that the method is specified in FRL, sets the read effects to the
default value, reads alloc/, and verifies the body using UFRL’s rules. This is justified by Theorem[21]

(b) Otherwise the system checks that the assertions used in the method’s specifications follow the restrictions
for SSL, and if these checks pass, then it translates the specification into UFRL and then verifies the body
using UFRL’s rules. This is justified by Theorem 9]

Consider the example in Fig. 29] The class ReCel1l holds the value val and its backup bak. The method set
updates val with the new value and stores its old value to bak. The method undo performs rollback. The method
set is specified in the style of SSL. Its precondition is trivially true as the fields val and bak are of primitive
type. The method undo is specified in the style of FRL. Using Theorem [21| and Theorem both are translated
into specifications written in UFRL. Then by using the rule SubEff,,, we derive:

[reads alloc|]
{this.val =7v && this.bak =7bk && region{this.val}! ! region{this.bak}

., set (x : int); (76)
{this.wal = z && this.bak = v && region{this.val}! ! region{this.bak}}
[modifies region{this.val} + region{this.bak}]

and

. [readsalloc|]{true}undo () {this.bak =?vb && this.val = vb}[modifiesregion{this.val}]

(77
Consider this client code:
var rc : ReCell; rc := new ReCell; rc.set (3); rc.set (5); rc.undo();
assert rc.val = 3 & rc.bak = 3.
class ReCell
{ void undo ()
var val, bak : int; requires true;
modifies region{this.val};
void set (x : int) ensures this.bak = ?vb && this.val = vb;
requires this.val—?v % this.bak—"?bk; { var b := this.bak; this.val := b; }
ensures this.val—x % this.bak—v; }
{ bak := val; val := x; }

Fig. 29: An example of using specifications written in SSL and FRL. This example is adapted from Parkinson and
Bierman’s work [49].

To prove that the assertion is true, we firstly use the axiom VAR, and the axiom ALLOC,, as their preconditions
are true:

Fo [D){true} var rc : ReCell; {rc = null}[J]

and
Fo [D]{true} rc := new ReCell; {new,(ReCell,rc)} [modifies rc,alloc, fresh(region{rc.x})]
(78)
After using the rule CONSEQ,,, SEQ,, and CONSEQ,,, we derive:
[alloc|]
b {true} var rc ReCell; rc := new ReCell; {new,(ReCell,rc)} (79)

[modifiesrc,alloc, fresh(region{rc.x})]

which implies the precondition of the procedure call set. In order to use the rule SEQ,,, we verify the following
side conditions:
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1. modifies rc,alloc is fresh-free;
2. istrue/(modifies rc,alloc)-immune;
3. region{rc.x} is new,(ReCell,rc)/(modifies region{rc.x})-immune.

(1) and (2) are trivially true. We consider (3). By the definition of immune (Def.[TT), we need to verify:

modifies region{rc.val} is new, (ReCell,rc) /modifies region{rc.x}-immune (80)
and
modifies region{rc.bak} is new, (ReCell,rc)/modifies region{rc.x}-immune, (81)
which are
new, (ReCell, rc) implies efs(region{rc.val})/region{rc.x} (82)
and
new, (ReCell,rc) implies efs(region{rc.bak})/region{rc.:} (83)

By definition of read effects (Def.[18), we have efs(region{rc.val}) = reads rc and efs(region{rc.bak}) =
reads rc. These are separate with region{rc.x}. Thus Eq. and Eq. are true. After using the rule
CONSEQ,, and SEQ,,, we derive:

[alloc|]
{true}

., var rc : ReCell; rc := new ReCell; rc.set(3); (84)
{this.val = 3 && this.bak = 0 && region{this.val}! !region{this.bak}}
[rc,alloc, fresh(region{rc.=})]

which implies the precondition of set. Because Eq. and Eq. have the same effects, after another call of
set, we derive the following by using the rule CONSEQ,, and SEQ,,:

[reads alloc]]
{true}

., var rc : ReCell; rc := new ReCell; rc.set(3); rc.set(5); (85)
{this.val = 5 && this.bak = 3 && region{this.val}! ! region{this.bak}}
[modifies rc,alloc, fresh(region{rc.=})]

which implies the precondition of undo. In order to use the rule SEQ,,, we verify the following side conditions:

1. modifies rc,alloc is fresh-free;

2. s true/(modifies rc,alloc)-immune;

3. region{rc.x} is (this.val = 5 && this.bak = 3 && region{this.val}!!region{this.bak}) /
(modifies region{rc.val})-immune.

(1) and (2) are trivially true. We consider (3). Let P be (thiswal = 5 && this.bak =
3 & region{this.val}! ! region{this.bak}). By the definition of immune (Def.[11)), we need to verify:

modifies region{rc.val} is P/modifies region{rc.*}-immune, (86)
which is
P implies efs(region{rc.val})/modifies region{rc.x} (87)
By definition of read effects (Def. [18), we have efs(region{rc.val}) = reads rc, which is separate with
region{rc.x}. Thus Eq. is true. After using the rule CONSEQ,, and SEQ,,, we derive:

[reads alloc]]
{true}

b varrc: ReCell;rc := newReCell; rc.set(3); re.set(5)rc.undo() (88)
{this.val = 3 && this.bak = 3 && region{this.val}! ! region{this.bak}}
[modifies rc,alloc, fresh(region{rc.x})]

which implies that the assertions are true.
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14.3 Hypothetical Reasoning and Interoperation between Modules

In this section, we extend the language in Fig. [5] with method calls, and show how FRL and SSL specifications
interoperate between modules.

S = ... | x.m(F)
where F indicates a possibly empty sequence of actual parameters. The statement y := x.m (F) is sugar for
the sequential statement x.m (F') ; y := ret;.

The language has a call-by-value semantics, and writes to the formal parameters are not allowed in method bodies.
In a method call such as z.m(), the value of 2 must not be null and its body is looked up in the class of z’s type.
The formal semantics for method calls is standard, thus, it is omitted.

In order to modularly reason about programs, each method is specified and verified individually, and reasoning
about method calls uses the method’s specifications, instead of its body.

A program may conceptually consist of distinct modules or components, each of which manipulates a separate
internal resources, e.g., part of the heap. Different modules’ specifications may be specified in different method-
ologies, i.e., separation logic and dynamic frames (using FRL). Method specifications may be written in the style
of either SSL or FRL. This section shows how these different styles of specifications interoperate with each other.
Assume that C.m denotes a method m declared in the class C. C1 is client code that just calls C.m. The form
of program correctness judgment in UFRL is @,, ,, [d]{P1}Cl{P2}[e], which states that C1 satisfies its Hoare-
formula under certain hypotheses, @, which map pairs of class and method names to the corresponding method’s
specification. Hypotheses are given by the grammar:

Dy ii= & | Pur, Puz | [S]{PL}C.m(F){Po}[e],

and @,, contains all the methods that may be used by C'l. When C1 invokes a method C.m, UFRL uses the axiom
for method calls that is adapted from Banerjee and Naumann’s work [[1] as follows:

(CALLy) @y, [[{P} C.m(T) Q}[e] tu [6[F/TI{PIF/T]} y.m(F) {Q[F/T]}e[F/T]] where I'(y) = C,
where P[F /7] simultaneously substitutes F' for T in P. Note that since our work does not have subclassing or
subtyping, in the rule I'(y) is both y’s static and dynamic type.
We assume a function, mbody, that takes a class name and a method name, and returns a list of formal parameters
and its body. To verify that each method C'.m satisfies its specification, UFRL uses the rule for proving a method
body that is adapted from Banerjee and Naumann’s work [[1] as follows:

u Fu [0]{this : C && P }S{Q}[¢]

Py o [01{P} C.m(T) {Q}[e]
where mbody(C,m) = (7,5), .(C,m) = [0]{P} C.m(z) {Q}[e]

b
(METH.,)

The presence of [0]{P}C.m(Z){Q}[¢] in the assumption, P, for the method body allows recursive calls. Ac-
cording to Theorem 21| and Theorem [A9] we define a function TR that syntactically maps from FRL and SSL
hypotheses to those in UFRL. Hypotheses specified by FRL are given by the following grammar:

D, = | Py, Do | fri{ PL}C.m(Z){ P2} [e],

where mbody(C,m) = (%,5). For such FRL hypotheses, TRg merely adds alloc] as the read effects of the
non-empty hypotheses. Hypotheses specified by SSL are given by the following grammar [47]:

by = | D1, Pya | ssl{a}C.m(Z){d'}[ X],

where X = mods(S) and mbody(C,m) = (z,S). These are translated into UFRL using TR[[-]] and fpz,(-) as
follows:

TRa[[ ] =

TR [[Ps1, Ps2]] TR [[@s1]], TRa [ @52 ]]

TRg[[ssl{a}C.m(z){a’}[ X]]| = [reads fpt,(a) {TR[a] && r = fpt,(a)}C.m(Z){TR[']}
[modifies (X, fpt,(a)), fresh(fpr,(a’) — )]
where 7 is fresh and r ¢ X
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Consider the cell example in Fig. ] The method specifications for this example are translated as follows:

[reads region{this.z}]
&, = {this.x = _&& r = region{this.z}} setSX (v : int); {this.z = v}
[modifies region{this.z}]

[reads region{this.z}]
$,, = {this.zx = && r = region{this.z}} getsSX () ; {this.x = v && ret = v}
[modifies region{this.z}|

[reads alloc|]
®,, = {¢c # null} addOne (c : Cell); {this.x = c.getSX() + 1}
[modifies region{this.z}]

®,, = [reads alloc|] {true} getRX () ; {ret = this.z} [J]

The read effects of ¢,, and ¥,, can be extended to alloc | by using the rule SubEff,. After the
declaration and initialization (var sCell; sCell := new CellS; var rCell; rCell := new
CellR;), we have sCell.x = 0 && rCell.x = 0, which implies the precondition of sCell.setSX(5).
Thus, its postcondition is assumed right after it. As the read effects of rcell.x = 0 is separate from the method’s
write effects, using the rule FRM,,, we have sCell.x = 5 && rCell.xz = 0, which implies the precondition of
rCell.addOne (sCell). Thus its postcondition is assumed right after it. As the read effects of sCell.x = 5 is
separate from the method’s write effects, using the rule FRM,,, we have sCell.z = 5 && rCell.x = 6. In order to
use the rule SEQ1,,, we need to prove the side condition:

region{rCell.r}is sCell.x — _/modifies region{sCell.z}-immune. (89)
By the definition of immune (Def. , we need to prove:
efs(region{rCell.z}) / modifies region{sCell.z}, (90)
which is true. Then we accumulate the two statements’ write effects by using CONSEQ,, and SEQ1,;:

[alloc|]

{sCell.x — _}

sCell.setSX(5); rCell.addOne (sCell) ; o1
{sCell.x — 5 && rCell.x = sCell.getSX() + 1}

[modifies region{sCell.z}, region{rCell.z}]

Thus, we can prove sCell.getSX () = 5 and rCell.getRX () = 6 is true.

144 The DAG Example

This section presents proofs of the DAG example in Fig. 2] that is specified by using separating conjunction for
disjointness and conjunction for sharing. It illustrates proof rules, i.e., the frame rule and the immunity condition,
which distinguish UFRL.

We prove that the body of the method mark satisfies its specification under the hypothesis that recursive calls sat-
isfy the specification being proved. Another method hypothesis is the specification of unmarked. When reasoning
about mark, we use unmarked’s specification, instead of its body, i.e., if unmarked’s precondition is satisfied,
its postcondition is assumed after calling it. Because mark’s precondition implies the one of unmarked, we can
specify mark’s write effects with the function unmarked. The method mark’s read effects are not specified, thus
are alloc)| by default. Assume all the nodes in a DAG are not marked before mark is invoked. The algorithm
marks its left sub-DAGs first. Suppose the node n is shared by the left and right sub-DAGs. n and n’s sub-DAGS
are marked when marking the left sub-DAGs. Therefore, we have the second precondition. We prove mark by the
following three cases.
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d = null: The second precondition is vacuously true; the write effect is an empty set. The call does not do
anything, which is consistent with its write effects. The postcondition is vacuously true.

dag(d) && d # null && d.mark — 1: According to the precondition, the DAG d is all marked, which
is also what the postcondition describes. For the write effects, also under this assumption that the DAG is
marked, the set of locations that satisfies the postcondition of unmarked is an empty set. The call does not
do anything, which is consistent with its write effects. Similar to the previous case, the precondition implies
the postcondition.

. dag(d) && d # null && d.mark — 0: This case means that the current node is not marked and its sub-DAGs

may not be marked. Assume ¢ and j are the witnesses of the existential variables in the predicate dag. We
have:
d.mark — 0% d.l — ixdr— j=*(dag(d.l) && dag(d.r)), (92)

which implies the precondition of the rule UPD,,, we derive:
. [reads d]{d # null} d.mark := 1;{d.mark — 1} [modifies region{d.mark}] (93)

One can translate Eq. (93) into a formula in UFRL by Def. [34] or use the result in Section [I3| without transla-
tion. To avoid big formulas, we explore the second approach, and have:

(reads d, region{d.l}, region{d.r}, £pt(dag(d.l) && dag(d.r)))

d # null =, frm (d.l— i = d.or — j=* (dag(d.l) && dag(d.r)))

(94)

Thus, the read effects are separate from the write effects, region{d.mark}. Using the rule /., we derive:

[reads d]
{d # null *d.l — i*d.or— j=(dag(d.l) && dag(d.r))}
b, d.mark := 1; (95)

{dmark — 1+ d.l— ixdrw— j=*(dag(d.l) && dag(d.r))}
[modifies region{d.mark}]

which implies the precondition of mark (d.1). Thus we have the following (noting that preconditions, or
postconditions, written on different lines of a method specification are conjoined):

[reads alloc|]
dag(d.l) & (d # null && d.mark — 1 =
Vn: Node.(region{n.mark} < £pt(dag(d)) = n.mark — 1))
Fu . (96)
mark (d.1l);
{d.l # null = ¥n : Dag.(region{n.mark} < fpt(dag(d.l)) = n.mark — 1)}
[ modifies unmarked(d.l)]

We use the rule SubEff,, on Eq. (93] and Eq. to match up the effects for the rule SEQ1,,, and use the rule
CONSEQ,, on Eq. (96) to match up the postcondition of d.mark := 1 and the precondition of mark (d.1)
and to get rid of the implication in the precondition. Thus, we derive:

[reads alloc),d]
{d # null *d.l — i*d.r— j=(dag(d.l) && dag(d.r)}
b, d.mark := 1; 7
{dmark — 1+ d.l— ixdrw— j=*(dag(d.l) && dag(d.r))}
[modifies region{d.mark}]

and

[reads alloc|,d]
{dag(d.)}
., mark (d.1l); (98)
{d.l # null = Vn: Dag.(region{n.mark} < £pt(dag(d.l)) = n.mark — 1)}
[ modifies unmarked(d.l)]
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By using the rule I,., FRM,, and CONSEQ,, for Eq. (98), we derive:

[reads alloc),d]
{dmark — 1+ d.l—i = dr— j=*(dag(d.l) && dag(d.r))}
o mark (d.1l); (99)
“ {(d.l# null = VYn: Dag.(region{n.mark} < fpt(dag(d.l)) = n.mark — 1)) &&
{ (dmark — 1xd.l— ixdr— j=(dag(d.l) && dag(d.r))) }
[ modifies unmarked(d.l)]

In order to use the rule SEQ1,,, we need to prove the side condition:
unmarked(d.l) is (d # null = d.l — i * d.r — j = (dag(d.l) && dag(d.r))/region{d.mark}-immune.
By the definition of immune (Def.[TT), we need to prove that for allmodifies RE in unmarked (d.1):
(d# null = d.l —i*dr— j=(dag(d.l) && dag(d.r)) implies efs(RE)/region{d.mark}.

We show the above is true by contradiction. Suppose that there is some RE, such that efs(RE) contains the
location region{d.mark}. Then RE must have the form d.mark.f, for some field name f, by definition of
effects (Fig. [I8). Because the type of mark is int, not a reference, this is impossible.

Now we can accumulate the two statements’ write effects and derive:

[reads alloc|,d]
{d # null xd.l — i = d.r — j = (dag(i) && dag(j))}
d.mark := 1; mark (d.1l);
“ {(d.l # null = Vn : Dag.(region{n.mark} < £pt(dag(i)) = n.mark — 1)) &&
{ (dmark — 1=d.l —ixdr— j=*(dag(i) && dag(j)))
[modifies region{d.mark}, unmarked(i)]

} (100)

The postcondition of the above implies the precondition of the method mark (d. r) . Using the rule CONSEQ,,
(getting rid of the implication in the precondition), we have:

[reads alloc|]

{dag(d.r)}

. mark(d.r); (101)
{d.r # null = ¥n : Dag.(region{n.mark} < £pt(dag(d.r)) = n.mark — 1)}
[ modifies unmarked(d.r)]

As the function unmarked only collects unmarked locations, we have:

(d.l # null = (Vn : Dag.(region{n.mark} < fpt(dag(d.l)) = n.mark — 1)))
= reads fpt(dag(d.l)) -/ modifies unmarked(d.r)

By using the rules /5., FRM,,, CONSEQ,, and SubEff,,, we derive

(102)

[reads alloc|,d|
(d.l # null = ¥n : Dag.(region{n.mark} < £pt(dag(d.l)) = n.mark — 1))
{ & (d.mark — 1 =d.l — i*dr — j=(dag(d.l) && dag(d.r))) }
mark (d.r);
(d.r # null = ¥n : Dag.(region{n.mark} < £pt(dag(d.r)) = n.mark — 1))
&& (d.l # null = Vn: Dag.(region{n.mark} < £pt(dag(d.l)) = n.mark — 1))
&& (d.mark — 1= d.l — i%dor— j*(dag(d.l) && dag(d.r)))
[ modifies unmarked(d.r)]

u

(103)
Again, we need to prove the side condition in order to use the rule SEQ1,,, i.e., unmarked(d.r) is

(d# null = d.l —i=dr— j=(dag(d.l) && dag(d.r)))/(region{d.mark}, unmarked(d.l))-immune.

By the definition of immune (Def. [T T]), we need to prove:



Unifying Separation Logic and Region Logic to Allow Interoperability 61

— forallmodifies RE € region{d.mark}:
(d # null « d.l— i dr— j=(dag(d.l) && dag(d.r))) implies efs(RE)-}unmarked(d.r).

In this case, RE 1is just region{d.mark}, by the assumption, which is disjoint with
fpt(dag(d.l) && dag(d.r)) that is unmarked(d.r)’s superset.
— forallmodifies RE € unmarked(d.l):

(d # null *d.l— i+ d.r— j=*(dag(d.l) && dag(d.r))) implies efs(RE):/unmarked(d.r).

We show that it is true by contradiction. Suppose under the assumption, there is some RE that has the
form region{d.f;.--- .fn.mark}, then efs(RE) is region{d.fi.--- .fn}, where f; € {l,r}, and 1 <
i < n. Moreover d.f;.--- .f, has the type Dag. However, all the regions in unmarked(d.r) has the form
region{d.fi. - .fm.mark},and d.fy.- - - . fy,.mark has the type int, where f; € {I,r},and 1 < j < m.
Thus, there is no overlapping between the two sets of locations.

Now by using the rule SEQ1,,, we derive

[reads alloc|,d]
{d # null * d.l — i*d.r— j=*(dag(d.l) && dag(d.r))}
d.mark := 1; mark(d.l); mark(d.r);
Fo [ (dr # null = VYn : Dag.(region{n.mark} < £pt(dag(d.r)) = n.mark — 1)) && (104)
(d.l # null = ¥n : Dag.(region{n.mark} < £pt(dag(d.l)) = n.mark — 1))
&& (d-mark — 1 #d.l — i%d.r— j* (dag(d.l) && dag(d.r)))
[ modifies region{d.mark},unmarked(d.l), unmarked(d.r)]

The postcondition above can imply the one for mark, thus the program is verified.

Remark: in this example, the write effects of mark are not necessarily precise. Let €; and €, be the write ef-
fects of mark(d.l) and mark(d.r) respectively. Suppose the location region{z.mark} is contained in both
write effects. To use the sequence rule, we need to show that ¢, is dag(d)/e;-immune. By the definition of im-
mune (Def. , we need to show that for all modifies RE € ¢, :: RE is dag(d)/e;-immune. In this case, we
need to show that dag(d) implies efs(region{z.mark}) -/1, by Def. By the definition of read effects,
efs(region{z.mark}) = reads z. There are two cases.

1. = = d. In this case, we need to show that dag(d) implies reads d /- region{d.mark}, which is true.

2. x =d.f1.--- .fn, where fy - -- f,, are either the field name [ or the field name 7. In this case, we need to show
that dag(d) implies (reads region{d.fi. - .fn}, efs(d.f1. - .fn—1)) /- region{d.fi.--- .f,.mark},
which is true because, the field f,, has type Dag, the field mark has the type bool, thus
region{d.fi. - .fp} ! ! region{d.fi. - .f,.mark}. Similarly, the regions contained in the read effect
efs(d.fy. - .fn—1) are all disjoint with the region region{d.f;.--- .f,.mark}.

14.5 An Integrated Specification and Verification Example

This subsection demonstrates mixed specification and verification in FRL and SSL, using an order program for a
coffee shop as an example. Parts of this program are specified in the style of FRL, parts in SSL, and parts in a mixed
style. Consider a client code shown in Fig. [30 on the following page] Two shop objects share one menu object.
Taking orders and performing services only read the menu. Thus, we can prove that executing shop1’s method
service preserves shop2’s property, as the write effects of shopl.service in Fig.[36] do not overlap the
read effects of shop2’s predicate. In particular, the read effects of menu’s predicate are separate from the write
effects of shopl.service. This is credited to FRL’s flexibility of specifying write effects. Another example
that showcases such a benefit is the specification of iterator written in FRL in Fig. The keyword pure is
another way to specify that hasNext does not have write effects. If the iterator methods hasNext and next
were specified in SSL, then their frames would contain the footprints of their preconditions, so the underlying data
structure would be modifiable. These larger write effects would also propagate to service, since that method
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var menu : Menu; menu := new Menu;
var shop : CoffeeShop; shop := new CoffeeShop (menu);
var shopl : CoffeeShop; shopl := new CoffeeShop (menu);

shop.takeOrder(1,1); shop.takeOrder(1l,3); shop.takeOrder(2,3); shop.takeOrder(4,5);
shopl.takeOrder (3,3); shopl.takeOrder(l,1); shopl.takeOrder(2,4);
shopl.takeOrder (4, 6)

’

shop.service();

Fig. 30: The client code

needs to call the iterator methods, so its write effects of service would have to contain the footprint of the
iterator methods. These larger write effects could cause trouble in some cases.

In addition, the SSL style of specifications has been used in the example as well, i.e., the specification of add in
Fig.[32] Moreover, the use of separating conjunction makes the specifications concise.

Now we explain the example in detail. The program is deployed to a digital device on each table. Customers or
waiters order coffee by choosing item numbers from the menu. For each item on the menu, the system will look
for its identifier (which is used in some other internal systems). For simplicity, we assume that each order only
contains one item. Each table may have multiple orders.

The coffee shop maintains a list of orders and the menu; each order stores a table number, the menu item number,
and whether it has already been served. The list of orders is implemented by a generic linked-list List<T> in
Fig. The class List<T> is implemented by a list of Node<T> defined in Fig. [3] that may be invisible to
clients. For the convenience, the specifications of the class Node<T> that are used to verify the implementation
of the class List<T> are summarized in Fig.[31] The specifications and implementations of the class List<T>
are shown in Fig. |32 on the next pagel One can add a node to the list by invoking the method add, test whether
a list is empty or not by invoking the pure method i sEmpty, and obtain its iterator by invoking the pure method
iterator. Fig.[33 on the next page| shows an implementation of List<T>’s iterator. The field curr denotes
the cursor position.

Method Precondition Postcondition Write effects
Node<T>(v) |[true Ist(this, [v]) region{this.x}
get() true ret = this.val %)

append(n) Ist(n, [?v]) * Ist(this, ?vIst) Ist(this, vist + [v]) region{last().next}

Fig.31: Selected specifications for the class Node<T>.

Fig. [34] specifies a generic dictionary as a mapping. The generic Dictionary<Key, Value> is implemented
by an acyclic list of Pair<Key, Value> that may be invisible to the clients. A generic mathematical sequence
map<Key, Value> is used as an abstract model of the values stored in Dictionary<Key, Value>. Opera-
tions and formulas for a map are defined in Fig. [6] The pure method 1ookup returns a value for a given key. Its
precondition makes sure that the key is in the domain of the dictionary.

The class order contains table, itemId and served. The field table records the number of the table in
an order. The field itemId stores a coffee’s identifier. The field served tracks whether the order is served. The
class Cof feeShop maintains a List of Order and a menu that is initialized by the parameter of the constructor
of CoffeeShop, and stores the mapping between Coffee’s numbers and identifiers. For simplicity, we omit the
details of Menu. The method t akeOrder looks up the coffee’s identifier in the menu, generates a new order and
adds it to the order list. The method service sets the orders to be served. The predicate cshop specifies the
structure of a Cof feeShop. The formal parameter 1 seq specifies the sequence of Order. The formal parameter
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class List<T>{
var h Node<T>;

predicate vList (se: seqg<T>)
reads fpt (vList (se));
{ 1lst (h, se) }

method List<T> ()
requires true;
modifies region{this.x};
ensures vList ([]);

{ h := null; }

method add(t : T)
requires vList (?vlst);
ensures vList (vlst + [t]);

var n: Node<T>;

n := new Node<T>(t);

if (h = null) then { h := n; }
else { h.append(n); }

/+ calls append method of node h */

}

method isEmpty () int
requires vList (?vlst);
reads region{this.x};
ensures (h = null = ret = 1) &
(h # null = ret = 0)

if(h = null) then { ret := 1; }
else { ret := 0; }

method iterator () ListIterator<T>
requires vList (?vlst);
fresh region{ret.x*};
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ensures ret # null && ret.list = this

&& ret.curr = this.h
&& ret.vLIter (vlst);
{ ret := new ListIterator<T> (this);

/* ... other methods omitted x/

Fig.32: A generic linked-list specified in a mixed style.

class ListIterator<T>{
var list List<T>;
var curr Node<T>;

method ListIterator (1l List<T>)

requires 1 # null && 1l.vList (?vlst);

modifies region{this.«};
ensures list = 1 & curr = 1.h
&& vLIter (vlst);
{ list := 1; curr := 1l.h; }
method hasNext () int
requires vLIter();
ensures (curr # null = ret = 1)
&& (curr = null = ret = 0);
if (curr # null)
then { ret :=1; }
else { ret := 0; }

}

method next () : T
requires vLIter () && hasNext();
modifies region{this.curr};

ensures (curr = old(curr.next)) &&
ret = old(curr.get());
{
ret := curr.get();

curr := curr.next;

predicate vLIter ()
reads fpt (vLIter());

{ list # null && list.vList (?vlst)
&& vLIter (vlst) 1}

predicate vLIter (vlst: seqg<T>)
reads fpt (vLIter (vlst));

list.vList (vlst) &&

}

region{curr.*} < fpt(list.vList (vlst))

}
/* ... other methods omitted x/

Fig.33: The class List Iterator specified in the style of FRL.
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predicate dic(p : Pair<Key, Value>, m : map<Key, Value>)
reads fpt(dic(p, m));
decreases |m|;

(p = null = |m| = 0) &
p # null = p.key € m * p.val—m[p.key] *

dic(p.next, (map i | 1 € m & i # p.key :: m[i]))

class Pair<Key, Value>{
var key : Key; var val : Value; var next : Pair<Key, Value>;

class Dictionary<Key, Value>({
var head : Pair<Key, Value>;

predicate vDic (m: map<Key, Value>)
reads vDic (m);

dic (head, m)

method lookup (k: Key) : Value
requires vDic(?m) && k € m;
ensures vDic(m) && ret = m[k];

{ /% ... omitted =/ }

/% ... other methods omitted #*/

Fig. 34: A generic dictionary specified in the style of SSL.
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oseq specifies the contents of orders in the list. The following formula specifies that the sequence of Order
contains the expected contents:

Vi.0 <= i&&i < |lseq| = lseq[i].vOrder(oseq[3 i..3 =i + 2]),

where oseq(i..j] generates a new sequence that starts from the element oseq[¢] and end with the element oseq([j].
It is well-formed if 0 <= i <= j <= |oseq|. The sequence oseq is the flattened sequence of 3-element array.
Each array corresponds the three fields of an order. The formal parameter m specifies the menu. In the dynamic

frames approach [29/30], this can be specified by declaring these three parameters as ghost fields and updating
them when it is needed.

method Order (t: int, item: int)
modifies region{this.x*};
ensures vOrder ([t, item, 0]);

class Order{
var table : int;
var itemId : int;
var served : int;

this.table := t

; this.itemId := item;
this.served := 0;

method served ()

redicate vOrder (se: seg<int>
P v ( q ) requires this.served—_;

reads region{this.x};

( ensures this.served—1;
lsel = 3 && { this.served := 1; }
this.tabl 0] =
is.table—se (0] method isServed() : int
this.itemIdr—ose[1l] =* R A
. reads region{this.served};
this.servedr—se[2]
} ensures ret = served;
{ if(served = 1) then ret := 1; else ret := 0; }
/* ... other methods omitted */

}

Fig. 35: The class Order and its specification

Abstraction Although information hiding and abstraction are not a focus of this paper, they figure prominently
in other works on SL [4849]. This technique can also be handled in our approach. In our example, we assume the
classes List<T> and Dictionary<Key, Value> are libraries, and are declared in a separate module from
clients. Their implementations are hidden from its clients. Thus, their clients can only see their predicate names.
Fig.[37|summarizes the set of predicate names that are used to visible to clients.

Therefore, the class Cof feeShop uses the name of predicates vList and vDis to define its own predicate; the
actual formulas that are defined by those predicated are abstracted away. Thus, Cof feeShop does not know the
internal representation of List, thus is not influenced by the change of List’s representation, i.e., replacing a
linked list with an array.

However, some specifications use the hidden fields to describe observable behaviors of methods. For example, the
write effects of the method next in Fig. [33]exposes the field curr that is supposed to be a private field. This can
be solved by (at least) two established methodologies: data groups [34/40] and model variables [[19133]]. Following
JML [31]], we explore the second approach. Model variables are used to define abstract values. For example, the
specifications of List Iterator<T> can be revised by declaring

public model var _curr; private represents _curr <- curr;
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class CoffeeShop{
var orders : List<Order>; var menu : Dictionary<int, int>;

predicate cshop(lseq: seg<Order>, oseq: seg<int>,

reads fpt (cshop(lseq, oseq, m));

m:

{ orders # null % menu # null * orders.vList (lseq)
V i. 0 <= 1 & i <|lseq| = lseq[i].vOrder (oseq[3*i..3x1i+2])

function severd_seqg(se: seqg<T>) : seq<T>
requires 3 i. (i >= 0 = |seq| = 3%i);
reads (J;

decreases |se|;

if se = [] then ret := [];

else ret := se[2 := 1l]+serverd_seq(se[3..])

method CoffeeShop (menu : Menu)
requires menu # null && menu.vDic (?m);
modifies region{this.x*};

ensures cshop([], [], m);
/* ... omit the postcondition about menu x/
{ orders = new List<Order>(); /% ... omitted */ }

method takeOrder (item: int, table: int)

requires cshop (?lseq, Z?o0seq, ?m) && item € m;
ensures cshop(lseq + [ret], oseg+[table,

var itemId = menu.lookup (item);
ret := new Order (table, itemId);
orders.add(ret);

method service ()
requires cshop(?lseq, ?oseq, ?m);

modifies filter (fpt (cshop(lseq, oseq, m)),

ensures cshop(lseq, severd_seg(oseq),m);

var iter := orders.iterator();
while (iter.hasnext ()) {
var o = iter.next ();

if (o.isServed # 1)
o.served() ;

/% ... other methods omitted */

m.

Order,

map<int, int>)

% menu.vDis (m)

[item]], m)

served) ;

Fig. 36: The class Shop specified in a mixed style.

*
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Here _curr is a model variable represented by the private field curr. The represents clause says that the value of
_curr is the value of the field curr. That is, the value of _curr changes immediately when the value of curr
changes. Moreover, the location this._curr is connected with the location this.curr implicitly. Thus the write
effects of the method next can be rewritten as:

modifies region{this._curr};

And also the specifications that use this.curr can be rewritten by substituting this. _curr for it. For sim-
plicity, in the remainder of this paper, we just use program fields and consider that all such fields that are publicly
accessible in specifications.

Class Name Abstract Predicate
List<T> vList(se : seg<T>)
Listlterator<T> vLIter(vist :seq<T>)
Dictionary<Key, Value> vDic(m : map<Key, Value>)

Fig. 37: Visible predicate names to clients.

Interoperation The specifications in this example are written in different styles, nevertheless, with our approach
they can be combined and used in verification. As an example, we will now verify that the implementation of the
method takeOrder satisfies its specification.

A preliminary step in making the different styles interoperate with each other (following Section is to trans-
late specifications without explicit effects into UFRL, giving them explicit read and write effects. For the SL
specifications, these effects are derived from the footprint of the SL precondition. For example, the specification
of the method 1ookup in Fig.[34]is encoded in UFRL as:

[reads f£pt(vDic(m)&&k € m)]
{vDic(?m)&&k € m} v := lookup (k:Key) ; {vDic(m)&&v = m[k]} (105)
[modifies fpt(vDic(m)&&k € m)]

By using the rule SubEff,,, we derive:

[reads alloc|]
{vDic(tm)&&k € m}
Fu lookup(k : Key) returns (v : Value) (106)
{vDic(m)&&v = m[k]}
[ modifies £pt(vDic(m)&&k € m)]

Specifications with explicit write effects are encoded into those in UFRL with read effects that are readsalloc|.
For example the specification of takeOrder is encoded in UFRL as:

[reads alloc|]
{eshop(?lseq, Toseq, Tm)&&item € m}
b takeOrder(item : int,table : int)returns(ret : Order) (107)
{eshop(lseq + [ret], 0seq + [table,item, m.[item]], m)}
[ modifies fpt(cshop(lseq, oseq, m)&&item € m)]

Proceeding to the verification of the body of t akeOrder, we first assume its precondition:
cshop(lseq, oseq, m)&&item € m, (108)

which implies the precondition of menu . lookup by using the definition of the predicate cshop in Fig. For
the write effects, by the definition of the predicate cshop again, we have:

fpt(vDic(m)) < £pt(cshop(lseq, oseq, m)&&item € m).
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Thus, the method call menu. lookup is allowed in the body of the method takeOrder. After finishing execut-
ing method menu . lookup, its postcondition gets assumed:

menu.vDis(m)&&itemId = m[item]. (109)

As the precondition of the constructor of Order is true, and it only changes the values in the newly allocated loca-
tions on the heap; it does not change existing locations. Thus, it is allowed in the body of the method takeOrder.
After it finishes executing, and by using the rule /., we have:

(menu.vDis(m)&&itemId = m[item]) * ret.vOrder([table, itemId,0]) = orders.vList(lseq).  (110)

Eq. (110) implies the precondition of the method orders.add (ret) . For the write effects, according to Section
[[4.2] its specification is encoded as:

[reads alloc|]|{vList(?vist)} add (t); {vList(vist + [t])}[ modifies £pt(vList(vist))].  (111)
Together with the definition of the predicate cshop in Fig. we have:
fpt(orders.vist(lseq)) < £pt(cshop(lseq, oseq, m)&&item € m), (112)

Thus, orders.add is allowed in the body of takeOrder. After finishing executing it, its postcondition gets
assumed. And using the rule /., we have:

(menu.vDis(m)&&itemId = m[item]) » ret.vOrder([table,itemId,0]) = orders.vList(lseq + [ret])
(113)
As Eq. (IT3) implies the postcondition of takeOrder, the implementation is verified.

Verifying a Client of Cof feeShop For simplicity, we assume the items that customers chose are all available,
i.e., always exist in the internal system. Using the specification of CoffeeShop, consider the client code in
Fig. [3;0} Although the two instances, shop and shop1, share menu, the write effects of service claim that only
the fields served of the object Order may be modified. Thus, the following is true:

reads fpt(shopl.cshop(?l,70,m)) /modifies filter(£pt(shop.cshop(lseq, 0seq, m)), Order, served).

Then we can use the rule FRM,, and the rule CONSEQ,, to prove that shop1 is not served. Note that in the body
of service, an iterator is used. As it only reads the underlying data structure that is traversing, the iterator is
specified in the style of FRL; the underlying data structure is specified to be untouched. That allows the write
effects of service to be precise.

15 Discussion

This section discusses the idea of encoding the magic wand. Fig.|38 on the next page|specifies a procedure sum_it
that calculates the sum of val of all the nodes along a linked-list. This example is an adaptation from the one in
Schwerhoff and Summers’ work [55]]. The procedure is implemented by a loop statement that traverses a list and
sums up values, where a local variable curr points to the current node which the program is visiting. A loop
invariant specifies that the sum of the visited list is the subtraction the one of the to-be-visited from the one of the
whole list. Thus, an additional predicate 1 st seg specifies a fragment of a list starting with the node s to the node
e; and a helping function sum_seq recursively sums up the values in a given sequence. Fig. depicts
the dynamic situation.

To avoid specifying additional predicate 1stseg, inspired by Schwerhoff and Summers’ work [55]], the specifi-
cation can be improved as follows.

The use of the magic wand, 1st (curr, ?cvlst)*(lst (curr,cvlst)—=1lst (this,vlst)), has the
same semantics as fpt (1stseg (this, curr) ) +£pt (1st (curr, ?cvlst))=fpt (1st (this, vist))
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method sum_it () returns (ret: int)
requires lst (this, ?vlst);
modifies region{};

ensures ret = sum_seq(vlst);
{

ret := 0;

curr := this;

while (curr # null)
invariant lst (curr, ?cvlst) % (lst(curr, cvlst) — lst(this, vlast));

invariant curr = null = ret = sum(this);
invariant curr # null = ret = sum(vlst) - sum(cvlst);
{
ret := ret + curr.val; curr := curr.next;

}
predicate lst(n : Node, se : seq) {

(n = null = |se| = 0) & (n # null = n.val—se[0] * lst(n.next, se[l..

predicate lstseg(s: Node, e : Node) {

(s = null = s = ¢e) & (3 i. s.val—i % lst(s.next, e))
}
function sum_seqg(se: seq) : returns (ret : int)
{

if se = [] then ret := 0;

else ret := se[0] + sum_seqg(se[l..]);

class Node {
var val: int; wvar next: Node;

method sum_it () returns (ret: int)
requires lst (n, ?vlst);
modifies (J;
ensures ret = sum(vlst);

var curr: Node; ret := 0; curr := this;

while (curr # null)
invariant fpt (lstseg(this, curr))+fpt (lst (curr, ?cvlst))
= fpt (lst (this, vlst));

invariant curr = null = ret = sum_seqg(vlst);

invariant curr # null = ret = sum_seq(vlst)-sum_rec(cvlst);
{

ret := ret + curr.val; curr := curr.next;

Fig. 38: A sum example specified by UFRL.
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Ist(this, vist)

/Istseg{this, curr) Ist(curr, ?cvlst)\

| |
/ A N

C oo T T -

this curr

;I_/

Ist(curr, cvist) -* Ist(this, vist)

Fig. 39: The pictorial description of summing up values along a linked-list.

in its original specificaton. That specifies that curr points somewhere in the list, and what has
been visited is: 1lst (curr,?cvlst) or £pt(lstseg(this,curr)), and what has not is:
lst (curr,cvlst) —=+1lst (this,vlst)) or f£pt(lst(curr,cvlst)). Thus, the semantic foot-
print of 1st (curr,cvlst)—=lst (this,v1lst) has to be the one of subtracting Ist(curr,cvlst) from
Ist(this,vlst). We discuss its soundness by definition of the magic wand :

o, Hlr Eg a1 —xay <= forall ', r" :: (dom(h') nr = @fand o, b’ v’ =4 ay implies o, Hlr - b1’ 4 az),

where r © dom(H), a; and as are SL assertions. There are three possible extensions of the partial heap H | r
shown in Fig. 40| The extension shown on the left is inside the global heap H which is the case in the example;
on the right is outside H; and in the middle is a union of inside and outside H. We leave the encoding of the three

cases as future work.
‘ )

(a) inside extension (b) inside and out side extension (c) outside extension

Fig. 40: All possible extensions of the partial heap H [r for magic wand.

16 Related Work

16.1 Related Work on Framing

There are several approaches to framing that have been described in the formal methods literature. Historically
specification languages such as VDM [28]] and interface specification languages in the Larch family [24] specify
frames for procedures by writing a clause in the specification that names the variables that are allowed to be
changed during the procedure’s execution; all other locations must be unchanged. However, such a simple approach
does not easily generalize to layered structures of mutable objects. One approach that works with object structures
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is ownership [44], which only allows a designated owner object to mutate the objects that make up part of a
complex object structure. The universe type system [42]] combines type checking and some dynamic checks to
enforce the ownership property; the universe type system also gives a semantics to specifications of frames in a
way that allows modular verification of invariants [43]]. However, the universe type system and other approaches
based on ownership have difficulties in specifying and verifying shared data structures.

The Boogie methodology [8l9] has a dynamic notion of ownership; each object has an “owner” field that points
to that object’s owner. Although the Boogie methodology eases the problem of dealing with shared mutable data
structures by easing the transfer of ownership, it introduces a fair amount of overhead and complexity in writing
specifications.

In the approach of dynamic frames [29l30], the program dynamically tracks sets of locations (regions) expressed by
specification variables (or functions); these regions are used in the specification of frames. The resulting flexibility
allows the specification of shared data structures, but reasoning about dynamic frame uses second-order logic,
which makes automation difficult.

16.2 Related Work on Region Logic

Our work is partly based on the work of Banerjee et al. on region logic (RL) [3l4]. However, there are several key
differences between FRL (and UFRL) and this work on the RL:

1. In RL, regions are sets of references, possibly containing null [4]. For example, {x} is a region containing a
singleton object z. In RL, image expressions (like ¢ f) denote a region only if the field referenced (f) has
type rgn or Object. By contrast, in FRL regions are sets of locations, which makes it convenient to form
unions of sets of locations, something that is more difficult to express in RL. This difference also makes it
more convenient in FRL to express footprints of SL assertions, such as the points-to assertion. Using sets of
locations also matches specification languages in which frames are specified using such sets, like JIML [18]].

2. The meaning of the points-to predicate in RL is two-valued and classical. Our semantics if two-valued, but
intuitionistic in order to support garbage collection.

3. InRL, the footprints of region expressions are larger than the corresponding footprints in FRL. For example, in
RL the footprint of the region expression {z}* f is rd{z}‘f, z, meaning that the value of this region expression
depends on {x}*f itself, since f may not be a field declared in z’s class. In FRL the region expression,
region{x.f}, only depends on the variable, z;, as FRL’s type system makes sure that f a declared field name.

4. Finally, RL does not have conditional region expressions, which make FRL more expressive for specifying the
frames of SL assertions that involve implication.

FRL (UFRL) and RL also share lots of similarities.

1. Both use ghost fields with type regions to express frame conditions, i.e., read effects, write effects and fresh
effects. The effects are stateful, which follows the work of dynamic frames.

2. RLs read effects have the same granularity as FRL (and UFRL). The formula rd G*f allows one to read
the field of objects in G [4, p.22]; e.g., the RL read effect rd z‘f is equivalent to the FRL read effect
region{x.f}.

3. Although the semantics of the points-to predicate are different, their read effects are consistent in RL and
FRL (and UFRL). In RL, the read effects of the points-to predicate, which are called “footprints” in their
work, are defined by fptp(z.f = E) = rd x,z.f, £tpt(F), where rd is the keyword for read effects (our
work uses reads instead). The form rd x.f abbreviates the form rd {x}‘f [4, p.23]. Although x¢f may
not be the same as our region{x.f} as explained previously, rd z‘f is semantically equivalent to as our
reads region{z.f}.

4. RL and FRL (and UFRL) have similar definitions of agreement, frame validity, separator, immunity, and
Hoare-formula. Therefore, our proof rules are quite similar as well. In particular, we have semantically equiv-
alent frame conditions for the proof axioms.

Rosenberg’s work [54] implements a semi-decision procedure for RL as a plugin inside the SMT solver Z3. Sim-
ilarly, FRL and UFRL expressions could also be encoded into SMT, but such an encoding is beyond the scope of
this paper.
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16.3 Related work on Separation Logic with Permissions

Our work also draws on work in separation logic (SL). There has been much work on automating SL using first-
order tools [[12/1314/15l20122|51]]. Our results show another way of encoding SL into first order logic, via UFRL.
An inspiration for our work was the work of Parkinson and Summers [51]], who showed a relationship between
SL and the methodology of Chalice [38]] that combines the core of implicit dynamic frames [57f] with fractional
permissions and concurrency. They encode a separation logic fragment (similar to SSL) into the language of
implicit dynamic frames by defining a total heap semantics of SL, which agrees with the weakest pre-condition
semantics of the implicit dynamic frames language. While their work did not connect SL and RL, our results go
further than the analogous results in their paper, as we also formalize a translation of axioms and proof rules for a
Hoare logic based on SL and show that proofs can be soundly translated (Theorem [49).

16.4 Related Work based on Dynamic Frames

Leino’s Dafny language [35136]] is based on dynamic frames, in which frames are specified using sets of objects
stored in ghost fields. Our work has adopted several programming and specification language features from Dafny.
However, unlike FRL, Dafny does not make it easy to specify frames at the level of locations, so instead one must
strengthen postconditions by using old expressions to specify which fields of threatened objects must not change.
The dynamic frames approach used by Smans et al. [58], however, does use sets of locations. These sets can be
computed by pure functions. This use of pure functions supports data abstraction and information hiding. We
consider data abstraction and information hiding to be orthogonal to the problems discussed in this paper, as
standard solutions can be applied [1/2(34)39]]. While their language has much of the power of FRL, they do not
formally connect SL with their language, and do not address the problem of allowing specifications in both SL and
RL to interoperate.

The KeY tool [11J60] extends JML with dynamic frames. It introduces a type \locset that stands for sets of
memory locations. Recently, Mostowski and Ulbrich [41] replace ghost fields with model methods that allow
method contracts to dynamically dispatch through abstract predicates. However, neither KeY nor JML addresses
the problem of connecting SL to RL and mixing specification styles.

16.5 Other Works

Tuerk’s work [59] presents an inference rule that allows local reasoning to verify loops. Instead of using loop
invariants, the inference rule uses pre- and post-conditions. It would be interesting to introduce this inference to
FRL (and UFRL). However, we leave that as future work.

17 Conclusion and Future work

This work introduces UFRL, which is able to reason about object-based programs specified in the styles of FRL
and SSL. This is accomplished by a translation from SSL to UFRL which preserves not only the meaning of
assertions but which can also translate proofs in SSL into UFRL proofs. Thus UFRL provides a single mechanism
that allows FRL and SSL to interoperate with each other, allowing designers flexibility in writing specifications in
either style or in a mix of styles.

In addition to the future work discussed previously, we are planning to work on a prototype implementation of
UFRL with an automatic theorem prover such as Z3 [21] or CVC4 [10]]. That future work will rely on an encoding
of UFRL into first-order logic, which can be accomplished by making use of the following three observations.
First, the quantifiers in FRL (and UFRL) are first-order; this allows implementations to use SMT solvers. Second,
the operators on regions (union, difference and intersection) can be translated into corresponding set operations.
Third, UFRL can be used in automated verification tools that prove programs in a method-modular way. That is,
when verifying a method call, its precondition is asserted and its frame and postcondition are assumed. Alterna-
tively, instead of directly accumulating effects and composing each proof rule, verification tools for UFRL can be

® Implicit dynamic frames is considered as a separation logic approach by Semans et al. [56]].
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implemented by computing weakest preconditions or by symbolic execution. Finally, we plan to adopt Dafny’s
logical encoding that can reason about fixpoints automatically [53].

It would also be interesting future work to develop a formal comparison between region logic and Dafny [35136].
Other future work includes extending UFRL by allowing mutually-recursive predicates, reasoning about subtyping
and dynamic dispatch, and incorporating ideas from our work on UFRL into JML [18].
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Proof of Theorem 32

Theorem [32;: An assertion in SL is supported if and only if it has semantic footprint.
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Proof. Let (0, h) be a state and a be an assertion in SL, such that o, h = a. Let H def {P'|W < hnoh Esal.

Any subset of H defines a partial order, i.e., H1 < Hso iff H1, Ho,€ P(H) and Hy1 S Ho. We define (| H;) def

{H'|H' < H; AH € P(H)}, where H; € P(H). For any pair of H; and Ha, (| H1) n (| Hs) is a partial order.
Let [ |, define the greatest lower bound of any subset of the intersection. Let [ ],, define the greatest lower bound
of any subset of the intersection. If it has a greatest lower bound of #; and Hs, then

Mo < (M| |Ha) iff (Ha < Hi1and Ha < Ha).
H

Thus, H, is the least subheap for an assertion a in Definition Next we show that dom(H,) is a’s seman-

tic footprint. Let R def {rlo,h | r Es a}. Any subset of R defines a partial order in a way similar to . Let
[ ] define the greatest lower bound of any subset of R. Let DOM be a functor from P(H) to P(R), such
that DOM({hq, ha, -+ ,hn}) = {dom(h1),dom(hg),--- ,dom(hy,)}. If (H1) < (Hz), then DOM(H;1) <
DOM(Hz). Thus H, < (Hi [y Ho) iff DOM(H,) < DOM(H1) [z POM(Ha). O

B Proof of Theorem

Theorem 40} Let @ be an assertion in SSL. Then o, h k= a iff o, h =, TR[[a]].

Proof. The proof is by the induction on the assertion’s structure. Here we only show the most interesting case that
encodes the separating conjunction. Other proofs are found in the KIV project [6]. It is an inductive case when a
is of the form a; * as. The inductive hypothesis is that for all subassertions a;, o, h k=5 a; iff o, h =y, TR[a;].

We first prove it from the left side to the right side. Assume o,h = a1 * as. We need to prove o,h =,

TRl ]| & TR]as]] & (fpr,(a) ! pr, (az)).

o,hl=ga *as
iff ~ (by the semantics of separation logic (Def.[25))
exists hy, hg i (hiLhs and h = hy - he and o, hy =5 a1 and o, he =g az)
iff ~ {by let fresh variables, hy and hs, be the witnesses of the existential variables.)
hlj_hg and h = h1 . hQ and g, h1 Es a1 and g, hg Es ag
impliesby truth of assertions is preserved under heap extension ( Lemma >
hiLho and h = hy - hy and 0, hy =, a1 and 0, hs E5 as and o, h =g a1 and o, h =4 as
impliesby let vy and ry be fresh, and by Theorem
hiLlho and h = hy - hy and 0, hy =5 a1 and o, hs E4 as and o, h =5 a1 and 0, h = as and
Elfpts(ar)]l(o) = 1 and Efpt,(az)] (o) = r2
implie§by Corollary[38|and hy Lho)
hilhs and h = hy - ho and 0, hy =5 a1 and 0, he E, as and o, h =5 a1 and o, h =4 as and
Ellfpt,(a)](o) = r1 and E[fpt,(a2)]|(c) = re and ri ! 1rg
iff ~ (by inductive hypothesis)
hilhs and h = hy - ho and 0, h1 Es a1 and 0, hy E, as and o, h =4 a1 ando, h = as and
Ellfpt(a)] (o) = r1 and E[[fpt,(a2)]|(0) = re and r1! 'ry and o, h =, TR[a1]] and o, h =, TR[az]
iff ~ {by the semantics of UFRL (Fig.[14))
o,h =y TR[[a1]] && TR[az] && (fpt,(a1)! fpt,(az))
iff ~ (by Mapping from SSL to UFRL (Def. [34))
o,h =y TR[[a; * az]

Next, we prove it from the right side to the left side. Assume
o,h =y TR[[a1]] && TR[az]] && (fpt,(a1)! !fpt,(az)). We need to prove o, h =g a1 * as.

o,h =, TR[a1]] && TR[az]] && (fpt(a1)! fpt (az))
iff ~ (by the semantics of UFRL (Fig.[14))

o,h =y TR[[a1] and o, h =, TR[as2]] and E[|fpt,(a1)]|(o) = 1 and E[[fpt,(a2)]|(o) = ro and r1! 1rg
iff  (by inductive hypothesis)
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o,h =y, TR[[a1]] and o, b =, TR[az] and E([fpt,(a1)]|(o) = r1 and E[[fpt,(a2)]|(c) = 12 and r1! 7o
and o, h =y a1 and o, h =y, as

iff  {by Corollary[39)
o,h =y TR[[a1] and o, h =, TR[az2]] and E[[fpt,(a1)]|(o) = r1 and E[fpt,(a2)]|(o) = r2 and ri! 1rg
and o, hlry =, a1 and o, hirs =y as

implie§by hira < hl(dom(h) — r1) and truth of assertions is closed under heap extension (Lemma[29))
o,h =y TR[[a1] and o, h =, TR[as2]] and E[[fpt,(a1)]|(o) = 1 and E[fpt,(a2)]|(o) = ro and r1! 1rg
and o, hlry =, a1 and o, hire =, az and o, bl (dom(h) — 1) =y ag

impliesby Corollary[38] r1 U (domh — r1) = dom(h), and we find hy = hlry and hy = hi(dom(h) — 1))
exists hy,hg :: (h1Lhs and h = hy - hy and o, hy s a1 and o, hy =5 az)

iff ~ (by the semantics of separation logic (Def.[25))
o,h =g ar *as

C Proof of Lemma

Lemma Let a and o’ be assertions and S be a statement, such that =, {a}S{a’}. Let (0, H) be an arbitrary
state. If o, H =4 a and MS[[S](0, H) = (¢’, H'), then:

L. forall x € dom(o):: o'(x) # o(x) implies x € mods(S).

2. forall (o, f) € dom(H):: H'[o, f] # H]o, f] implies (o, ) € E[[fpt,(a)](0).

3. forall (o, f) € (€[, ()](0) — ELfpr, (@)(0)):: (0, f) € (dom(ET) — dom(H)).
Proof. Leta, d', S, (o, H) be given, such that =, {a}S{a’}. Let (¢/, H') be such that (¢/, H') = MS[S]|(o, H).
For property 1, we must show that for all x € dom(o):: o/(x) # o(x)impliesx € mods(S). The proof is by
induction on the structure of the statement S and the definition of mods(S). There are 6 base cases.

1. (SKIP) In this case, S has the form skip;. According to its semantics Fig. o = o'. Thus, it is
vacuously true.

2. (VAR) In this case, S has the form var x : T’;. According to its semantics Fig. o =
Extend(o, z, default(T')). Thus, it is vacuously true, as Extend only extends o by definition.

3. (ALLOC) In this case, S has the form y := new C';, for some variable y. According to the semantics Fig. fl;fl
o' = o[y — ], where [ is some new location. Thus, no other variables are mapped to different
values by o’. For y, we have ¢’ (y) # o(y), and y € mods(y := new C;) = {y}, according to Fig.]26]

4. (ASGN) In this case, S has the form y := ¢; for some variable y. According to its semantics Fig.
o' = o[y — v], where v is the value of e. For y, 0’(y) # o(y), and y € mods(y := e) = {y}, according to
Fig.26]

5. (UPD) In this case, S has the form y.f := e;. According to its semantics Fig. |11 on page 13| ¢’ = o. Thus, it
is vacuously true.

6. (ACC) In this case, S has the form y := 2. f;. According to its semantics Fig. o' =oly— 0],
where v is the value of 2. f. Thus, ¢’(y) # o(y), and y € mods(y := 2’.f) = {y}, according to Fig.

The inductive hypothesis is that for all substatements S;, (0;, H;), and (o}, H!), for all x € dom(o;) :: ol(z) #
o;(x) implies x € mods(S;). There are 3 inductive cases.

1. (IF) In this case, S has the form if e {S;} else {S>}. According to its semantics Fig.
if Eule]l(o, H) is true, then the result follows from the inductive hypothesis applied to S;. Similarly if
Eullell(o, H) is false, the result also follows similarly.

2. (WHILE) In this case, S has the form while e {S}. According to its semantics Fig. there
exists n > 0, such that ¢’ = o, and &, [Je]](o,, H,) = 0. We prove it by induction on n. The base case is
n = 0. According to the semantics Fig. |11 on page 13| ¢/ = o. Thus, it is vacuously true. For the inductive
case, we assume for all x € dom(o) :: op—1(x) # o(x) implies © € mods(S). And by the inductive hypoth-
esis, forall v € dom(o,—1) 2 op(x) # op_1 implies x € mods(S). Thus, for all x € dom(c) :: o(x) #
o’(x) implies © € mods(S).
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3. (SEQ) In this case, S has the form S1S55. By definition, mods(S1S2) = mods(S1) U mods(S3). According to
the statement’s semantics Fig. assume o is the post-states of S;. By the inductive hypothesis,
forallx € dom(o) :: o1(x) # o(x)impliesz € mods(S1), and for allx € dom(o1) :: o' (x) # o1(x)impliesz €
mods(S3). Thus, for all x € dom(o) :: o' (z) # o(x) implies (x € mods(S1S2)).

For property 2, we must show that for all (o, ) € dom(H):: H'|o, f] # H|o, f] implies (o, f) € E[[fpt,(a)] (o).
We assume that o, H =, {a} S {d'}, 0, H =5 a and MS[[S]|(o, H) = (¢’, H"). The proof is done in calculational
style, starting from the assumptions.

o,H = {a}S{d'} and 0, H =5 a and MS[S](c,H) = (¢', H')
i (by assumption =, {a}S{a'}, thus (o, HIEpty(@)](0)) . a}Sta’} iff o, H =, {a} S {a})
(o, HIE[fpt,(a)]|(0)) s {a}S{a’} and o, H =5 a and MS[S](c, H) = (¢, H')
if (by CorollaryB% o, H =, a iff (o, HIE[fpt, (a)][(0)) =5 a)
(o, HIE[[fpt,(a)]|(0)) =5 {a}S{a’} and o, H =5 a and MS[S]|(c, H) = (¢’,H') and
(o, HIE[fpts (a)]|(0)) s a
iff ~ (by the definition of SSL valid Hoare-formula (Def. >
(o, HIE[fpt,(a)]|(0)) s {a}S{a’} and 0, H =5 a and MS[S](c, H) = (¢/, H') and
(o, HIE[fpt,(a)]|(0)) Es a and MS[S]|(o, HIE[fpt,(a)]|(0)) # err and if
((o’', H") = MS[S]|(o, HIE[ fpts(a)]|(0)), then o', H" =, a').
iff ~ {by frame property of SL)
(o, HIE[fpt,(a)]|(0)) s {a}S{a’} and o, H =5 a and MS[S](c, H) = (¢, H') and
(o, HIE[fpt,(a)]|(0)) s a and MS[[S](o, HIE[fpt,(a)]|(0)) # err and
((¢',H") = MS|[S](c, HIEfpt,(a)]|(0)), and o', H" =5 a') and
A7 LH (dom(I) — £t (@)](0)) and H' = H" . H}(dom(H) — E[fpt, ()] ()
implie§by A and B implies B)
HY L (dom(H) — Elfpr, (@)](0)) and H' = H" - HY(dom(IT) — E[pt, ()] ()
iff by forall (o, f) € Elfpt,(a)]|(o) :: ... implies (o, ) € E[fpts(a)] (o) is a tautology)
H"1H(dom(H) — E[lfpt,(a)]|(c)) and H = H"” - H(dom(H) — E[|fpt,(a)](c)) and
for (0,1 el (1) = 1710, ) - W€ @)l ) impis (0. 1) € ST (@]o)
implied by H' = H" - H|(dom(H) — SIprt (a)](0)) and
(dom(H1) — Efpr, (@)](0))  Ep, ()] (0) = &
H" LH(dom(H) — E|lfpts(a)]|(0)) and H' = H" - H|(dom(H) — E[fpt,(a)](0)) and
forall (o, f) € E||fpt,(a )]](0) H'[o, f] # HIE[fpt,(a)]|(o)[o, f] implies (o, ) € E[fpt ()] (o)
implie§by Corollary [38] £[[fpt,(a)](c) = dom( ), twice)
H" LH|(dom(H) —5[[f17f (a)][(0)) and H' = H" - H [(dom(H) — £[[fpt,(a)]|(0)) and
forall (o, f) € dom(H) :: H'[o, f] # H|o, f] implies (o, f) € E[fpt,(a)] (o)
impliesby A and B impliesB)
forall (o, f) € dom(H) :: H'|o, f] # HJo, f] implies (o, f) € E[lfpt;(a)] (o)

For property 3, we must show that for all (o, f) € (E[fpt,(a’)](o) — Efpt,(a)](o)
dom(H)). We assume that o, H =, {a} S {d'}, 0, H =5 a and MS[[S] (0, H) = (¢’,
calculational style, starting from the assumptions.

o, H =4 {a} S{da'} and 0, H =5 a and MS[S]|(c,H) = (¢/, H')

iff ~ {by assumption =, {a}S{a’}, thus (o, HE[[fpt,(a)]|(0)) Es {a}S{d'} iff o, H =5 {a} S {a’})
(o, HIE[fpt,(a)]|(0)) =5 {a}S{a’} and o, H =5 a and MS[S](c, H) = (¢, H')

iff ~ (by Corollary3%} o, H &=, a iff o, HIE[[fpt,(a)] (o) s a)
(o, HIE[[fpt,(a)][(0)) s {a}S{a’} and o, H =5 a and MS|S]|(o, H) = (¢', H') and
o, HEfpts(a)]|(0) =5 a

iff  {by the definition of SSL valid Hoare-formula (Def. 42))
(o, HIE[fpt,(a)]|(0)) =5 {a}S{a’} and 0, H =5 a and MS[[S](c, H) = (¢, H') and
o, HIE|fpt,(a)](0) Es a and MS[S] (o, HIE[fpt,(a)](c)) # err and if
((¢', H") = MS[S](c, HIEfpt,(a)]|(0)), then o', H" =, a').

iff ~ (by frame property of SL)

) (0, f) € (dom(H') —
H'). The proof is done in
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(o, HIE[[fpt,(a)]|(0)) =5 {a}S{a'} and o, H =5 a and MS[S]|(c, H) = (¢, H') and

o, HEfpt,(a)]|(0) =5 a and MS[[S]|(o, HIEfpts(a)]|(0)) # err and

((¢', H") = MS[S](c, HIEfpt,(a)]|(0)), and o', H" =5 a’) and

H"1H(dom(H) — E[lfpt,(a)]|(0)) and H = H" - H|(dom(H) — E[[fpt,(a)] (o))
implie§by A A B implies B)

o' ,H" =5 ' and H" LH(dom(H) — 5[[fpt (a)]|(0)) and H' = H" - H(dom(H) — E[[fpts(a)]|(0))
iff by (forall (o, f)e (r' —r):: (o, f) € (r' —r)) is a tautology)

o' H" =5 o' and H" LH (dom(H) — E|fpt,(a)]|(0)) and H' = H" - H}(dom(H) — & fpt,(a)] (o))

and for all (0, f) & (€[, (@)](0)) — ELpr.(@)](0)) = (o, f) & (Efor.(@)](0) — ELfor.(@)] (o)
1mphes{by Corollary. B8l E[lfpt,(a)] (o) = dom(H))

o', H" s ' and H" LH [(dom(H) — E[[fpt,(a)]|(0)) and H' = H" - H|(dom(H) — [ fpt,(a)](0))

and for all o, ) € (€t (@)])()) — ELpra(a)](0)) = (0, F) € (ELfon, ()] (o) — dom(IT))
impliesby H' = H" - H |(dom(H) — E[[fpt,(a)](¢)) and Corollary [38)

o' H" =5 o' and H" LH (dom(H) — E|fpt,(a)]|(0)) and H' = H" - Hl(dom(H) — & fpt,(a)] (o))

and for all (o, f) € (E[fpt;(a")]|(o”) = Efpts(a)]|(0)) =: (o, f) € (dom(H") — dom(H)))
implie§by A and B implies B)

(for all (0, ) & (Elfpt, (@ )](o") — Efor, (@)](0)) = (o, £) € (dom(H') — dom(H)))

D Proof of Theorem

Theorem 47} Let S be a statement, and let a and o’ be assertions in SSL, such that =, {a}S{a’}. Let r be a region
variable. Let (o, H) be an arbitrary state. If o, H &=, TR[[a] implies r = fpt,(a) and r ¢ mods(S), then

o, H =5 {a} S{a'} iff
o, H =, {TR[[a]}S{TR[¢']]}[ modifies fpt,(a),mods(S), £resh (fpr,(a’) — r)][fpt.(a)].

Proof. Assume that o, H =, {a}S{a’}, and that r is a region variable such that o, H =, TR[[a]|impliesr = fpt (a)
and r ¢ mods(S).
We prove the lemma by mutual implication. First we prove that the left side implies the right side.

o,H =5 {a} S {da'}
iff  (by assumption =, {a}S{a'}, thus (o, HE[[fpt,(a)]|(0)) s {a}S{d'} iff o, H =5 {a} S {d'})
(o, HE[lfpts(a)]l(0)) s {a}S{a’}
iff ~ (by the definition of SSL valid Hoare-formula (Def. 42)))
(o, HIE[[fpt,(a)]|(0)) =5 a implies MS[S]| (o, H E([fpts(a)]|(0)) # err and
if (o/, H') = MS[S]|(o, HIE[ fpts(a)]|(0)), then ¢’, H' =4 o
impliesby Lemmal43)
(o, HIE[fpt,(a)]|(0)) =5 a implies MS[[S] (o, HE[[fpt,(a)]|(0)) # err and
if (o/, H') = MS[S]|(o, HE[fpts(a)]|(o)), then o', H' =4 o’ and
forall x € dom(c) :: o'(x) # o(x) implies © € mods(S) and
forall (o, f) € E[fpt,(a)]|(o) == H'[o, f] # HIE[fpt(a)]|(o)[o, f] implies (o, ) € Efpt,(a)]|(o) and
for all (o, f) € (E[fpt, ()] (0") = Elfpt,(a)]|(0)) =: (o, f) € (dom(H') — E[lfpt,(a)]|(0)))
im lie.<by termination monotonicity as H = (H — H[E[[fpt,(a)]|(0)) - HIE[fpts(a)] (o) and >
PN = HIE L (a)](0) LH Efpt, (a)] (0)
(o, HIE[[fpt,(a)]|(0)) s a implies MS[[S]| (o, H E([fpt,(a)]|(0)) # err and
if (o/, H') = MS[S||(o, HIE|fpts(a)]|(0)), then o', H' = a’ and (o', H") = MS[S]|(c, H) and
forall x € dom(o) :: o' (x) # o(x) implies x € mods(S) and
forall (o, f) € Elfpt, (@) (o) = H'[o, f] # HIELpt,(@)](0)[o, f] implies (0, f) € Ept, (@)](c) and
forall (0. 1) € Ellfot,(a)(o") — £t (@)](0)) :: (0, £) € (dom(H') — Eot, (@)](0)))
impliesby the frame property of SL)



80 Yuyan Bao, Gary T. Leavens, Gidon Ernst
(o, HIE[[fpt,(a)]|(0)) s a implies MS[[S]| (o, H E([fpt,(a)]|(0)) # err and
if (o/, H') = MS[S](o, HEfpt,(a)]|(0)), then o', H' =, a' and (o', H") = MS[S]/(o, H) and
H" = H'- (H — HIE[fpt,(a)]|(0)) and H' L(H — H|E[|fpt(a)]|(0)) and
forall x € dom(o) :: o' (x) # o(z) implies x € mods(S) and
forall (0, ) € Efpt, (@)](0) = H'[o, f] # HIEfot,(@))(0)o. f] implies (0, f) € £[for, (@)](c) and
forall (0, 1) € (Efot, (@)](0”) — ELor, (@](0)) (o0, F) € (dom(H') — ELfpr,(@)](2)))
implie§by Corollary [39)
o, H =5 a implies MS[[S] (o, HE[fpt (a)]|(o)) # err and
if (o', H') = MS[S||(o, HIE[ fpts(a)]|(0)), then o', H' =4 a’ and (o', H") = MS[S](c, H) and
H = H . (H—-H! 5[[fpt (a)](0)) and H' L(H — H 1€[fpts(a)](0)) and
Sorall x € dom(o) :: o' (x) # o(x) implies x € mods(S) and
for all (0, f) & Efpt, (@)(0) = H'[o, f] # HIEfot,(@)](0)o, 1] implies (o, f) € Efpr, (@)](o) and
for all (0. 1) € (E[[foty (@) )(e") — Efpt,(@)](0)) :: (0. 1) € (dom(H") — E[fpr, (@)](@)))
iff  (by Theorem[0] twice)
o, H =, TR[a]] implies MS[[S]|(o, HEfpts(a)]|(0)) # err and
if (o, H') = MS[S](c, HIE[Jpt,(a)]|(0)), then o’, H' =, TR[d'] and (o', H") = MS[S](c, H)
and H" = H' - (H — HE(fpt;(a)]|(0)) and H' L(H — HIE| fpt,(a)] (o)) and
forall x € dom(c) :: o' (x) # o(x) implies © € mods(S) and
forall (o, f) € E[fpt,(a)]|(o) =: H'[o, f] # HIE[lfpt,(a)]|(o)[o, f] implies (o, ) € E[fpt,(a)]|(o)
and for all (o, f) € (E[pt,(@)](0") — €L, (@)](0) - (0, /) & (dom(H) — Efpr, (@)][(0))
implie.<by dom(H') — E|lfpt,(a)]| (o) = dom(H') — dom(H ), because E[[fpt,(a)]|(0) S dom(H) >
by Corollary 38 and H' L(H — HIE[[fpt,(a)]| (o))
o, H =, TR[a] implies MS[[S]|(c, HEfpts(a)]|(0)) # err and
if (o/, H") = MS[S](o, HIE[fpt,(a)]|(0)), then o', H' &=, TR[d']| and (¢, H") = MS[S](c, H) and
H" = H'- (H — HIEfpt (a)]| (o)) and H' L(H — H[E[|fpt(a)]| (o)) and
forall x € dom(o) :: o' (x) # o(z) implies v € mods(S) and
forall (0, f) € Elfot, ()(0) = H'[o, f] # HIE[fot, (@)oo, f] implies (0, f) € Efpr, (@)](0)
and for all (o, f) € (E[[fpt,(a" )| (o) — E[lfpts(a)]|(0)) :: (o, f) € (dom(H") — dom(H))
by {(o, f) € Elfpts(a)]l(o) == H'lo, f] # HIE[lfpt ()] (o)[o, f1} =
implie.< {(o, f) € dom(H) :: H'[o, f] # H|o, f]}, because E[[fpt,(a)](c) S dom(H) >
by Corollary 38 and H' L(H — H |€[fpt,(a)](0))
o, H =, TR[a]] implies MS[[S]|(o, HEfpts(a)]|(0)) # err and
if (o/, H') = MS[S]|(o, HEfpts(a)]|(o)), then o', H' =, TR[d']] and (¢’, H") = MS[S]|(c, H) and
forall x € dom(c) :: o' (x) # o(x) implies © € mods(S) and
forall (o, f) € dom(H) :: H'|o, f] # H|o, f]implies (o, f) € E[fpt;(a)](c) and
forall (o, 1) & (ot ()](0") — Ept. (@)](0)) : (0, ) & (dom(H') — dom(H))
iff  (by assumption E[[fpz,(a)]|(o) = E[[r] (o))
o, H =, TR[a] implies MS[[S]|(c, HEfpts(a)]|(0)) # err and
if (o/, H') = MS[S]|(o, HE[fpt,(a)]|(0)), then o', H' =, TR[d'] and (o', H") = MS[S]|(c, H) and
forall x € dom(o) :: o' (x) # o(x) implies x € mods(S) and
forall (o, f) € dom(H) :: H'|o, f] # HJo, f] implies (o, f) € E[ fpts(a)](o) and
forall (0, ) & (Elfpr, (@)](0") — EIr(0)) + (o, f) € (dom(H') — dom(H))
iff by &frl(o) = E[r](c’) because r ¢ mods(S)>

o, H =, TR[a] implies MS[[S]|(c, HEfpts(a)]|(0)) # err and

if (o/, H") = MS[S]|(o, HIE[fpt,(a)]|(0)), then o', H' &=, TR[d']| and (¢, H") = MS|[S](c, H) and
Sorall x € dom(o) :: o' (x) # o(x) implies x € mods(S) and

forall (o, f) € dom(H) :: H'|o, f] # HJo, f] implies (o, f) € E[ fpt;(a)]|(o) and

for all (o, f) € E[fo,(a') — r1(6”) :: (0. f) € (dom(H") — dom(H))

as freshR(modifies fpt (a), mods(S), £resh (fpt,(a’) — r)) is (fpt,(a’) — r)

implie <by the definition of UFRL valid Hoare-formula (Def. [T6), >
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o, H =y {TR[a]]}S{TR[¢'] }[ modifies fpt,(a), mods(S), £resh (fpt,(a’) — r))][fpts(a)]
where TR[[a]| implies r = fpt (a)

Next, let r = fpr,(a). we prove it from the right side to the left side.

o, H =y {TR[a]]}S{TR['] }[ modifies fpr,(a), mods(S), £resh (fpr,(a’) — r))][fpts(a)]
ol by the definition of UFRL valid Hoare-formula (Def. [T6),
mp le'< as freshR(modifies fpt (a), mods(S), fresh (fpt,(a’) — r)) is (fpt,(a’) — r) >
o, H =, TR[[a] implies MS[[S]|(c, HEfpts(a)]|(0)) # err and
if (o/, H") = MS[S]|(o, HIE[fpt,(a)]|(0)), then o', H' =, TR[d']] and
Sorall x € dom(o) :: o' (x) # o(x) implies x € mods(S) and
forall (o, f) € dom(H) :: H'|o, f] # HJo, f] implies (o, f) € E[ fpt,(a)]](o) and
forall (o, f) € Elfpts(a’) — r]|(o”) = (o, f) € (dom(H') — dom(H))
impliesby A and B implies A)
o, H =, TR[[a] implies MS[S]|(o, HE[fpts(a)]|(0)) # err and
if (o/, H") = MS[S]|(o, HIE[fpt,(a)]|(0)), then o', H' =, TR[d']
iff  (by Theorem[0] twice)
o, H =5 a implies MS[[S] (o, HIE[[fpt,(a)]|(o)) # err and
if (o/, H') = MS[S]|(o, HE[[fpt,(a)]|(o)), then o', H' =, o
implie§by Corollary
o, H\E[fpt,(a)]|(0) s a implies MS[S]|(o, HIE[[fpts(a)]|(0)) # err and
if (o', H') = MS[S]|(o, HIE[ fpts(a)](0)), then o', H' =4 a
iff ~ (by the definition of SL validity Hoare-formula (Def. [42))
o HIEfor, ()](0) -, {a} S {a')
iff ~ (by assumption = {a}S{a’}, thus (o, HIE[fpt,(a)](0)) s {a}S{a’} iff o, H =5 {a} S{a'})
o, H =5 {a} S {da'}

E Proof of Theorem 49

Theorem @9} Each translated SSL axiom is derivable, and each translated rule is derivable in the UFRL proof
system.

Proof. The proof is by the induction on the derivation and by cases in the last rule used. In each case, we show
that the translated proof axioms and rules are derivable.

1. SKIP: by Def.[d8] the encoded axiom is the axiom SKIP,,.
2. VAR: by Def. 8] the encoded axiom is the axiom VAR,,.
3. ALLOC: by the rule ALLOC and Def.[48] we get the translated rule below:

[reads fpr,(a)]

Fu {TR[a]}x := new C; {TR[a * new;(C, )]}
[ modifies fpr,(a),x,alloc, fresh(fpt, (news(C, x)))]
where 2 ¢ FV(a)

(114)

By definition of the predicate news(C, x), we know that fpt,(news(C, z)) = region{z.x}. Given the axiom
ALLOC,, we derive Eq. (114) by using the rules FRM,, and SubEff,,. The derivation is shown in Fig.
4. ACC: by the rule ACC, and Def. we get the translated rule below:

o [region{a’.f}{z'.f = z}x =2/ f; {¢/.f = 2 && = = z}[ modifies region{z’.f}, x]

where z # 2/, 2 # zand x # 2 a5

where the fresh effect is empty, thus, it is omitted; fpt (x = 2)!!fpt,(z'.f — =z) is true, thus, it
is omitted. Given the axiom ACC,, by definition of read effects for assertions in Fig. [I8] we have
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(reads 2/, region{z’.f},z) frm a’.f = z. By the side conditions and the definition of separator, we have
(reads (¢, region{a’.f},z) -/ modifies x. Hence z.f = z is the frame. Using the rules FRM,, and
SubEff.,, Eq. (IT5) can be derived. The derivation is shown in Fig. 42}

5. UPD: by the rule UPD, and Def. [48] we get the translated rule below:

b [reads region{x.f}]{3z.2.f = z}a.f := E;{z.f = E}[ modifies region{x.[}]

where z ¢ FV(E) (116)

where the fresh effect is empty, thus, it is omitted. Note that x.f — _is an abbreviation for 3 z.z. f — _. Thus
x.f — _istranslated to 3 z.z.f = z. Eq. can be derived by using the rules SubEff,, and CONSEQ,,. The
derivation is shown in Fig.

6. SEQ: by the rule SEQ; and Def. we get the translated rule below:

[reads ]
- (TR[a] & r1 = fpr,(a)} 1 (TR}
[modifies i}, mods(Sy), fresh (ry — )]
[reads 75| ]
Fu ETR[[b]] && vy = fpt (b)} So {TR[[']}
modifies ro),mods(Ss), fresh (fpr (a’) — r2)]
[reads 7]
Fu ETR[[a]] && r1 = fpt (a)} $152 {TR[a'T}
modifies ri),mods(S:52), fresh (fpr,(a’) — r1)]
where | and r are fresh, r; ¢ mods(Sy1) and ro ¢ mods(Sz)

(117)

There are two cases:
(a) S1 = var z T;: In this case, by the rule VAR, we have b = a * default(T), mods(var z : T) = ¢ and
r1 = ro = fpt,(a). Then we need to show

Fu [reads r|]{TR[a] && r1 = fpt,(a)} var z : T; {TR[a * default(T)]|}[ modifies 7]
[reads 7]
tu {TR[a = default(T)]| && 1 = fpt (a)} S2 {TR[[a']}
[ modifies ri|,mods(Ss), fresh (fpr (a’) — r1)]
[reads 7]
Fo {TR[[a] && 1 = fpt,(a)} var x : T; Sy {TR[d']}
Emodifies r1l,mods(S2), fresh (fpr,(a’) — r1)]
where 71 is fresh and 1 ¢ mods(S2)

(118)
Using the rule SubEff,, on the second premise, we get

[reads 7]
Fu {TR[a * default(T)]] && 1 = fpt,(a)} So {TR[a']} (119)
[modifies ], z,mods(Sz2), fresh (fpt (a’) — r1)]

Using the rule SEQ2,,, we can get the conclusion of Eq. (TT8).

(b) §1 # var z : T';: we consider the following cases:
— 87 does not allocate new locations, i.e., 7y = ro. The rule SEQ1,, is instantiated with RE := region{},
RE; := region{} and RE; := region{}. If the immunity side conditions are satisfied, then the conclu-
sion of is derived by using the rule SEQ1,,. Otherwise, for all € mods(S1) and x in FV(b), there
exists z, such that b implies x = z and z ¢ mods(S;). We substitute z for z in fpz,(b). Then the second
premise of Eq. is re-written as:

[reads 1] [Z/mods(S1)]]
Fu {TR[D] & 1 = fp1,(b)} S2 {TR[a'] } (120
[modifies 71| [Z/mods(S1)], mods(S2), fresh (fpr (a’) —r1)]



Unifying Separation Logic and Region Logic to Allow Interoperability 83

where r1 | [Z/mods(S1)] means that for all RE € ry |:: RE[mods(S1)/z]. From the first premise of
Eq. (117) and Eq. (120), the immunity side conditions are satisfied. After using the rule SEQI,,, we get

[reads 71|, 71| [Z/mods(S1)]]
Fu {TR[a] && 71 = fpt,(a)}S1S2{TR[a']} (121)
[modifies r],72] [mods(S1)/Z], mods(S1S2), £resh(fpt,(a’) — ril [mods(S1)/z])]

Because for all RE € r1 :: RE in 13| [y/x], Eq. (121) can be simplified to

[reads ]
Fuo {TR[a]] && r1 = fpt,(a)}S1S2{TR[[¢']} (122)
[modifies r1|,mods(5152), fresh(fpr,(a’) — r1)]

— 8 allocates some new locations. Then the second premise of Eq. (117) can be re-written as:

[reads 71|, (r2 —71)]
Fu {TR[a * default(T)]] && 72 = fpt,(a = default(T))} So {TR[a']|} (123)
[ modifies 1|, (re — 1), mods(S2), fresh (fpt (a’) — ra)]

The rule SEQ1,, is instantiated with RE := ro — r1, RE; := r9 — 11 and RE3 := 75 — r1. If the immunity
side conditions are satisfied, then we union the fresh effects of the two statements and get fpt,(a’) — 7.
Hence, the conclusion of Eq. is derived by using the rule SEQ/,,. Otherwise, the treatment is similar
to the previous case.

7. IF: by the rule IF; and Def. i8] we get the translated rule below:

[reads fpr,(a)]
o {TR[a] && r = fpr,(a) &&E # 0} S {TR[a']}
[ modifies fpr,(a), mods(S1), £resh (fpt,(a’) —r)]
[reads fpz,(a)]
Fu ETR[[a]] & r = fpt (a) && E = 0} Sy {TR[[a'T}
modifies fpr,(a), mods(S2), fresh (fpr,(a’) — r)]
[reads pr, (a)]
Fu {TR[a] && r = fpt,(a)} i E then{S; }else{Ss} {TR[a']}
Emodifiesfpts(a),mods(Sl),mods(Sg)7 fresh(fpt,(a') — )]
where TR[[a]] = r = fpt,(a) and r ¢ mods(S1) U mods(Sz)

(124)

Note that fpt,(E # 0) and fpz,(E = 0) are both region{}, thus are omitted. By the inductive hypothesis, the
premise of Eq. (I24) is assumed. Then, we use the rule /F,, and get:

[reads fpt,(a), reads efs(E)]
Fu {TR[a]| && r = fpt,(a)} if E then{S;}else{S2} {TR[d']} (125)
[modifies fpr,(a),mods(S1), mods(Ss), fresh(fpr,(a’) — r)]
Now we consider use the rule SubEff,,. Because
rwR(readsfpt,(a), readsefs(E),modifiesfpr, (a), mods(S1),mods(S2), fresh(fpr,(a’)—r)) = fpt,(a),
the following side condition is true:

fpt,(a) < rwR(reads fpt,(a), modifies fpt (a), mods(S1), mods(S2), fresh(fpt (a’) — 1))

Therefore, after using the rule SubEff,,, we can get the conclusion of Eq. (124).
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WHILE: by the rule WHILE, and Def.[48] we get the translated rule below:

b [reads fpt (I)[{TR[[I]] && E # 0}S{TR[/]|}[ modifies fpt (I),mods(S)]
o [reads fpt (I)[{TR[ ] }while E {S}{TR[I] && E = 0} modifies fpt,(I), mods(S)]  (126)

The rule WHILE,, is instantiated with RE := region{}. The treatment about the immunity side condition is
similar to that of the sequence rule. If it is satisfied, then we can directly use the rule WHILEw and get

o [readsfpr (1), efs(E)|{TR[]|}while E{S}{TR[[] && E = 0}[modifiesfpt (I), mods(S)] (127)

Similarly to the case of the rule /F,,, we can use the rule SubEff,, and get the conclusion of Eq. (126).

If the immunity side condition is not satisfied, for all 2 € mods(S) and € FV([I), there exists z, such that
I implies © = z and z ¢ mods(S). We substitute z for z in fpr,(I). Then the immunity side condition is
satisfied. We can use the rules WHILE,, and SubEff,, and get the conclusion.

. FRM: by the rule FRM ; and Def. 48] we get the translated rule below:

[reads 7]
Fu ETR[[a]] & ry = fpr (1)} S {TR[a] }
modifies ri|,mods(S), fresh (fpr,(a’) — r1)]
[reads 1 + 72]
{TR[la]] && TR[c]] && (11! 'r2) && r1 = fpt,(a) && ro = fpt, ()} (128)
o S

ETR[[G']] & TR([c]] & (fpr,(a) ! Ut (c))}

modifies fpr,(a) + r,mods(S), £resh (fpt (a’) + ro — 1')]

where r; and 75 are fresh, 1 ¢ mods(S), ry ¢ mods(S),
TR[a[J& TR ] && (fpt,(a')! ' 1r2) = r' = r1 + ro,and mods(S) N FV(c) = &

By the inductive hypothesis, the premise of Eq. (128) is assumed. The rule FRM,, is instantiated with Q) :=
TR[[c]] and 1 := efs(TR[[c]]). We need to prove the side condition, which is:
TR[a] && TR[[c]| && (1! !r2) = efs(TR[c]])/(modifies mods(S), pr,(a)) (129)

By Lemma 4] and by the definition of separator (Fig. 20), Eq. (129) is true. After using the rule FRM,,, we

obtain:
[reads 71 |]

Fu {TR[[a]] && TR[c] && (1! 172)} S {TR[[a'] && TR[ ]|} (130)
[modifies r; |,mods(S), fresh (fpr,(a’) —11)]
Now we consider to use the rule FRM, again. It is instantiated with @ := ry!!ry and n :=

reads r1, reads r,. We need to prove the side condition, which is:
(TR[[a]] && TR[c]] && (r1! !73)) = (reads ri,reads ry)/(modifiesr |,mods(S)) (131)

By 71 ¢ mods(S) and r2 ¢ mods(S), Eq. (131) is true. Note that modifies r; | means that values in the
locations contained in r; may be modified. The variable r; is not changed. After using the rule FRM,,, we

obtain:
[reads 7 |]

{TR[la]] && TR[c] && (11! 112) && r1 = fpt (a) && ro = fpt,(c)}

o S (132)
{TR[[a']] && TR[[c]] && (1! ! 72)}
[ modifies r; |, mods(S), £resh (fpr,(a’) — 71)]

Because TR[[c]| is preserved by S, 72 = fpt,(c) in the poststate. Thus, after using the rule CONSEQ,,, we get

[reads 1 |]
. {TR[la]] && TR[c] && (r1! 112) r1 = fpt (a) && ro = fpt,(c)}
“ S{TR[d'] && TR[[c] && (r1! ' fpt,(c))}
[ modifies r; |,mods(S), £resh (fpr,(a’) — 71)]

(133)
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Now we need to prove that fpr (a’)! | fpt,(c) in the poststate. By the definition of SSL Hoare-formula, we
know that fpz_(a’) = r1 + RE, where RE are possibly empty regions that do not exist in the pre-state, hence
RE! ! fpt (c). Hence, fpt,(a’) ! ! fpt,(c) is true. Then, after using the rule CONSEQ,,, we get

[reads 7 |]
{TR[[a]] && TR[[c]| && (11! 're) r1 = fpt,(a) && o = fpt,(c)}
) (134)
{TR[[a'] & TR[c] & (fpt,(a’)! ! fpt,(c))
[modifies r; |,mods(S), fresh (fpr (a’) — r1)]
Now we consider the fresh effects. By the side condition 7' = r1 + 72, we have

frt (') —r1 =fpt,(a') +ro —ry —ro = fpr,(a’) + 1o — 1.

Finally, we can use the rule SubEff,, to loosen the read effects, and get the conclusion of Eq. (128).



(ALLOC) o [D]{true} z := new C; {new,(C,z)}[ modifies z,alloc, fresh(region{z.x})|
true . efs(TR[[a]]) frm TR[[a]] where TR[[a]] = ¢fs(TR[[a]])/-(z,alloc) and FV(a) N {z} = & = FV(TR[a]) n {z} = &( Lemmal43)

FRM
S( bE ) Fu [FHTR[a]l} z := new C; {TR[a]] && new, (C, z)}[ modifies z,alloc, fresh region{xz.x}] (Subeffect) - & < reads fpt (a)
(SubEfF) Fu [reads fpr,(a)|{TR[a]]} z := new C; {TR[[a]] && new,(C, z)}[ modifies z,alloc, fresh region{xz.x}]
(SubE) (Subeffect) TR[[a]] - (modifies z,alloc) < (modifies z,alloc,/pt, (a))
ubEfy . [reads fpt (a)]{TR[a]} = := new C; {TR[[a]] && new,(C,z)}[ modifies z,alloc,pt (a), fresh region{z.*}]
where TR[[a]]| = r = alloc and fpt (a) < T
(SubEff)

[reads fp,(a)]
(FrToPost) . {IR[a]}z := new C;{TR[a]] && new.(C, z) && (fpt,(a)! ! region{z.x})}
[modifies z,alloc,fpt (a), fresh(region{z.+})]

Fig.41: The derivation of rule TRr[[ALLOC;]|. The subscript, u, is omitted in each rule’s name. The program semantics assumes that the location for each
field in a class is disjoint with each other, thus new,, (C, ) iff new,(C, x).
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(FRM)

(SubEff)

(SubEff)

(ACC) vy [efs(z".f){x" # null} z := 2'.f; {x = 2’.f}[ modifies 7]

(2'.f = 2) o (region{z'.f},2', 2) frm (z'.f = 2)

wherez' .f =z Az #y A2’ #y = ((region{z'.f},2',y)/z) and 2’ # null = Fz.(2.f

o [efs(z' ){a'.f = 2} =2 f;{x = 2 && a'.f = 2}[ modifies x|

(Subeffect) - modifies r < modifies z, region{z’.f}

o [efs(z’. {2’ . f =2}z :=2'.f;{x = 2&& 2'.f = 2}[ modifies z,region{x’.f}]
where =’ # null = rwR(efs(z'.f), z, region{z’.f}) < rwR(region{z’.f}, x)

. [reads region{z'.f}[{x'.f =2} v =2’ .f;{r = 2 && . = 2}[ modifies z, region{z’.f}]

Fig. 42: The derivation of rule TR z[JACCs;]|. The subscript, u, is omitted in each rule’s name.

(

PD) | [reads z,efs(E)]|{z # null} z.f := E;{z.f = E}[region{z.f}] wherez # null = 3 z.x.f = 2

U
(CONSEQ

o [reads z,¢efs(E)|{3 z.x.f = 2z} x.f := E;{z.f = E}[ modifies region{z.[}]

(S(zfsbel%zct)) readR(reads z, ¢fs(E)) < readR(reads region{z.f}) -, reads readR(reads z, ¢fs(E)) < reads region{z.f}
ubkff . [reads region{z.f}|{3z.z.f = z} x.f := E; {z.f = E}[ modifies region{z.f}]

Fig. 43: The derivation of rule TRz [[UPD;]]. The subscript, u, is omitted in each rule’s name.
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F Proof of Lemma

Lemma(53}Let (o, k) be a state, and p, be an inductive predicate in SSL. Then

Eallps@)l(o, h) = ETR[ps (@)1, ).

Proof. The proof is an inductive case of the proof of Theorem 0] The inductive hypothesis is that for all subasser-
tions a;, Egfla;|(o, h) = E,[TR[a:]|(o, k). Let b1 = a1 - -- b, = a, be inductive cases for ps. We prove it as
follows.

Eallps(€)]l(o, h)
iff  (by semantics of inductive predicates Eq. (65))

(fizA(o', 1) . E[(b1 = a1) A oo A (b = an)]|(07, 1)) (o (formals(ps) — Esle]|(0)), h)
iff ~ (by semantics of assertions Def.

(fixA(o', 1) . (Ea[br = a1]|(0”, B') and ... and E,[[by, = an]|(0’, 1)) (o (formals(ps) — Es[e]l (o)), h)
iff ~ (by inductive hypothesis)

(fizA(o', 1) . (EpITR[b1 = a1 [[|(0’, B') and ... and EL[TR[[Dy, = an]l|(c”, 1))

(o(formals(ps) — Es[[e]l(a)), h)
iff  (by Lemma[35} &[[e]l(0) = E[TR[e]](0))

(fizA(o', 1) . (EITR[b1 = a1 [[|(0’, B') and ... and EL[TR[[D, = an]l|(c”, 1))

(o(formals(ps) — E[TR[e] (o)), k)
iff ~ (by the semantics of UFRL assertions (Def. >

(fizA(o", 1) . (E[TR[b1 = a1]] && ... & TR[[by, = a, [[[[(0”, k') (o (formals(ps) — E[TR[e]](0)), k)
iff ~ {by the definition of encoding inductive predicates in Fig.

(fixA(o’, 1) . (E[[TR[body(ps) [ I(o”, h'))) (o (formals(ps) — E[TR[e]l (o)), h)

iff ~ {by semantics of recursive predicate.)

ETRIps @11 (0 )
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