
13-1

Logic Verification

13-2

Verification

 The goal of verification
 To ensure 100% correct in functionality and timing
 Spend 50 ~ 70% of time to verify a design

 Functional verification
 Simulation
 Formal proof

 Timing verification
 Dynamic timing simulation (DTS)
 Static timing analysis (STA)

13-3

Functional verification

13-4

Functional Verification

 Simulated-based functional verification
 A test bench
 Input stimuli
 Output analysis

 Formal verification
 A protocol
 An assertion
 A property
 A design rule

13-5

Models of Design under Test

 Black box model
 White box model
 Gray box model

13-6

Types of Assertion

 Static assertion
 Temporal assertion

13-7

Simulation-based verification

13-8

Simulation-Based Verification

13-9

Hierarchy of Functional Verification

 Designer level (or block-level)
 Unit level
 Core level
 Chip level

13-10

A Verification Test Set

 Verification test set includes at least
 Compliance tests
 Corner case tests
 Random tests
 Real code tests
 Regression tests
 Property check

13-11

Formal Verification

 Uses mathematical techniques
 Proves a design property

13-12

Types of simulations and simulators

13-13

Types of Simulations

 Behavioral simulation
 Functional simulation
 Gate-level (logic) simulation
 Switch-level simulation
 Circuit-level (transistor-level) simulation

13-14

Variations of Simulations

 Software simulation
 Hardware acceleration
 Hardware emulation

13-15

Architecture of HDL simulators

13-16

An Architecture of HDL Simulators

13-17

Verilog HDL Simulators

 Interpreted simulators
 Cadence Verilog-XL simulator

 Compiled code simulators
 Synopsys VCS simulator

 Native code simulators
 Cadence Verilog-NC simulator

13-18

Event-Driven/Cycle-Based Simulators

 Event-driven simulators
 Triggered by events

 Cycle-based simulators
 On a cycle-by-cycle basis

13-19

An Event-Driven Simulation

13-20

 Test bench designs
 Test bench design
 Clock signal generation
 Reset signal generation
 Verification coverage

13-21

Test Bench Design Principles

 Functions of a test bench
 generates stimuli
 checks responses in terms of test cases
 employs reusable verification components

 Two types of test benches
 deterministic
 self-checking

 Options of choosing test vectors
 Exhaustive test
 Random test
 Verification vector files

13-22

Test Bench Design Principles

 Two basic choices of stimulus generation
 Deterministic versus random stimulus generation
 Pregenerated test case versus on-the-fly test case

generation

 Types of result checking
 on-the-fly checking
 end-of-test checking

 Result analysis
 Waveform viewers
 Log files

13-23

Types of Automated Response Checking

 Golden vectors
 Reference model
 Transaction-based model

13-24

Test Bench Designs --- A Trivial Example

// test bench design example 1: exhaustive test.
`timescale 1 ns / 100 ps
…
 nbit_adder_for UUT
 (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));
reg [2*n-1:0] i;
initial for (i = 0; i <= 2**(2*n)-1; i = i + 1) begin
 x[n-1:0] = i[2*n-1:n]; y[n-1:0] = i[n-1:0]; c_in =1'b0;
#20;
end
…

13-25

Test Bench Designs --- A Trivial Example

// test bench design example 2: Random test.
`timescale 1 ns / 100 ps
…
nbit_adder_for UUT
 (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));
integer i;
reg [n:0] test_sum;
initial for (i = 0; i <= 2*n ; i = i + 1) begin
 x = $random % 2**n; y = $random % 2**n;
 c_in =1'b0; test_sum = x + y;
#15; if (test_sum != {c_out, sum})
 $display("Error iteration %h\n", i);
#5; end
…

13-26

Test Bench Designs --- A Trivial Example

// test bench design example 3: Using Verification vector files.
`timescale 1 ns / 100 ps
parameter n = 4;
parameter m = 8;
…
// Unit Under Test port map
 nbit_adder_for UUT
 (.x(x), .y(y), .c_in(c_in), .sum(sum),
.c_out(c_out));
integer i;
reg [n-1:0] x_array [m-1:0];
reg [n-1:0] y_array [m-1:0];
reg [n:0] expected_sum_array [m-1:0];

13-27

Test Bench Designs --- A Trivial Example

initial begin // reading verification vector files
 $readmemh("inputx.txt", x_array);
 $readmemh("inputy.txt", y_array);
 $readmemh("sum.txt", expected_sum_array);
end
initial
 for (i = 0; i <= m - 1 ; i = i + 1) begin
 x = x_array[i]; y = y_array[i];
 c_in =1'b0;
#15; if (expected_sum_array[i] != {c_out, sum})
 $display("Error iteration %h\n", i);
#5; end
initial #200 $finish;

4
9
d
5
1
6
d
9

inputx.txt

1
3
d
2
d
d
c
6

inputy.txt

05
0c
1a
07
0e
13
19
0f

sum.txt

13-28

Types of Clock Signals

 Types of clock signals
 A general clock signal
 Aligned derived clock signals
 Clock multipliers
 Asynchronous clock signals

13-29

A General Clock Signal

 Examples

initial begin
 clk <= 1’b0;
 forever #10 clk <= ~ clk;
end

reg clk;
always begin
 #5 clk <= 1’b0;
 #5 clk <= 1’b1; end

initial clk <=1’b0;

always #10 clk <= ~clk;

13-30

A General Clock Signal

 Truncation error

 Rounding error

 Proper precision

`timescale 1 ns / 1 ns
reg clk;
parameter clk_period = 25;

always begin
 #(clk_period/2) clk <= 1’b0;
 #(clk_period/2) clk <= 1’b1;
end

always begin
 #(clk_period/2.0) clk <= 1’b0;
 #(clk_period/2.0) clk <= 1’b1;
end

`timescale 1 ns / 1 ns
reg clk;
parameter clk_period = 25;

always begin
 #(clk_period/2) clk <= 1’b0;
 #(clk_period/2) clk <= 1’b1;
end

`timescale 1 ns / 100 ps
reg clk;
parameter clk_period = 25;

13-31

Aligned Derived Clock Signals

 An improper approach

 A proper approach

always begin
 if (clk == 1’b1) clk2 <= ~ clk2;
end

// both clk1 and clk2 are derived from clk.
always begin
 clk1 <= clk;
 if (clk == 1’b1) clk2 <= ~ clk2;
end

13-32

Clock Multipliers

 An example

initial begin
 clk1 <= 1’b0;
 clk4 <= 1’b0;
 forever begin
 repeat (4) begin
 #10 clk4 <= ~ clk4; end
 clk1 <= ~ clk1;
 end
end

13-33

Asynchronous Clock Signals

 “Asynchronous” means random

initial begin
 clk100 <= 1’b0;
 #2;
 forever begin
 #5 clk100 <= ~ clk100;
 end
end

initial begin
 clk33 <= 1’b0;
 #5;
 forever begin
 #15 clk33 <= ~ clk33;
 end
end

13-34

Reset Signal Generations

 Race condition
 Using nonblocking assignments

always begin
 #5 clk = 1’b0;
 #5 clk = 1’b1;
end
initial begin // has race condition.
 reset = 1’b0;
 #20 reset = 1’b1;
 #40 reset = 1’b0;
end

always begin
 #5 clk <= 1’b0;
 #5 clk <= 1’b1;
end
initial begin // no race condition.
 reset <= 1’b0;
 #20 reset <= 1’b1;
 #40 reset <= 1’b0;
end

13-35

Reset Signal Generations

 Increase of maintainability

always begin
 #(clk_period/2) clk <= 1’b0;
 #(clk_period/2) clk <= 1’b1;
end
initial begin
 reset = 1’b0;
 wait (clk !== 1’bx);
 repeat (3) @(negedge clk) reset <= 1’b1;
 reset <= 1’b0;
end

13-36

Reset Signal Generations

 The use of a task

always begin
 #(clk_period/2) clk <= 1’b0;
 #(clk_period/2) clk <= 1’b1;
end
// using a task
task hardware_reset;
begin
 reset = 1’b0;
 wait (clk !== 1’bx);
 // set reset to 1 for two clock cycles
 repeat (3) @(negedge clk) reset <= 1’b1;
 reset <= 1’b0;
end endtask

13-37

Coverage Analysis

 Two major types
 Structural coverage
 Functional coverage

 Q: What does 100% functional coverage mean?
 You have covered all the coverage points you included

in the simulation
 By no means the job is done

13-38

Structural Coverage

 Statement coverage
 Branch or conditional coverage
 Toggle coverage
 Trigger coverage
 Expression coverage
 Path coverage
 Finite-state machine coverage

13-39

Functional Coverage

 Functional coverage
 Item coverage
 Cross coverage
 Transition coverage

13-40

 Dynamic timing analysis
 SDF and delay back-annotation
 ISE design flow
 ISE simulation flow

13-41

SDF and Generation Guidelines

 The standard delay format (SDF) file
 The SDF specifies

 IOPATH delay
 INTERCONNECT delay
 Timing check (SETUP, HOLD, etc)

13-42

Generation of SDF Files

 Pre-layout
 Gate delay information
 *_map.sdf (contains gate delay only) in ISE design flow

 Post-layout
 Both gate and interconnect delay information
 *_timesim.sdf in ISE design flow

13-43

Delay Back-Annotation

$sdf_annotate (design_file_name _map.sdf", design_file_name);
 $sdf_annotate (design_file_name _timesim.sdf", design_file_name);

13-44

The ISE Design Flow

 Design entry
 Synthesis to create a gate netlist
 Implementation

 Translation
 Map
 Place and route

 Configure FPGA

13-45

The ISE Design Flow

13-46

A Simulation Flow --- An ISE-Based Flow

13-47

Timing Analysis

 Q: The output needs to be stable by t = T for the
correct functionality. But how to make sure of it?

 Two approaches
 Dynamic timing simulation
 Static timing analysis

13-48

Purposes of Timing Analysis

 Timing verification
 if a design meets a given timing constraint?
 Example: cycle-time constraint

 Timing optimization
 Optimizes the critical portion of a design
 Identifies critical paths

13-49

Why Static Timing Analysis?

 Drawbacks of DTS
 has posed a bottleneck for large complex designs

 relies on the quality and coverage of the test bench

 Basic assumptions of STA
 No combinational feedback loops
 All register feedback broken by the clock boundary

13-50

Static Timing Analysis

 In STA
 Designs are broken into sets of signal paths
 Each path has a start point and an endpoint

 Start points
 Input ports
 Clock pins of storage elements

 Endpoints
 Output ports
 Data input pins of storage elements

13-51

Four Types of Path Analysis

 Entry path (input-to-D path)
 Stage path (register-to-register path or clock-to-D

path)
 Exit path (clock-to-output path)
 Pad-to-pad path (port-to-port path)

13-52

Path Groups

 Types of path groups
 Path group
 Default path group

13-53

Timing Specifications

 Port-related constraints
 Input delay (offset-in)
 Output delay (offset-out)
 Input-output (pad to pad)
 Cycle time (period)

13-54

Setup Time and Hold Time Checks

 Clock-related constraints
 Clock period
 Setup time
 Hold time

13-55

Timing Analysis

 A critical path
 The path of longest propagation delay
 A combinational logic path that has negative or smallest

slack time

slack = required time – arrival time

 = requirement – datapath (in ISE)

13-56

Timing Exceptions

 Two timing exceptions
 False paths
 Multi-cycle paths

13-57

False Paths

 A false path
 A timing path does not propagate a signal
 STA identifies as a failing timing path

13-58

Multi-Cycle Paths --- A Trivial Example

// a multiple cycle example
module multiple_cycle_example(clk, data_a, data_b, …);
…
// trivial multiple-cycle operations
always @(posedge clk) begin
 qout_a <= data_a * 5;
 @(posedge clk) qout_b <= data_b + 3;
 @(posedge clk) qout_c <= data_c - 7;
end

Q: Explain the operation of above code

13-59

Multi-Cycle Paths --- A Trivial Example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

