
Aspect-Oriented Programming Reloaded

Henrique Rebêlo and Gary T. Leavens

CS-TR-17-03
May 2017

Keywords: Aspect-oriented programming, modularity, AspectJ, AspectJML
2017 CR Categories: D.1.5 [Programming Techniques] Object-Oriented Programming — languages, tools, AspectJML language; D.2.1

[Software Engineering] Requirements/Specifications — languages, methodologies; D.2.3 [Software Engineering] Coding Tools and Techniques
— object-oriented programming, aspect-oriented programming, AspectJ language, AspectJML language; D.3.3 [Programming Languages]
Language Constructs and Features — classes and objects, control structures, modules, packages, procedures, functions, and subroutines,
AspectJ language, AspectJML language;

Submitted for publication

Copyright © 2017, Henrique Rebêlo and Gary T. Leavens

Dept. of Computer Science, University of Central Florida
4000 Central Florida Blvd.

Orlando, Florida 32816, USA



Aspect-Oriented Programming Reloaded
Henrique Rebêlo

Universidade Federal de Pernambuco
Recife, PE, Brazil
hemr@cin.ufpe.br

Gary T. Leavens
University of Central Florida

Orlando, FL, USA
leavens@cs.ucf.edu

ABSTRACT
Many programs have crosscutting concerns for which neither pro-
cedural nor object-oriented programming adequately modularize,
which has led to the idea of aspect-oriented programming (AOP).
However, AOP has not found favor with the programming languages
community due to a belief that AOP breaks classical modularity and
modular reasoning. We propose a new AOP programming model
that enables both crosscutting modularity and modular reasoning.
This model is implemented by AspectJML, a general-purpose aspect-
oriented extension to Java. It supports modular crosscutting concerns
using key object-oriented mechanisms, such as hierarchical structure,
and allows reasoning that scales to ever-larger programs.

CCS CONCEPTS
•Cross-computing tools and techniques→ reliability, validation;
•Software creation and management→ software verification and
validation; •General programming languages → language fea-
tures;

KEYWORDS
Aspect-oriented programming, modularity, AspectJ, AspectJML

ACM Reference format:
Henrique Rebêlo and Gary T. Leavens. 2017. Aspect-Oriented Programming
Reloaded. In Proceedings of Submitted, Earth, May 2017, 9 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Two decades ago aspect-oriented programming (AOP) emerged, as
a new programming model to deal with crosscutting modularity
problems [18]. For such crosscutting problems, neither procedural
nor object-oriented programming techniques are sufficient to clearly
modularize the design decisions that a program must implement.
These conventional programming techniques force the implemen-
tation of certain design decisions to be scattered throughout the
code, thus resulting in tangled code that is excessively difficult to
develop and maintain. Such design decisions are what AOP calls
crosscutting concerns, since they cut across the system’s basic func-
tionality and force programmers to work around the standard modu-
larization enforcement mechanisms by scattering code throughout a
program [16].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Submitted, Earth
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

AOP became popular because it makes possible for programmers
to enable the modular crosscutting structure for concerns such as
distribution and persistence [39], error handling [7], some design
patterns [9, 12], design by contract [17, 36] etc. To date, AspectJ [17]
still is the most influential AOP language.

However, AspectJ’s constructs [17], such as pointcuts and advice,
aimed supporting crosscutting modularity, have been considered by
some to have a negative impact on modularity [1, 3, 29, 33, 37, 40,
41]. The difficulties center around obliviousness [8], which means
that crosscutting concerns are not visible in the code that they may
affect. However, obliviousness compromises classical notions of
modular reasoning [30], since by definition the code being advised
contains no trace of the aspects that advise it. Our approach is
to abandon obliviousness and create a new programming model,
called the hierarchical crosscutting model, which enables classical
modularity and modular reasoning, and yet which is able to do most
of what AOP languages can do.

We explain the hierarchical crosscutting model through a proto-
type extension to Java called AspectJML. With AspectJML, program-
mers feel like they are programming in plain Java, but AspectJML
also allows them to modularize crosscutting concerns without having
any meta-level shift [16] or without having any extended syntax shift
for advanced modularity [5].

In the rest of the paper we show how object-oriented hierarchies
can be used to cope with crosscutting modularity. We also present
some preliminary evaluation of AspectJML and point out directions
for future work.

2 A PLETHORA OF ISSUES IN AOP
In this section, we revisit the well-known AOP programming model
along with its main modularity issues, as demonstrated by AspectJ-
like languages.

2.1 The AOP Programming Model
AOP mainly focuses on the modularization of crosscutting concerns.
To enable this modularization, AOP provides both obliviousness and
quantification [8]:

AOP = quantification + obliviousness (1)

Obliviousness means says that certain parts of a program, called
the “base code,” have no knowledge of the aspects that advise them.
Quantification means that advice can be applied to multiple sites
in the base code with a small amount of text [8, p. 2]. Thus AOP
may be seen as a specialized form of implicit invocation [10], where
procedures are called without explicitly referencing them (oblivious-
ness), and where such implicit invocation can affect several parts
of a program (quantification [45]). A special form of implicit invo-
cation is implicit invocation with implicit announcement of events
(IIIA) [33, 40, 46].

2



i n t e r f a c e Shape {
void moveBy ( i n t dx , i n t dy ) ;

}
c l a s s P o i n t implements Shape {

i n t x , y ;

void se tX ( i n t x ) { t h i s . x = x ;}
void se tY ( i n t y ) { t h i s . y = y ;}

void moveBy ( i n t dx , i n t dy ) {
x += dx ; y += dy ;

}
/ / . . . o t h e r methods

}
c l a s s Line implements Shape {

P o i n t p1 , p2 ;

void s e t P 1 ( P o i n t p1 ) { t h i s . p1 = p1 ;}
void s e t P 2 ( P o i n t p2 ) { t h i s . p2 = p2 ;}

void moveBy ( i n t dx , i n t dy ) {
p1 . x += dx ; p1 . y += dy ;
p2 . x += dx ; p2 . y += dy ;

}
/ / . . . o t h e r methods

}

a s p e c t U p d a t e S i g n a l i n g {
p o i n t c u t change ( ) :

e x e c u t i o n ( void P o i n t . s e t ∗ ( * ) )
| | e x e c u t i o n ( void Line . s e t ∗ ( * ) )
| | e x e c u t i o n ( void Shape + . moveBy ( i n t , i n t ) ) ;

a f t e r ( ) : change ( ) {
D i s p l a y . u p d a t e ( ) ;

}
}

Figure 1: The classical AspectJ implementation for the shape
classes with display update signalling [17].

The most influential AOP language, AspectJ [17], is an instance
of IIIA. As an example, consider the classical AspectJ implementa-
tion for the shape classes in Figure 1. It illustrates the crosscutting
concern update signalling, in which whenever a shape changes, a
call to
lstinline!Display.update! must be made. Through implicit invoca-
tion, AspectJ enables the modularization of this update signalling
crosscutting concern; otherwise scattered in plain Java. Basically,
AspectJ works with advice and pointcuts to enable modular cross-
cutting. For example, the AspectJ after advice, declared within
the UpdateSignalling aspect, is executed without an explicit refer-
ence to the advice from the shape-like classes code. The places
where the advice should be executed are called join points, which
are well-defined points in system’s execution [17]. Such join points
are selected by AspectJ pointcuts, such as change in Figure 1. It
collects all the places, from the classical system structure, where
advice should be applied to enable modular crosscutting behavior.

Such oblivious quantified statements in AspectJ, via IIIA mecha-
nism, resulted in an intense debate about whether AOP constructs
aimed to support crosscutting modularity actually break class mod-
ularity [1, 3, 29, 33, 37, 40, 41]. Next, we discuss the main AOP
issues in supporting the current Formula 1.

2.2 Non-orthogonality and asymmetry
According to some authors, AspectJ-like languages present an unnec-
essary lack of orthogonality and symmetry [13, 34]. The asymmetry
in AspectJ-like languages are related to aspect modules, advice
and pointcuts [13, 34]. For instance, since AspectJ makes explicit
the distinction between advised code (classes) and advising code
(aspects), as can be seen in Figure 1. Besides this asymmetric separa-
tion, classes cannot advise aspects in the same way that they advise
classes. Advice can only be declared in aspects, whereas pointcuts
can be declared in both classes and aspects.1 Moreover, although
both advice and methods support procedural abstraction [24], unlike
methods, advice declarations are anonymous. This results in a point-
cut asymmetry since one cannot identify advice by name in point-
cuts. To advise advice one needs to use the adviceexecution pointcut,
which selects all advice executions in a running program. The are
other important semantic implications, like the non-overriding effect
in advice since advice is anonymous [34].

2.3 Non-modular reasoning
Modular reasoning means to conclude properties of a module (like a
class or aspect) just by considering its interface, specification and
implementation, and the interfaces and specifications, but not the
implementations, of modules referenced by it [22, 38]. However,
reasoning about aspect-oriented programs that use pointcuts and
advice, as found in AspectJ, often seems difficult, due to its implicit
invocation feature [30, 38, 40]. As a consequence, the task of de-
termining what advice applies to a particular join point (method of
interest) must be done in several non-modular steps.

For example, suppose one wants to reason about the behavior
of the method moveBy in Point (see Figure 1). Since the method’s
behavior may be changed by advice, one needs to first determine
what advice may apply to that method. In our example, there is
just have one after advice in aspect UpdateSignalling , but due to
obliviousness, the program text does not reveal if there may be other
advice. This this determination of what advice applies must consider
all aspects in the program — it is a whole program analysis.

Some important argumentations. In an interview in 2006,
Kiczales said that AspectJ was intellectually controversial at the
time it came in and still is [16]. He went further when he said
that AspectJ has a different modularity enforcement mechanism
than traditional languages. Today we can understand some of these
issues because AspectJ has its roots on non-classical modularity.
Ostermann et al. [30] describes that the classical understanding of
modularity is highly related to classical logic. Hence, the common
notion of modularity, especially the idea of information hiding (dis-
cussed below), is deeply related to classical logic. As such, some
modularity mechanisms, like AOP and object-oriented inheritance,
leave the world of classical logic, and correspond to a non-classical
logic.

2.4 Pointcut fragility
Another well-known AOP problem is pointcut fragility [11]. The
fragile pointcut problem of AspectJ refers to the dependence of

1The work by Rajan and Sullivan’s [34] reports that we can only declare pointcuts
within aspects. But in practice, AspectJ does allow pointcuts in classes, thus making the
nonorthogonality even more evident.

3



pointcut descriptions on names in advised code. Such pointcut
descriptions are vulnerable to changes in the base code (such as
renaming setX to changeX or modifying its parameter declarations),
which may cause the pointcut to no longer refer to the same set of
join points. This problem stem from the way that AspectJ declares
pointcuts.

The dependence of pointcut descriptions on program names in the
base code also imposes extra ordering constraints on development.
In particular, developers must agree on naming conventions that
advice can rely on before pointcut descriptions that use such naming
conventions can be written.

2.5 Information not hiding
Information hiding [32] (also known as black-box abstraction) is
a widely accepted principle in software development. It advocates
that a module should expose its functionality but hide its implemen-
tation behind an interface. This supports modular reasoning and
independent evolution/maintenance of the hidden parts of a module.
If programmers have carefully chosen to hide those parts “most
likely” to change [32], most changes, in the hidden implementation
details, do not affect the module’s clients. Information hiding and
its benefits apply not only to code but also to other artifacts, such as
documentation and specifications [21, 35].

Unfortunately, interfaces supported by current AspectJ-like point-
cut mechanisms fall short with respect to information hiding. For
instance, the execution join points captured by the pointcut change
(see Figure 1) is coupled to the base code. Thus, the resulting de-
sign does not actually perform much better in terms of absorbing
changes [11, 31]. Besides fragility, due to coupling, the aspect
UpdateSignalling cannot be reused by another system (with different
set of join points) in its full generality. So, this reduces the power of
aspects to support pluggability of crosscutting concerns.

2.6 Extended Syntax for Modularity
Providing mechanisms for modularization is one of the primary
concerns of programming languages in general. In this respect,
Chiba et al. [5] asked the question “Do we really need to extend
syntax for advanced modularity?” Since the trend for the last twenty
years is based on traditional AOP mechanisms like pointcuts and
advice declarations (as in Figure 1), the question is whether such
new syntax is really needed to achieve modularity?

Pointcuts and advice, since they automate the Observer pattern,
might be seen not as new syntax, but as syntactic sugar. However,
when new kinds of crosscutting concerns arise, these tend to prompt
the invention of new kinds of syntactic extensions [5]. This concern
is also related to programming languages symmetry, because the
addition of new features, along with new supporting syntax, is always
fraught with the potential to cause unexpected interactions [13, 26,
34]. In AspectJML, by contrast, we try to follow Rajan and Sullivan
[34] in reusing existing language mechanisms, such as methods.

3 PRELIMINARY SOLUTIONS
There have been several previous attempts to address the issues
described in the previous section, either by restricting quantification
and obliviousness, or by providing an unified model for both classes
and aspects. In this section, we briefly discuss these prior works.

3.1 Restricting Quantification and Obliviousness
Formula 1, which describes AOP as a combination of quantification
and obliviousness, is the source of the programming language com-
munity’s unease about AOP’s support for modularity. That is, due
to obliviousness, the shape classes (in Figure 1) do not mention the
aspect UpdateSignalling , which precludes modular reasoning.

On the other hand, while obliviousness has been the subject of
the main critics about AOP, the quantification property has advan-
tages [45]. Quantification is what allows one to selectively apply im-
plicit invocation to modularize crosscutting concerns [8]. However,
when combined with obliviousness, there are still modularity issues.
What if the programmer of the shapes classes, in Figure 1, add a
method say setAlready?. Since the name of this method starts with
set , the pointcut change in the aspect UpdateSignalling will match.
What is really questionable is whether or not such an aspect inter-
ference is desired. If it is not, then the behavior of the setAlready
method may be modified by the aspect, producing incorrect behavior.
There is a growing consensus in the aspect-oriented community that
an interface between the base code and aspect code is necessary for
alleviating such problems [1, 3, 29, 33, 37, 40, 41].

For instance, Bodden et al. [3] define join point interfaces, which
are type-based contracts between aspects and advised code. Sim-
ilarly, Rebêlo et al. [37] provide design rule interfaces between
aspects and classes. That is, they support the notion of implicit
announcement, but restrict its scope to that of the implementation
of an explicit interface. The Join Point Types (JPT) work [40], also
enables implicit announcement via interfaces, but also supports ex-
plicit announcement where explicit one fall short (i.e., quantification
failure [42]).

3.2 Aspect-aware interfaces
Kiczales and Mezini [19] argue that programmers can reason modu-
larly about aspect-oriented programs by using aspect-aware inter-
faces (AAIs), which are maps that send each program point to a list
of advice that applies at that point. AAIs are created using global
system knowledge (i.e., a whole program analysis). Kiczales and
Mezini say that since crosscutting concerns are inherently global,
such AAIs are a sensible starting point for reasoning about programs.
However, it is clear that a development methodology that uses AAIs
postpones reasoning until after the development of the entire pro-
gram, since the AAIs cannot be computed until the entire program
(base code and aspects) are available.

Another way to view AAIs is that they provide a way to discard
obliviousness, since the entire point of an AAI is to make where
advice applies available. So the AAI proposal corroborates the
idea that some notion of aspect interface is important for modular
reasoning.

3.3 Fluid Modularity
In another attempt to restore modular reasoning in aspect-oriented
programming, Hon and Kiczales’ work discusses modularity through
a notion of fluidity called Fluid AOP [15]. With fluid AOP, the
programmer can temporarily shift a program to an alternative cross-
cutting module structure to enable or regain classical reasoning [30].
For example, with Fluid AOP, the shape classes (recall Figure 1)
programmer, can shift from the AOP version (with aspect modules)

4



to one without AOP (only classes and crosscutting structure as is).
Hence, to regain modular reasoning, one can understand the control-
flow effects by looking the modules without AOP, which have no
aspect indirection. However, if the program is written with pointcuts
and advice, then the AOP side view cannot be computed until the
entire program is available. Thus, as with the AAI [19] approach,
modular reasoning cannot occur until after the entire program is
available for this transformation.

One step beyond Fluid AOP is given by Chiba et al. [5]. This
work describes how to use dynamic text to overcome the need for
extending syntax to regain modularity. Dynamic text is an automatic
technique that edits the source code while editing or browsing in
accordance with the user’s directions about crosscutting. Like Fluid
AOP, their goal is to tackle the limitations provided by AspectJ-like
syntax and regain classically modular reasoning. While Fluid AOP
still uses AspectJ-like pointcut definitions for specifying crosscutting
structures, Chiba et al. demonstrate with concrete examples how
to provide advanced modularization to an object-oriented language,
such as Java, without modifying the original syntax. While this
approach is more symmetric, compared to Fluid AOP, it still suffers
the limitation that it regains modularization only through specific
IDE support (e.g., an Eclipse plugin).

3.4 Stepping back: OOP!
One direction explored elsewhere is to work with object-oriented
programming (OOP) using plain objects, as in Java [4, 34]. This is
the direction followed by Eos [34] and @AspectJ (often pronounced
as “at AspectJ”) [4]. The @AspectJ syntax was conceived as a
part of the merge of standard AspectJ with AspectWerkz [4], and
uses the metadata annotation facility of Java 5. The main advantage
of this syntactic style is that one can compile a program using a
plain Java compiler, allowing the modularized code using AspectJ
to work better with conventional Java IDEs and other tools that do
not understand the traditional AspectJ syntax.

Figure 2 illustrates a simplified @AspectJ version of the update
signalling crosscutting concern previously implemented with the
traditional AspectJ syntax (see Figure 1). Instead of using the aspect
keyword, the class is annotated with an @Aspect annotation. This
tells the compiler to treat the class as an aspect declaration. Simi-
larly, the @Pointcut annotation marks the empty method change as a
pointcut declaration. The name of the method serves as the pointcut
name. Finally, the @After annotation marks the method update as an
after returning advice. The body of the method is the after advice,
which is executed after the matched join point’s execution returns
(with or without throwing an exception). As with @AspectJ, Eos
works with similar classes that act as aspects, like those in AspectJ.

Following the more symmetric models of @AspectJ and Eos, we
can adapt the Formula 1 to the following one:

AOP = OOP + quantification + obliviousness (2)

However, since this formulation still includes obliviousness, this
revised notion of AOP will have the same modularity issues dis-
cussed previously before; although in a more symmetric model. For
example, in @AspectJ an ordinary Java class plays the exact same
role as a standard AspectJ aspect.

@Aspect
class UpdateSignalling {

@Pointcut("execution(* Point.set∗(*))")

public void change() {}

@After("change()")
public void update(Shape s) {

Display.update();

}

}

Figure 2: A simplified @AspecJ syntax to modularize the cross-
cutting update concern illustrated in Figure 1.

class Point implements Shape {

int x, y;

//@ invariant x >= 0 && y >= 0;

/*@ requires x + dx >= 0 && y + dy >= 0;

@ ensures x == \old(x) + dx

@ && y == \old(y) + dy;

@*/

void moveBy(int dx, int dy) {

x += dx; y += dy;

}

//... other methods and their specifications

}

Figure 3: Example of JML specifications for the Point class of
the shape classes presented in Figure 1.

4 TOWARDS A NEW ASPECT FORMULA
In this section, we revisit the common notion of classical modularity
and present a new AOP formula (third one) that is used (in the next
section) to avoid the modularity issues exhibited by the previous
AOP formulas (Formula 1 and Formula 2).

4.1 Classical modular reasoning
Monotonicity. Monotonic reasoning allows one to prove properties
“once and for all,” never needs to withdraw any conclusion when
more is learned. For example, if we establish a property of a program
using a monotonic logic, we do not need to revise that property
again [30, 38]. When more components are added, the previously
established property does not change. This is the case of the well-
known Hoare logic [14]. Specification languages, such as JML [20],
that enable one to establish properties of a program that must be
respected (e.g., precondition). Hence, monotonicity in reasoning
aids one in using the classical notion of modularity and modular
reasoning [30, 38].

Figure 3 shows an example of JML specifications for the Point
class. JML specifications are written in annotation comments which
start with an at-sign (@). In JML, preconditions are introduced by the
keyword requires and postconditions by ensures. The JML notation
\old( x+dx) means the pre-state value of x+dx. The invariants in
JML are introduced by the keyword invariant. The invariant defined
in this example restrict points to the upper right quadrant.

To reason about a call to moveBy, a programmer must determine
what specifications to use. In this case, the specifications are the pre-
and postconditions of moveBy and the declared invariant. Since there
are no specifications in Point’s supertype (Shape), the programmer

5



does not need to include them in reasoning; otherwise, the specifica-
tions inherited from such supertypes [22, 38] would also need to be
considered.

Expanded modular reasoning. Recall that our notion of modu-
lar reasoning means that one can verify a piece of code in a given
module, such as a class, using only the module’s own specifications,
its own implementation, and the interface specifications of modules
that it references [22, 30, 38].

For instance, to reason about the method call sp .moveBy(10,10)
one uses the specification of the moveBy method from sp’s static
type, say ScreenPoint. Assuming that ScreenPoint is declared as a
direct subclass (and hence subtype) of Point, then the method spec-
ification used would be the join of the method specifications for
moveBy from Point and ScreenPoint, together with the conjunction
of their declared invariants. The join of method specifications [22]
means that both pairs of pre- and postconditions must be obeyed by
such an overriding method; thus ScreenPoint’s method moveBy must
obey the specifications given for it in the class Point. Similarly the
conjunction of invariants means that ScreenPoint objects must also
obey the invariant given in the class Point. Since classes in Java
name their supertypes, such reasoning is not technically outside the
standard definition of modular reasoning, however we emphasize the
use of all ancestor supertype specifications (recursively) by calling
this expanded modular reasoning.

That is, expanded modular reasoning also applies to indirect
ancestor types, not just direct supertypes. For example, since Point
implements the interface Shape, if any specifications are provided
by Shape, they must also be used in reasoning about ScreenPoint
objects. (However, in our example, there are no specifications in
type Shape, nor are there any specifications relevant to a call to the
moveBy method in type Object, which is the top of the type lattice
in Java.) If necessary all specifications in all ancestor types are
consulted in expanded modular reasoning [22, 23, 30, 38].

4.2 A new aspect formula
The classical notion of modularity, which is related to classical
logic [30], is exactly what we need to refine Formula 2. The ele-
ments of this refinement are scoped-quantification [36, 37, 40] and
langugage-level obliviousness [42].

Scoped-quantification. Scoped-quantification is a form of quan-
tification that is limited to a statically-defined area of a program.
In a specification language like JML [20], invariants are a good
example of scoped-quantification [36, 37, 40]. Such an invariant
must be preserved by every method in its declaring type as well as
every method declared in its subtypes, and there is no way to con-
strain/quantify unrelated types. Hence, the scope of quantification,
provided by invariants, is the type itself extending to its subtypes.
History constraints [25], also present in JML, are another example
of a scoped-quantified declaration.

Language-level obliviousness. Language-level obliviousness
[42] is what is allowed when advising constructs, such as AspectJ’s
advice [17], are introduced to a programming language. Recall
again invariants or history constraints of a specification language like
JML. They exhibit language-level obliviousness, since the methods
they constrain have no explicit references to these scope-quantified
declarations.

Formulation. With these above definitions, we can now restrict
quantification and obliviousness to a form compatible with classical
modularity [30]. This results in the following simple equation:

AOP = OOP + scoped-quantification + language-level obliviousness (3)

5 RELOADING ASPECTS
We now use the new AOP formula (Formula 3), presented above, and
discuss how it supports crosscutting modularity and avoids the issues
described previously in Section 2. We also introduce AspectJML,
as a general-purpose aspect-oriented extension to Java, and explain
how it embodies our formulation of our new AOP.

5.1 The AspectJML language choice
What. AspectJML itself was described in a previous work [36]. It
enables programmers to specify pre- and postconditions in a modular
fashion. There are some contracts that present crosscutting structure
and to cope with them, AspectJML allows the crosscutting contract
specification mechanism, or XCS for short. It is based on the alter-
native @AspectJ syntax, which is fully compatible with plain Java
code. This merge enables crosscutting concern implementation by
using constructs based on the metadata facility of Java 5.

Why. Our previous work is deeply related to this one since it
faced the same modularity problems we discuss here, such as mod-
ular reasoning. With AspectJML, a programmer can reason about
crosscutting contracts using the classical notion of modularity [30],
i.e., expanded modular reasoning. However, AspectJML was origi-
nally descrbed [36] as a domain-specific language (DSL) that dealt
with only one kind of crosscutting concern, which is design by
contract [27].

From DSL to general-purpose. Now, AspectJML is becoming 2

a general-purpose aspect-oriented language extension to Java. This
means that a programmer using AspectJML can deal with any kind of
crosscutting concern, thanks to AspectJML’s support for Formula 3.
That is, in addition to design by contract, programmers can also deal
with concerns such as logging, security, tracing, persistence, etc.
Moreover, one can also apply the crosscutting contract specification
feature [36] to specify these other crosscutting concerns.

As with our previous work, the current AspectJML language has
been developed using @AspectJ syntax. Hence, an AspectJML
program looks like an @AspectJ program. But they differ in several
meaningful ways. For instance, there is no need to use a class as a
third-party aspect module, and one can define and implement advice
in any class or interface, unlike AspectJ/@AspectJ. We highlight
the main differences below while explaining the main AspectJML
features.

Compilation strategy. The AspectJML language is implemented
with the existing infrastructure of the AspectJML/ajmlc compiler [36].
This compiler uses the standard AspectJ/ajc compiler as a back-end
to generate Java bytecode.

5.2 First examples of new AOP
We return to the update signalling crosscutting concern in the shape
classes (Figure 1), and use it to provide some reimplementations of
that application using AspectJML.

2The language is currently in development, but the main ideas of Formula 3 are already
available as a prototype implementation.

6



class Point implements Shape {

@After("execution(void set∗(*))" +

"|| execution(void moveBy(int,int))")

void update(){

Display.update();

}

//... other methods

}

Figure 4: Example of an AspectJML @After advice declared
within class Point.

interface UpdateSignalling {

@After("execution(void set∗(*))" +

"|| execution(void moveBy(int,int))")

default void update(){

Display.update();

}

}

class Point implements Shape, UpdateSignalling {...}
class Line implements Shape, UpdateSignalling {...}

Figure 5: Example of the full modularization of the crosscutting
concern update signalling in AspectJML using a standard OOP
hierarchy.

Crosscutting types. The first notion we present is crosscutting
types. By crosscutting types we mean that any valid type in Java (e.g.,
class or interface) can declare an advice and providing crosscutting
modularity. Figure 4 illustrates a simple example of a crosscutting
type. Let us assume that there is a dedicated programmer for the type
Point. Such a programmer can enable local crosscutting modularity
by declaring an AspectJML @After advice, which intercepts set-like
methods (named set ∗), and the method moveBy.

AspectJML has scoped-quantification, thus the programmer does
not need to explicitly write a type pattern for advice (which AspectJ
uses to identify the type owner of the intercepted join point). Thus,
the two execution pointcuts declared in the advice method update,
only intercept join points in the type Point and its subtypes; they do
not intercept join points in any other unrelated type, such as Line (as
they would in an AspectJ pointcut written without a limiting type
pattern).

With respect to modular reasoning, a programmer should reason
about the quantified statements, provided by the advice method
update, similarly to invariants or history constraints in JML. For
example, in order to reason about the setX in Point, that advice
should be included in the reasoning. In this case, there is a match in
which the behavior of the setX is augmented after its execution.

In relation to crosscutting implementation, as observed, Aspec-
tJML eliminates anonymous advice in favor of standard named ones
as we have in Java. Hence, the same notion of procedure abstraction
is used here to localize any crosscutting concern [24]. The main
difference is, unlike regular methods, advice methods in AspectJML
are annotated with a corresponding pointcut (in AspectJ-like syntax).

Hierarchical crosscutting. It is claimed in the literature [17, 18]
that, while useful, hierarchical modularity cannot enable the mod-
ularization of crosscutting concerns. Contradicting this common
belief, AspectJML enables one to use a crosscutting type as a su-
pertype that crosscuts the entire hierarchy enabling the modular

interface UpdateSignalling {

@Advice("join points should be only exposed" +

"within the appropriate modules")

default void update(){

Display.update();

}

}

interface UpdateSignallingShapes extends UpdateSignalling {

@After("execution(void set∗(*))" +

"|| execution(void moveBy(int,int))")

default void updateForShapes(){

UpdateSignalling.super.update();
}

}

class Point implements Shape, UpdateSignallingShapes {...}
class Line implements Shape, UpdateSignallingShapes {...}

Figure 6: Example of a reusable implementation of the cross-
cutting concern update signalling in AspectJML.

implementation of crosscutting concerns. Figure 5 presents the su-
pertype UpdatingSignalling that localizes the crosscutting concern
related to update shapes. In order to crosscut each type that exhibits
crosscutting structure, an ordinary Java programmer just needs to
implement that interface to activate/plug the crosscutting functional-
ity. As mentioned, the reasoning is similar to a quantified statement
like an invariant in JML. Scoped-quantification and language-level
obliviousness in AspectJML ensures the classical notion of modu-
larity enforcement (expanded modular reasoning) that is present in
OOP. That is, through explicit reference to supertypes, the classical
notion of modular reasoning is missing in the traditional AOP for-
mulation (see Formula 1), is regained in the new AOP formulation
with Formula 3.

As observed, we implement and localize the crosscutting concern
with a plain Java interface. A key concept of our approach is, that
since Java 1.8, we can implement methods in interfaces through
default methods. This approach was proposed earlier [28], but
only recently became available in Java. Therefore, using plain Java
interfaces, we can plug as many crosscutting interfaces we want to
cope with several other kinds of crosscutting concerns.

Abstraction and information hiding. The crosscutting concern
update signalling implementation shown in Figure 5 does not pro-
vide a full reusable solution, due to its coupling between the pointcut
specifications, defined within the @After advice, with some shape
classes join points (e.g., method names). If another part of the
program of even another program needs this update signalling func-
tionality, but uses different method names, then one would need to
change the interface UpdateSignalling in Figure 5 to accommodate the
new names [11, 31]. To avoid this impact of such pointcut fragility
in absorbing changes (such as may occur when the Shape classes
change or when one adopts the crosscutting concern implementation
to some other context) we allow the pointcut specifications to be
defined in proper modules. This means that modules like Point or
Line must be responsible for creating an interface to expose their
implementation details. In the example of the shapes classes, since
Point and Line share the same set of join point interceptions, we can
expose their join points through another interface (as illustrated in
Figure 6). Suppose later, a private method from Point should be
exposed. In this case, we do not expose it through the interface

7



interface TransactionManagement{

@Before("execution(* *(..))")
void beginTransaction(){

getPm().beginTransaction();

}

@AfterReturning("execution(* *(..))")
void beginTransaction(){

getPm().commitTransaction();

}

@AfterThrowing("execution(* *(..))")
void beginTransaction(){

getPm().rollbackTransaction();

}

}

class HealthWatcherFacade

implements IFacade, TransactionManagement {...}

Figure 7: An AspectJML crosscutting-based Java interface for
HW’s [39] transaction concern.

UpdateSignallingShapes; otherwise, we break the notion of informa-
tion hiding [32]. To allow the private method exposure, we use
the same approach to that in interface UpdateSignallingShapes, but
declared within the type Point.

5.3 Benefits of our new notion of AOP
AspectJML overcomes the plethora of issues described in in Sec-
tion 2 by using Formula 3. This formula allows an AOP language,
such as AspectJML, to build on a standard OO language, such as
plain Java, which results in a more symmetric and orthogonal model.
An example of the benefits of this symmetry is that, since both
method and advice declarations are named, AspectJML does not
need the AspectJ pointcut adviceexecution to intercept other advice.
(This pointcut is forbidden in AspectJML.) AspectJML enables pro-
grammers to reason about crosscutting modularity in the light of
classical logic. This is very similar to reasoning about any invariant
in a specification language such as JML.

One key design decision we took was to implement AspectJML
based on the standard AspectJ. This results in a more straightforward
adoption by any AspectJ programmer. Programming in AspectJML
makes any programmer feel like programming with plain Java with
annotations. This benefit avoids any semantic complications due to
additional constructs and ultimately lack of adoption [42].

6 A FIRST EVALUATION OF ASPECTJML
Our preliminary evaluation to validate our new notion of AOP, with
AspectJML, involves a web-based information system called Health
Watcher (HW) [39]. The main purpose of the HW system is to allow
citizens to register complaints regarding health issues. This system
was selected because it was developed using AspectJ [17]. As a
result, we refactored its transaction concern to add a crosscutting
interface with AspectJML.

Figure 7 illustrates the implementation of the HW’s transaction
concern using the TransactionManagement crosscutting interface in
AspectJML. The type IFacade denotes the remote interface to be
implemented by the facade class HealthWatcherFacade. Also, any type
that implements the TransactionManagement interface will have its
methods considered as transactional methods and will be affected by
the three pieces of AspectJML advice that add the transaction control
behavior. Since the code quantifies over method executions, the

interface TransactionManagement itself is reusable; it does not expose
implementation details of any type (such as HealthWatcherFacade).

7 FUTURE WORK
We are currently developing AspectJML to support all the benefits
discussed here. Our main focus now is building up and supporting
the AOP community with an Eclipse-based tool and a dedicated
online IDE. Any beginning programmer in AspectJML could learn
our language using our online IDE (currently under development).

One direction, we are working on, is to simplify the use of the
current AspectJ-like features with AspectJML. For instance, to pre-
vent infinitely recursive advice application [2, 6, 43], as can happen
in with AspectJ. Another direction, we intend to add in AspectJML
is the notion of slicing [44]; this will be useful since in current
AspectJML we do not support the open classes mechanism, also
known as inter-type declarations in AspectJ [17]. Through slicing,
programmers have the ability to use multi-dimensional separation of
concerns, thus allowing regrouping of crosscutting concerns.

8 SUMMARY
We have revisited the main issues about the state of the art of AOP
and modularity. Based on this analysis, we have been able to propose
a new aspect-oriented programming formula that enables program-
mers to write modular crosscutting code and reason about modular-
ity with all the properties of classical modularity. We realized this
new (AOP) formula in the AspectJML language, a general-purpose,
aspect-oriented extension to Java. Programming with AspectJML
feels like programming in Java. It does not require any advanced
syntax or any new concept, beyond AspectJ, to implement crosscut-
ting modularity. We discuss and show how to cope with crosscutting
structure using object-oriented hierarchies. With Hierarchical cross-
cutting in AspectJML, programmers can enable the modularization
of crosscutting concerns with respect to classical modularity and
modular reasoning. We also discussed a first evaluation of Aspec-
tJML, consisting of the modularization of a crosscutting transaction
concern in a real system using AspectJML.

ACKNOWLEDGMENTS
We would like to thank Gregor Kiczales and the other creators of
AOP. Without their work, this project would not be possible. Thanks
to our AOP friends: Harold Ossher, Hridesh Rajan, Robert Dyer,
Sudipto Ghosh, Paulo Borba, Fernando Castor, Márcio Ribeiro, and
Roberta Coelho. They have been available for discussing about
these issues since Modularity 2015. The work of Gary Leavens
was supported in part by the US National Science foundation under
grants CNS1228695 and SHF1518789.

REFERENCES
[1] Jonathan Aldrich. 2005. Open Modules: Modular Reasoning About Advice. In

Proceedings of the 19th European Conference on Object-Oriented Programming
(ECOOP’05). Springer-Verlag, Berlin, Heidelberg, 144–168.

[2] Eric Bodden, Florian Forster, and Friedrich Steimann. 2006. Avoiding infinite
recursion with stratified aspects. In In Proceedings of Net.ObjectDays 2006 (GI-
Edition). Lecture Notes in Informatics, 49–54.

[3] Eric Bodden, Éric Tanter, and Milton Inostroza. 2014. Join Point Interfaces for
Safe and Flexible Decoupling of Aspects. ACM Trans. Softw. Eng. Methodol. 23,
1, Article 7 (Feb. 2014), 41 pages.

[4] Jonas Boner. 2005. AspectWerks. (2005). http://aspectwerkz.codehaus.org/.

8



[5] Shigeru Chiba, Michihiro Horie, Kei Kanazawa, Fuminobu Takeyama, and Yuuki
Teramoto. 2012. Do We Really Need to Extend Syntax for Advanced Modularity?.
In Proceedings of the 11th Annual International Conference on Aspect-oriented
Software Development (AOSD ’12). ACM, New York, NY, USA, 95–106.

[6] Éric Tanter. 2008. Controlling Aspect Reentrancy. Journal of Universal Computer
Science 14, 21 (2008), 3498–3516. Best Paper Award of the Brazilian Symposium
on Programming Languages (SBLP 2008).

[7] Fernando Castor Filho, Nelio Cacho, Eduardo Figueiredo, Raquel Maranhão,
Alessandro Garcia, and Cecı́lia Mary F. Rubira. 2006. Exceptions and aspects:
the devil is in the details. In Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering (SIGSOFT ’06/FSE-14).
ACM, New York, NY, USA, 152–162.

[8] Robert E. Filman and Daniel P. Friedman. 2000. Aspect-Oriented Programming
is Quantification and Obliviousness. Technical Report.

[9] Alessandro Garcia, Cláudio Sant’Anna, Eduardo Figueiredo, Uirá Kulesza, Carlos
Lucena, and Arndt von Staa. 2005. Modularizing design patterns with aspects: a
quantitative study. In Proceedings of the 4th international conference on AOSD
(AOSD ’05). ACM, New York, NY, USA, 3–14.

[10] David Garlan and Curtis Scott. 1993. Adding Implicit Invocation to Traditional
Programming Languages. In Proceedings of the 15th International Conference on
Software Engineering (ICSE ’93). IEEE Computer Society Press, Los Alamitos,
CA, USA, 447–455.

[11] Kris Gybels and Johan Brichau. 2003. Arranging Language Features for More
Robust Pattern-based Crosscuts. In Proceedings of the 2Nd International Confer-
ence on Aspect-oriented Software Development (AOSD ’03). ACM, New York,
NY, USA, 60–69.

[12] Jan Hannemann and Gregor Kiczales. 2002. Design pattern implementation in
Java and aspectJ. SIGPLAN Not. 37 (November 2002), 161–173. Issue 11.

[13] William H. Harrison, Harold L. Ossher, and Peri L. Tarr. 2002. Asymmetrically vs.
symmetrically organized paradigms for software composition. Technical Report.
Research Report RC22685, IBM Thomas J. Watson Research.

[14] Charles Antony R. Hoare. 1969. An axiomatic basis for computer programming.
Commun. ACM 12, 10 (1969), 576–580.

[15] Terry Hon and Gregor Kiczales. 2006. Fluid AOP Join Point Models. In OOPSLA
’06. ACM, New York, NY, USA, 712–713.

[16] Gregor Kiczales. 2006. Interview with Gregor Kiczales. Software Engineering Ra-
dio: Episode 11. (2006). http://www.se-radio.net/2006/04/episode-11-interview-
gregor-kiczales/.

[17] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. 2001. An Overview of AspectJ. In Proceedings of the 15th
European Conference on Object-Oriented Programming (ECOOP ’01). Springer-
Verlag, London, UK, UK, 327–353.

[18] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented programming.
In ECOOP’97 Object-Oriented Programming (Lecture Notes in Computer Sci-
ence), Mehmet Aksit and Satoshi Matsuoka (Eds.), Vol. 1241. Springer Berlin /
Heidelberg, 220–242.

[19] Gregor Kiczales and Mira Mezini. 2005. Aspect-oriented programming and mod-
ular reasoning. In Proceedings of the 27th international conference on Software
engineering (ICSE ’05). ACM, New York, NY, USA, 49–58.

[20] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok.
2005. How the Design of JML Accommodates Both Runtime Assertion Checking
and Formal Verification. Science of Computer Programming 55, 1-3 (March
2005), 185–208. http://dx.doi.org/10.1016/j.scico.2004.05.015

[21] Gary T. Leavens and Peter Müller. 2007. Information Hiding and Visibility in
Interface Specifications. In International Conference on Software Engineering
(ICSE). IEEE, 385–395. http://dx.doi.org/10.1109/ICSE.2007.44

[22] Gary T. Leavens and David A. Naumann. 2015. Behavioral Subtyping, Specifica-
tion Inheritance, and Modular Reasoning. ACM Trans. Program. Lang. Syst. 37,
4, Article 13 (Aug. 2015), 88 pages.

[23] Gary T. Leavens and William E. Weihl. 1995. Specification and Verification of
Object-Oriented Programs Using Supertype Abstraction. Acta Informatica 32, 8
(Nov. 1995), 705–778. https://doi.org/10.1007/BF01178658

[24] Barbara Liskov. 1988. Data Abstraction and Hierarchy. ACM SIGPLAN Notices
23, 5 (May 1988), 17–34.

[25] Barbara H. Liskov and Jeannette M. Wing. 1994. A Behavioral Notion of Sub-
typing. ACM Transactions on Programming Languages and Systems 16, 6 (Nov.
1994), 1811–1841.

[26] Bruce J. MacLennan. 1986. Principles of Programming Languages: Design,
Evaluation, and Implementation (2Nd Ed.). Holt, Rinehart & Winston, Austin,
TX, USA.

[27] Bertrand Meyer. 1992. Applying “Design by Contract”. Computer 25, 10 (1992),
40–51.

[28] Markus Mohnen. 2002. Interfaces with Default Implementations in Java. In
Proceedings of the Inaugural Conference on the Principles and Practice of Pro-
gramming, 2002 and Proceedings of the Second Workshop on Intermediate Repre-
sentation Engineering for Virtual Machines, 2002 (PPPJ ’02/IRE ’02). National
University of Ireland, Maynooth, County Kildare, Ireland, Ireland, 35–40.

[29] Alberto Costa Neto, Arthur Marques, Rohit Gheyi, Paulo Borba, and Fernando
Castor. 2009. A Design Rule Language for Aspect-Oriented Programming. In
SBLP ’09: Proceedings of the 2009 Brazilian Symposium on Programming Lan-
guages. Brazilian Computer Society, 131–144.

[30] Klaus Ostermann, Paolo Giarrusso, Christian Kstner, and Tillmann Rendel. 2011.
Revisiting Information Hiding: Reflections on Classical and Nonclassical Modu-
larity. In ECOOP 2011 Object-Oriented Programming (Lecture Notes in Com-
puter Science), Vol. 6813. Springer Berlin / Heidelberg, 155–178.

[31] Klaus Ostermann, Mira Mezini, and Christoph Bockisch. 2005. Expressive Point-
cuts for Increased Modularity. In Proceedings of the 19th European Conference on
Object-Oriented Programming (ECOOP’05). Springer-Verlag, Berlin, Heidelberg,
214–240.

[32] D. L. Parnas. 1972. On the criteria to be used in decomposing systems into
modules. Commun. ACM 15 (December 1972), 1053–1058. Issue 12.

[33] Hridesh Rajan and Gary T. Leavens. 2008. Ptolemy: A Language with Quantified,
Typed Events. In ECOOP 2008 – Object-Oriented Programming: 22nd European
Conference, Paphos, Cyprus (Lecture Notes in Computer Science), Jan Vitek (Ed.),
Vol. 5142. Springer-Verlag, Berlin, 155–179.

[34] Hridesh Rajan and Kevin J. Sullivan. 2009. Unifying Aspect- and Object-oriented
Design. ACM TOSEM 19, 1 (Aug. 2009), 3:1–3:41.

[35] Henrique Rebêlo and Gary T. Leavens. 2015. Enforcing Information Hiding
in Interface Specifications: A Client-aware Checking Approach. In Companion
Proceedings of the 14th International Conference on Modularity (MODULARITY
Companion 2015). ACM, New York, NY, USA, 47–51.

[36] Henrique Rebêlo, Gary T. Leavens, Mehdi Bagherzadeh, Hridesh Rajan, Ricardo
Lima, Daniel M. Zimmerman, Márcio Cornélio, and Thomas Thüm. 2014. Aspec-
tJML: Modular Specification and Runtime Checking for Crosscutting Contracts.
In Proceedings of the 13th International Conference on Modularity (MODULAR-
ITY ’14). ACM, New York, NY, USA, 157–168.

[37] Henrique Rebelo, Gary T. Leavens, Ricardo Massa Ferreira Lima, Paulo Borba,
and Márcio Ribeiro. 2013. Modular Aspect-oriented Design Rule Enforcement
with XPIDRs. In Proceedings of the 12th Workshop on Foundations of Aspect-
oriented Languages (FOAL ’13). ACM, New York, NY, USA, 13–18.

[38] José Sánchez and Gary T. Leavens. 2016. Reasoning Tradeoffs in Languages
with Enhanced Modularity Features. In Proceedings of the 15th International
Conference on Modularity (MODULARITY 2016). ACM, New York, NY, USA,
13–24.

[39] Sergio Soares, Eduardo Laureano, and Paulo Borba. 2002. Implementing distribu-
tion and persistence aspects with aspectJ. In Proceedings of the 17th conference on
Object-oriented programming (OOPSLA), systems, languages, and applications.

[40] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kästner. 2010.
Types and modularity for implicit invocation with implicit announcement. ACM
Trans. Softw. Eng. Methodol. 20, 1 (July 2010), 1:1–1:43.

[41] Kevin Sullivan, William G. Griswold, Hridesh Rajan, Yuanyuan Song, Yuanfang
Cai, Macneil Shonle, and Nishit Tewari. 2010. Modular Aspect-oriented Design
with XPIs. ACM Trans. Softw. Eng. Methodol. 20, 2, Article 5 (Sept. 2010),
42 pages.

[42] Kevin Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang Cai, Macneil
Shonle, Nishit Tewari, and Hridesh Rajan. 2005. Information Hiding Interfaces for
Aspect-oriented Design. In Proceedings of the 10th European Software Engineer-
ing Conference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE-13). ACM, New York, NY,
USA, 166–175.

[43] Éric Tanter, Ismael Figueroa, and Nicolas Tabareau. 2014. Execution Levels
for Aspect-Oriented Programming: Design, Semantics, Implementations and
Applications. Science of Computer Programming 80, 1 (2014), 311–342.

[44] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. 1999. N
Degrees of Separation: Multi-dimensional Separation of Concerns. In Proceedings
of the 21st International Conference on Software Engineering (ICSE ’99). ACM,
New York, NY, USA, 107–119.

[45] Marco Tulio Valente, Cesar Couto, Jaqueline Faria, and Sérgio Soares. 2010.
On the benefits of quantification in AspectJ systems. Journal of the Brazilian
Computer Society 16, 2 (2010), 133–146.

[46] Jia Xu, Hridesh Rajan, and Kevin Sullivan. 2004. Understanding Aspects via
Implicit Invocation. In Proceedings of the 19th IEEE International Conference on
Automated Software Engineering (ASE ’04). IEEE Computer Society, Washington,
DC, USA, 332–335.

9

http://dx.doi.org/10.1016/j.scico.2004.05.015
http://dx.doi.org/10.1109/ICSE.2007.44
https://doi.org/10.1007/BF01178658

	Abstract
	1 Introduction
	2 A Plethora of Issues in AOP
	2.1 The AOP Programming Model
	2.2 Non-orthogonality and asymmetry
	2.3 Non-modular reasoning
	2.4 Pointcut fragility
	2.5 Information not hiding
	2.6 Extended Syntax for Modularity

	3 Preliminary Solutions
	3.1 Restricting Quantification and Obliviousness
	3.2 Aspect-aware interfaces
	3.3 Fluid Modularity
	3.4 Stepping back: OOP!

	4 Towards a new aspect formula
	4.1 Classical modular reasoning
	4.2 A new aspect formula

	5 Reloading Aspects
	5.1 The AspectJML language choice
	5.2 First examples of new AOP
	5.3 Benefits of our new notion of AOP

	6 A First Evaluation of AspectJML
	7 Future work
	8 Summary
	References

