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Logic Verification
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Verification

 The goal of verification 
 To ensure 100% correct in functionality and timing
 Spend 50 ~ 70% of time to verify a design

 Functional verification
 Simulation
 Formal proof

 Timing verification 
 Dynamic timing simulation (DTS)
 Static timing analysis (STA)
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Functional verification
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Functional Verification

 Simulated-based functional verification
 A test bench
 Input stimuli
 Output analysis 

 Formal verification
 A protocol
 An assertion
 A property
 A design rule 
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Models of Design under Test

 Black box model
 White box model
 Gray box model
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Types of Assertion

 Static assertion
 Temporal assertion



13-7

Simulation-based verification
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Simulation-Based Verification
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Hierarchy of Functional Verification

 Designer level (or block-level)
 Unit level
 Core level
 Chip level
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A Verification Test Set  

 Verification test set includes at least
 Compliance tests  
 Corner case tests  
 Random tests  
 Real code tests  
 Regression tests  
 Property check  
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Formal Verification

 Uses mathematical techniques 
 Proves a design property 
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Types of simulations and simulators
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Types of Simulations

 Behavioral simulation
 Functional simulation
 Gate-level (logic) simulation
 Switch-level simulation  
 Circuit-level (transistor-level) simulation
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Variations of Simulations

 Software simulation
 Hardware acceleration
 Hardware emulation
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Architecture of HDL simulators
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An Architecture of HDL Simulators
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Verilog HDL Simulators

 Interpreted simulators
 Cadence Verilog-XL simulator

 Compiled code simulators 
 Synopsys VCS simulator

 Native code simulators
 Cadence Verilog-NC simulator
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Event-Driven/Cycle-Based Simulators

 Event-driven simulators
 Triggered by events

 Cycle-based simulators 
 On a cycle-by-cycle basis
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An Event-Driven Simulation
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 Test bench designs
 Test bench design
 Clock signal generation
 Reset signal generation
 Verification coverage
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Test Bench Design Principles

 Functions of a test bench
 generates stimuli
 checks responses in terms of test cases
 employs reusable verification components 

 Two types of test benches
 deterministic
 self-checking

 Options of choosing test vectors
 Exhaustive test
 Random test
 Verification vector files
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Test Bench Design Principles

 Two basic choices of stimulus generation
 Deterministic versus random stimulus generation
 Pregenerated test case versus on-the-fly test case 

generation

 Types of result checking
 on-the-fly checking 
 end-of-test checking

 Result analysis
 Waveform viewers 
 Log files
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Types of Automated Response Checking

 Golden vectors
 Reference model
 Transaction-based model
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Test Bench Designs --- A Trivial Example

// test bench design example 1: exhaustive test.
`timescale 1 ns / 100 ps
…
    nbit_adder_for UUT 
            (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));
reg [2*n-1:0] i;
initial  for (i = 0; i <= 2**(2*n)-1; i = i + 1) begin
                x[n-1:0] = i[2*n-1:n]; y[n-1:0] = i[n-1:0]; c_in =1'b0; 
#20;  
end
…
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Test Bench Designs --- A Trivial Example

// test bench design example 2: Random test.
`timescale 1 ns / 100 ps
…
nbit_adder_for UUT 
            (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));
integer i;
reg [n:0] test_sum;
initial  for (i = 0; i <= 2*n ; i = i + 1)  begin 
             x = $random % 2**n;   y = $random % 2**n;
             c_in =1'b0;                    test_sum = x + y;
#15;      if (test_sum != {c_out, sum}) 
                                      $display("Error iteration %h\n", i);
#5;       end
…  
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Test Bench Designs --- A Trivial Example

// test bench design example 3: Using Verification vector files.
`timescale 1 ns / 100 ps
parameter n = 4;
parameter m = 8;
…
// Unit Under Test port map
     nbit_adder_for UUT  
                   (.x(x), .y(y), .c_in(c_in), .sum(sum), 
.c_out(c_out));
integer i;
reg [n-1:0] x_array [m-1:0];
reg [n-1:0] y_array [m-1:0];
reg [n:0] expected_sum_array [m-1:0];
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Test Bench Designs --- A Trivial Example

initial begin // reading verification vector files
    $readmemh("inputx.txt", x_array);
    $readmemh("inputy.txt", y_array);
    $readmemh("sum.txt", expected_sum_array);
end
initial  
    for  (i = 0; i <= m - 1 ; i = i + 1) begin 
           x = x_array[i];   y = y_array[i];
           c_in =1'b0;
#15;  if  (expected_sum_array[i] !=  {c_out, sum}) 
                               $display("Error iteration %h\n", i);
#5;    end   
initial  #200 $finish;
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Types of Clock Signals

 Types of clock signals
 A general clock signal
 Aligned derived clock signals
 Clock multipliers
 Asynchronous clock signals
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A General Clock Signal

 Examples

initial begin
     clk <= 1’b0; 
     forever  #10 clk <= ~ clk;  
end

reg  clk;
always begin 
      #5 clk <= 1’b0;
      #5 clk <= 1’b1; end

initial clk <=1’b0;

always #10  clk <= ~clk;
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A General Clock Signal

 Truncation error

 Rounding error

 Proper precision

`timescale 1 ns / 1 ns
reg  clk;
parameter clk_period = 25;

always begin 
     #(clk_period/2) clk <= 1’b0;
     #(clk_period/2) clk <= 1’b1; 
end

always begin 
     #(clk_period/2.0) clk <= 1’b0;
     #(clk_period/2.0) clk <= 1’b1; 
end

`timescale 1 ns / 1 ns
reg  clk;
parameter clk_period = 25;

always begin 
     #(clk_period/2) clk <= 1’b0;
     #(clk_period/2) clk <= 1’b1; 
end

`timescale 1 ns / 100 ps
reg  clk;
parameter clk_period = 25;
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Aligned Derived Clock Signals

 An improper approach

 A proper approach

always begin 
     if (clk == 1’b1) clk2 <= ~ clk2;
end

// both clk1 and clk2 are derived from clk.
always begin 
     clk1 <= clk; 
     if (clk == 1’b1) clk2 <= ~ clk2;
end
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Clock Multipliers

 An example

initial begin
     clk1 <= 1’b0; 
     clk4 <= 1’b0;
     forever begin 
          repeat (4) begin 
               #10 clk4 <= ~ clk4; end
          clk1 <= ~ clk1;
     end
end
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Asynchronous Clock Signals

 “Asynchronous” means random

initial begin
     clk100 <= 1’b0; 
     #2;
     forever begin
          #5 clk100 <= ~ clk100;
     end
end

initial begin
     clk33 <= 1’b0; 
     #5;
     forever begin
          #15 clk33 <= ~ clk33; 
     end
end
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Reset Signal Generations

 Race condition
 Using nonblocking assignments

always begin
      #5 clk = 1’b0;
      #5 clk = 1’b1;
end
initial begin // has race condition.
     reset = 1’b0;
     #20 reset = 1’b1;
     #40 reset = 1’b0; 
end

always begin
      #5 clk <= 1’b0;
      #5 clk <= 1’b1;
end
initial begin // no race condition.
     reset <= 1’b0;
     #20 reset <= 1’b1;
     #40 reset <= 1’b0; 
end
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Reset Signal Generations

 Increase of maintainability 

always begin 
      #(clk_period/2) clk <= 1’b0;
      #(clk_period/2) clk <= 1’b1;
end
initial begin   
     reset = 1’b0;
     wait (clk !== 1’bx); 
     repeat (3) @(negedge clk) reset <= 1’b1;
     reset <= 1’b0; 
end
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Reset Signal Generations

 The use of a task

always begin 
      #(clk_period/2) clk <= 1’b0;
      #(clk_period/2) clk <= 1’b1;
end
// using a task
task  hardware_reset;
begin 
     reset = 1’b0;
     wait (clk !== 1’bx); 
    // set reset to 1 for two clock cycles
     repeat (3) @(negedge clk) reset <= 1’b1;
     reset <= 1’b0; 
end endtask
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Coverage Analysis

 Two major types
 Structural coverage
 Functional coverage

 Q: What does 100% functional coverage mean?
 You have covered all the coverage points you included 

in the simulation
 By no means the job is done
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Structural Coverage

 Statement coverage
 Branch or conditional coverage
 Toggle coverage
 Trigger coverage
 Expression coverage 
 Path coverage
 Finite-state machine coverage
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Functional Coverage

 Functional coverage
 Item coverage
 Cross coverage
 Transition coverage
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 Dynamic timing analysis
 SDF and delay back-annotation
 ISE design flow
 ISE simulation flow
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SDF and Generation Guidelines

 The standard delay format (SDF) file
 The SDF specifies

 IOPATH delay
 INTERCONNECT delay
 Timing check (SETUP, HOLD, etc)
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Generation of SDF Files

 Pre-layout
 Gate delay information
 *_map.sdf (contains gate delay only) in ISE design flow

 Post-layout
 Both gate and interconnect delay information
 *_timesim.sdf  in ISE design flow
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Delay Back-Annotation

$sdf_annotate (design_file_name _map.sdf", design_file_name);
 $sdf_annotate (design_file_name _timesim.sdf", design_file_name);
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The ISE Design Flow

 Design entry
 Synthesis to create a gate netlist
 Implementation

 Translation
 Map
 Place and route

 Configure FPGA
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The ISE Design Flow
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A Simulation Flow --- An ISE-Based Flow
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Timing Analysis

 Q: The output needs to be stable by t = T for the 
correct functionality. But how to make sure of it?

 Two approaches
 Dynamic timing simulation
 Static timing analysis
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Purposes of Timing Analysis

 Timing verification
 if a design meets a given timing constraint?
 Example: cycle-time constraint

 Timing optimization
 Optimizes the critical portion of a design  
 Identifies critical paths
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Why Static Timing Analysis?

 Drawbacks of DTS
 has posed a bottleneck for large complex designs

 relies on the quality and coverage of the test bench

 Basic assumptions of STA
 No combinational feedback loops
 All register feedback broken by the clock boundary
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Static Timing Analysis

 In STA
 Designs are broken into sets of signal paths
 Each path has a start point and an endpoint

 Start points
 Input ports
 Clock pins of storage elements

 Endpoints
 Output ports
 Data input pins of storage elements
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Four Types of Path Analysis

 Entry path (input-to-D path)
 Stage path (register-to-register path or clock-to-D 

path)
 Exit path (clock-to-output path)
 Pad-to-pad path (port-to-port path)
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Path Groups

 Types of path groups
 Path group
 Default path group  
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Timing Specifications

 Port-related constraints
 Input delay (offset-in) 
 Output delay (offset-out) 
 Input-output (pad to pad)   
 Cycle time (period)  
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Setup Time and Hold Time Checks

 Clock-related constraints
 Clock period 
 Setup time
 Hold time
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Timing Analysis

 A critical path 
 The path of longest propagation delay 
 A combinational logic path that has negative or smallest 

slack time

slack = required time – arrival time

             = requirement – datapath (in ISE)
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Timing Exceptions

 Two timing exceptions
 False paths 
 Multi-cycle paths 
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False Paths

 A false path 
 A timing path does not propagate a signal
 STA identifies as a failing timing path
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Multi-Cycle Paths --- A Trivial Example

// a multiple cycle example
module multiple_cycle_example(clk, data_a, data_b, …);
…
// trivial multiple-cycle operations
always @(posedge clk) begin
     qout_a <= data_a * 5;
     @(posedge clk)  qout_b <= data_b + 3;
     @(posedge clk)  qout_c <= data_c - 7;
end

Q: Explain the operation of above code
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Multi-Cycle Paths --- A Trivial Example
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