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Logic Verification
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Verification

 The goal of verification 
 To ensure 100% correct in functionality and timing
 Spend 50 ~ 70% of time to verify a design

 Functional verification
 Simulation
 Formal proof

 Timing verification 
 Dynamic timing simulation (DTS)
 Static timing analysis (STA)



13-3

Functional verification
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Functional Verification

 Simulated-based functional verification
 A test bench
 Input stimuli
 Output analysis 

 Formal verification
 A protocol
 An assertion
 A property
 A design rule 
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Models of Design under Test

 Black box model
 White box model
 Gray box model
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Types of Assertion

 Static assertion
 Temporal assertion
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Simulation-based verification
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Simulation-Based Verification
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Hierarchy of Functional Verification

 Designer level (or block-level)
 Unit level
 Core level
 Chip level
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A Verification Test Set  

 Verification test set includes at least
 Compliance tests  
 Corner case tests  
 Random tests  
 Real code tests  
 Regression tests  
 Property check  
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Formal Verification

 Uses mathematical techniques 
 Proves a design property 
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Types of simulations and simulators
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Types of Simulations

 Behavioral simulation
 Functional simulation
 Gate-level (logic) simulation
 Switch-level simulation  
 Circuit-level (transistor-level) simulation
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Variations of Simulations

 Software simulation
 Hardware acceleration
 Hardware emulation
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Architecture of HDL simulators
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An Architecture of HDL Simulators
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Verilog HDL Simulators

 Interpreted simulators
 Cadence Verilog-XL simulator

 Compiled code simulators 
 Synopsys VCS simulator

 Native code simulators
 Cadence Verilog-NC simulator
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Event-Driven/Cycle-Based Simulators

 Event-driven simulators
 Triggered by events

 Cycle-based simulators 
 On a cycle-by-cycle basis
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An Event-Driven Simulation
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 Test bench designs
 Test bench design
 Clock signal generation
 Reset signal generation
 Verification coverage
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Test Bench Design Principles

 Functions of a test bench
 generates stimuli
 checks responses in terms of test cases
 employs reusable verification components 

 Two types of test benches
 deterministic
 self-checking

 Options of choosing test vectors
 Exhaustive test
 Random test
 Verification vector files
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Test Bench Design Principles

 Two basic choices of stimulus generation
 Deterministic versus random stimulus generation
 Pregenerated test case versus on-the-fly test case 

generation

 Types of result checking
 on-the-fly checking 
 end-of-test checking

 Result analysis
 Waveform viewers 
 Log files
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Types of Automated Response Checking

 Golden vectors
 Reference model
 Transaction-based model
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Test Bench Designs --- A Trivial Example

// test bench design example 1: exhaustive test.
`timescale 1 ns / 100 ps
…
    nbit_adder_for UUT 
            (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));
reg [2*n-1:0] i;
initial  for (i = 0; i <= 2**(2*n)-1; i = i + 1) begin
                x[n-1:0] = i[2*n-1:n]; y[n-1:0] = i[n-1:0]; c_in =1'b0; 
#20;  
end
…
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Test Bench Designs --- A Trivial Example

// test bench design example 2: Random test.
`timescale 1 ns / 100 ps
…
nbit_adder_for UUT 
            (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));
integer i;
reg [n:0] test_sum;
initial  for (i = 0; i <= 2*n ; i = i + 1)  begin 
             x = $random % 2**n;   y = $random % 2**n;
             c_in =1'b0;                    test_sum = x + y;
#15;      if (test_sum != {c_out, sum}) 
                                      $display("Error iteration %h\n", i);
#5;       end
…  
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Test Bench Designs --- A Trivial Example

// test bench design example 3: Using Verification vector files.
`timescale 1 ns / 100 ps
parameter n = 4;
parameter m = 8;
…
// Unit Under Test port map
     nbit_adder_for UUT  
                   (.x(x), .y(y), .c_in(c_in), .sum(sum), 
.c_out(c_out));
integer i;
reg [n-1:0] x_array [m-1:0];
reg [n-1:0] y_array [m-1:0];
reg [n:0] expected_sum_array [m-1:0];
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Test Bench Designs --- A Trivial Example

initial begin // reading verification vector files
    $readmemh("inputx.txt", x_array);
    $readmemh("inputy.txt", y_array);
    $readmemh("sum.txt", expected_sum_array);
end
initial  
    for  (i = 0; i <= m - 1 ; i = i + 1) begin 
           x = x_array[i];   y = y_array[i];
           c_in =1'b0;
#15;  if  (expected_sum_array[i] !=  {c_out, sum}) 
                               $display("Error iteration %h\n", i);
#5;    end   
initial  #200 $finish;
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Types of Clock Signals

 Types of clock signals
 A general clock signal
 Aligned derived clock signals
 Clock multipliers
 Asynchronous clock signals
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A General Clock Signal

 Examples

initial begin
     clk <= 1’b0; 
     forever  #10 clk <= ~ clk;  
end

reg  clk;
always begin 
      #5 clk <= 1’b0;
      #5 clk <= 1’b1; end

initial clk <=1’b0;

always #10  clk <= ~clk;
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A General Clock Signal

 Truncation error

 Rounding error

 Proper precision

`timescale 1 ns / 1 ns
reg  clk;
parameter clk_period = 25;

always begin 
     #(clk_period/2) clk <= 1’b0;
     #(clk_period/2) clk <= 1’b1; 
end

always begin 
     #(clk_period/2.0) clk <= 1’b0;
     #(clk_period/2.0) clk <= 1’b1; 
end

`timescale 1 ns / 1 ns
reg  clk;
parameter clk_period = 25;

always begin 
     #(clk_period/2) clk <= 1’b0;
     #(clk_period/2) clk <= 1’b1; 
end

`timescale 1 ns / 100 ps
reg  clk;
parameter clk_period = 25;
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Aligned Derived Clock Signals

 An improper approach

 A proper approach

always begin 
     if (clk == 1’b1) clk2 <= ~ clk2;
end

// both clk1 and clk2 are derived from clk.
always begin 
     clk1 <= clk; 
     if (clk == 1’b1) clk2 <= ~ clk2;
end
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Clock Multipliers

 An example

initial begin
     clk1 <= 1’b0; 
     clk4 <= 1’b0;
     forever begin 
          repeat (4) begin 
               #10 clk4 <= ~ clk4; end
          clk1 <= ~ clk1;
     end
end
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Asynchronous Clock Signals

 “Asynchronous” means random

initial begin
     clk100 <= 1’b0; 
     #2;
     forever begin
          #5 clk100 <= ~ clk100;
     end
end

initial begin
     clk33 <= 1’b0; 
     #5;
     forever begin
          #15 clk33 <= ~ clk33; 
     end
end
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Reset Signal Generations

 Race condition
 Using nonblocking assignments

always begin
      #5 clk = 1’b0;
      #5 clk = 1’b1;
end
initial begin // has race condition.
     reset = 1’b0;
     #20 reset = 1’b1;
     #40 reset = 1’b0; 
end

always begin
      #5 clk <= 1’b0;
      #5 clk <= 1’b1;
end
initial begin // no race condition.
     reset <= 1’b0;
     #20 reset <= 1’b1;
     #40 reset <= 1’b0; 
end
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Reset Signal Generations

 Increase of maintainability 

always begin 
      #(clk_period/2) clk <= 1’b0;
      #(clk_period/2) clk <= 1’b1;
end
initial begin   
     reset = 1’b0;
     wait (clk !== 1’bx); 
     repeat (3) @(negedge clk) reset <= 1’b1;
     reset <= 1’b0; 
end
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Reset Signal Generations

 The use of a task

always begin 
      #(clk_period/2) clk <= 1’b0;
      #(clk_period/2) clk <= 1’b1;
end
// using a task
task  hardware_reset;
begin 
     reset = 1’b0;
     wait (clk !== 1’bx); 
    // set reset to 1 for two clock cycles
     repeat (3) @(negedge clk) reset <= 1’b1;
     reset <= 1’b0; 
end endtask
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Coverage Analysis

 Two major types
 Structural coverage
 Functional coverage

 Q: What does 100% functional coverage mean?
 You have covered all the coverage points you included 

in the simulation
 By no means the job is done
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Structural Coverage

 Statement coverage
 Branch or conditional coverage
 Toggle coverage
 Trigger coverage
 Expression coverage 
 Path coverage
 Finite-state machine coverage
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Functional Coverage

 Functional coverage
 Item coverage
 Cross coverage
 Transition coverage
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 Dynamic timing analysis
 SDF and delay back-annotation
 ISE design flow
 ISE simulation flow


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SDF and Generation Guidelines

 The standard delay format (SDF) file
 The SDF specifies

 IOPATH delay
 INTERCONNECT delay
 Timing check (SETUP, HOLD, etc)
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Generation of SDF Files

 Pre-layout
 Gate delay information
 *_map.sdf (contains gate delay only) in ISE design flow

 Post-layout
 Both gate and interconnect delay information
 *_timesim.sdf  in ISE design flow
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Delay Back-Annotation

$sdf_annotate (design_file_name _map.sdf", design_file_name);
 $sdf_annotate (design_file_name _timesim.sdf", design_file_name);
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The ISE Design Flow

 Design entry
 Synthesis to create a gate netlist
 Implementation

 Translation
 Map
 Place and route

 Configure FPGA
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The ISE Design Flow
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A Simulation Flow --- An ISE-Based Flow
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Timing Analysis

 Q: The output needs to be stable by t = T for the 
correct functionality. But how to make sure of it?

 Two approaches
 Dynamic timing simulation
 Static timing analysis
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Purposes of Timing Analysis

 Timing verification
 if a design meets a given timing constraint?
 Example: cycle-time constraint

 Timing optimization
 Optimizes the critical portion of a design  
 Identifies critical paths
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Why Static Timing Analysis?

 Drawbacks of DTS
 has posed a bottleneck for large complex designs

 relies on the quality and coverage of the test bench

 Basic assumptions of STA
 No combinational feedback loops
 All register feedback broken by the clock boundary
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Static Timing Analysis

 In STA
 Designs are broken into sets of signal paths
 Each path has a start point and an endpoint

 Start points
 Input ports
 Clock pins of storage elements

 Endpoints
 Output ports
 Data input pins of storage elements



13-51

Four Types of Path Analysis

 Entry path (input-to-D path)
 Stage path (register-to-register path or clock-to-D 

path)
 Exit path (clock-to-output path)
 Pad-to-pad path (port-to-port path)
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Path Groups

 Types of path groups
 Path group
 Default path group  
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Timing Specifications

 Port-related constraints
 Input delay (offset-in) 
 Output delay (offset-out) 
 Input-output (pad to pad)   
 Cycle time (period)  
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Setup Time and Hold Time Checks

 Clock-related constraints
 Clock period 
 Setup time
 Hold time
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Timing Analysis

 A critical path 
 The path of longest propagation delay 
 A combinational logic path that has negative or smallest 

slack time

slack = required time – arrival time

             = requirement – datapath (in ISE)
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Timing Exceptions

 Two timing exceptions
 False paths 
 Multi-cycle paths 
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False Paths

 A false path 
 A timing path does not propagate a signal
 STA identifies as a failing timing path
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Multi-Cycle Paths --- A Trivial Example

// a multiple cycle example
module multiple_cycle_example(clk, data_a, data_b, …);
…
// trivial multiple-cycle operations
always @(posedge clk) begin
     qout_a <= data_a * 5;
     @(posedge clk)  qout_b <= data_b + 3;
     @(posedge clk)  qout_c <= data_c - 7;
end

Q: Explain the operation of above code
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Multi-Cycle Paths --- A Trivial Example
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