
13-1

Logic Verification

13-2

Verification

 The goal of verification
 To ensure 100% correct in functionality and timing
 Spend 50 ~ 70% of time to verify a design

 Functional verification
 Simulation
 Formal proof

 Timing verification
 Dynamic timing simulation (DTS)
 Static timing analysis (STA)

13-3

Functional verification

13-4

Functional Verification

 Simulated-based functional verification
 A test bench
 Input stimuli
 Output analysis

 Formal verification
 A protocol
 An assertion
 A property
 A design rule

13-5

Models of Design under Test

 Black box model
 White box model
 Gray box model

13-6

Types of Assertion

 Static assertion
 Temporal assertion

13-7

Simulation-based verification

13-8

Simulation-Based Verification

13-9

Hierarchy of Functional Verification

 Designer level (or block-level)
 Unit level
 Core level
 Chip level

13-10

A Verification Test Set

 Verification test set includes at least
 Compliance tests
 Corner case tests
 Random tests
 Real code tests
 Regression tests
 Property check

13-11

Formal Verification

 Uses mathematical techniques
 Proves a design property

13-12

Types of simulations and simulators

13-13

Types of Simulations

 Behavioral simulation
 Functional simulation
 Gate-level (logic) simulation
 Switch-level simulation
 Circuit-level (transistor-level) simulation

13-14

Variations of Simulations

 Software simulation
 Hardware acceleration
 Hardware emulation

13-15

Architecture of HDL simulators

13-16

An Architecture of HDL Simulators

13-17

Verilog HDL Simulators

 Interpreted simulators
 Cadence Verilog-XL simulator

 Compiled code simulators
 Synopsys VCS simulator

 Native code simulators
 Cadence Verilog-NC simulator

13-18

Event-Driven/Cycle-Based Simulators

 Event-driven simulators
 Triggered by events

 Cycle-based simulators
 On a cycle-by-cycle basis

13-19

An Event-Driven Simulation

13-20

 Test bench designs
 Test bench design
 Clock signal generation
 Reset signal generation
 Verification coverage

13-21

Test Bench Design Principles

 Functions of a test bench
 generates stimuli
 checks responses in terms of test cases
 employs reusable verification components

 Two types of test benches
 deterministic
 self-checking

 Options of choosing test vectors
 Exhaustive test
 Random test
 Verification vector files

13-22

Test Bench Design Principles

 Two basic choices of stimulus generation
 Deterministic versus random stimulus generation
 Pregenerated test case versus on-the-fly test case

generation

 Types of result checking
 on-the-fly checking
 end-of-test checking

 Result analysis
 Waveform viewers
 Log files

13-23

Types of Automated Response Checking

 Golden vectors
 Reference model
 Transaction-based model

13-24

Test Bench Designs --- A Trivial Example

// test bench design example 1: exhaustive test.
`timescale 1 ns / 100 ps
…
 nbit_adder_for UUT
 (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));
reg [2*n-1:0] i;
initial for (i = 0; i <= 2**(2*n)-1; i = i + 1) begin
 x[n-1:0] = i[2*n-1:n]; y[n-1:0] = i[n-1:0]; c_in =1'b0;
#20;
end
…

13-25

Test Bench Designs --- A Trivial Example

// test bench design example 2: Random test.
`timescale 1 ns / 100 ps
…
nbit_adder_for UUT
 (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));
integer i;
reg [n:0] test_sum;
initial for (i = 0; i <= 2*n ; i = i + 1) begin
 x = $random % 2**n; y = $random % 2**n;
 c_in =1'b0; test_sum = x + y;
#15; if (test_sum != {c_out, sum})
 $display("Error iteration %h\n", i);
#5; end
…

13-26

Test Bench Designs --- A Trivial Example

// test bench design example 3: Using Verification vector files.
`timescale 1 ns / 100 ps
parameter n = 4;
parameter m = 8;
…
// Unit Under Test port map
 nbit_adder_for UUT
 (.x(x), .y(y), .c_in(c_in), .sum(sum),
.c_out(c_out));
integer i;
reg [n-1:0] x_array [m-1:0];
reg [n-1:0] y_array [m-1:0];
reg [n:0] expected_sum_array [m-1:0];

13-27

Test Bench Designs --- A Trivial Example

initial begin // reading verification vector files
 $readmemh("inputx.txt", x_array);
 $readmemh("inputy.txt", y_array);
 $readmemh("sum.txt", expected_sum_array);
end
initial
 for (i = 0; i <= m - 1 ; i = i + 1) begin
 x = x_array[i]; y = y_array[i];
 c_in =1'b0;
#15; if (expected_sum_array[i] != {c_out, sum})
 $display("Error iteration %h\n", i);
#5; end
initial #200 $finish;

4
9
d
5
1
6
d
9

inputx.txt

1
3
d
2
d
d
c
6

inputy.txt

05
0c
1a
07
0e
13
19
0f

sum.txt

13-28

Types of Clock Signals

 Types of clock signals
 A general clock signal
 Aligned derived clock signals
 Clock multipliers
 Asynchronous clock signals

13-29

A General Clock Signal

 Examples

initial begin
 clk <= 1’b0;
 forever #10 clk <= ~ clk;
end

reg clk;
always begin
 #5 clk <= 1’b0;
 #5 clk <= 1’b1; end

initial clk <=1’b0;

always #10 clk <= ~clk;

13-30

A General Clock Signal

 Truncation error

 Rounding error

 Proper precision

`timescale 1 ns / 1 ns
reg clk;
parameter clk_period = 25;

always begin
 #(clk_period/2) clk <= 1’b0;
 #(clk_period/2) clk <= 1’b1;
end

always begin
 #(clk_period/2.0) clk <= 1’b0;
 #(clk_period/2.0) clk <= 1’b1;
end

`timescale 1 ns / 1 ns
reg clk;
parameter clk_period = 25;

always begin
 #(clk_period/2) clk <= 1’b0;
 #(clk_period/2) clk <= 1’b1;
end

`timescale 1 ns / 100 ps
reg clk;
parameter clk_period = 25;

13-31

Aligned Derived Clock Signals

 An improper approach

 A proper approach

always begin
 if (clk == 1’b1) clk2 <= ~ clk2;
end

// both clk1 and clk2 are derived from clk.
always begin
 clk1 <= clk;
 if (clk == 1’b1) clk2 <= ~ clk2;
end

13-32

Clock Multipliers

 An example

initial begin
 clk1 <= 1’b0;
 clk4 <= 1’b0;
 forever begin
 repeat (4) begin
 #10 clk4 <= ~ clk4; end
 clk1 <= ~ clk1;
 end
end

13-33

Asynchronous Clock Signals

 “Asynchronous” means random

initial begin
 clk100 <= 1’b0;
 #2;
 forever begin
 #5 clk100 <= ~ clk100;
 end
end

initial begin
 clk33 <= 1’b0;
 #5;
 forever begin
 #15 clk33 <= ~ clk33;
 end
end

13-34

Reset Signal Generations

 Race condition
 Using nonblocking assignments

always begin
 #5 clk = 1’b0;
 #5 clk = 1’b1;
end
initial begin // has race condition.
 reset = 1’b0;
 #20 reset = 1’b1;
 #40 reset = 1’b0;
end

always begin
 #5 clk <= 1’b0;
 #5 clk <= 1’b1;
end
initial begin // no race condition.
 reset <= 1’b0;
 #20 reset <= 1’b1;
 #40 reset <= 1’b0;
end

13-35

Reset Signal Generations

 Increase of maintainability

always begin
 #(clk_period/2) clk <= 1’b0;
 #(clk_period/2) clk <= 1’b1;
end
initial begin
 reset = 1’b0;
 wait (clk !== 1’bx);
 repeat (3) @(negedge clk) reset <= 1’b1;
 reset <= 1’b0;
end

13-36

Reset Signal Generations

 The use of a task

always begin
 #(clk_period/2) clk <= 1’b0;
 #(clk_period/2) clk <= 1’b1;
end
// using a task
task hardware_reset;
begin
 reset = 1’b0;
 wait (clk !== 1’bx);
 // set reset to 1 for two clock cycles
 repeat (3) @(negedge clk) reset <= 1’b1;
 reset <= 1’b0;
end endtask

13-37

Coverage Analysis

 Two major types
 Structural coverage
 Functional coverage

 Q: What does 100% functional coverage mean?
 You have covered all the coverage points you included

in the simulation
 By no means the job is done

13-38

Structural Coverage

 Statement coverage
 Branch or conditional coverage
 Toggle coverage
 Trigger coverage
 Expression coverage
 Path coverage
 Finite-state machine coverage

13-39

Functional Coverage

 Functional coverage
 Item coverage
 Cross coverage
 Transition coverage

13-40

 Dynamic timing analysis
 SDF and delay back-annotation
 ISE design flow
 ISE simulation flow



13-41

SDF and Generation Guidelines

 The standard delay format (SDF) file
 The SDF specifies

 IOPATH delay
 INTERCONNECT delay
 Timing check (SETUP, HOLD, etc)

13-42

Generation of SDF Files

 Pre-layout
 Gate delay information
 *_map.sdf (contains gate delay only) in ISE design flow

 Post-layout
 Both gate and interconnect delay information
 *_timesim.sdf in ISE design flow

13-43

Delay Back-Annotation

$sdf_annotate (design_file_name _map.sdf", design_file_name);
 $sdf_annotate (design_file_name _timesim.sdf", design_file_name);

13-44

The ISE Design Flow

 Design entry
 Synthesis to create a gate netlist
 Implementation

 Translation
 Map
 Place and route

 Configure FPGA

13-45

The ISE Design Flow

13-46

A Simulation Flow --- An ISE-Based Flow

13-47

Timing Analysis

 Q: The output needs to be stable by t = T for the
correct functionality. But how to make sure of it?

 Two approaches
 Dynamic timing simulation
 Static timing analysis

13-48

Purposes of Timing Analysis

 Timing verification
 if a design meets a given timing constraint?
 Example: cycle-time constraint

 Timing optimization
 Optimizes the critical portion of a design
 Identifies critical paths

13-49

Why Static Timing Analysis?

 Drawbacks of DTS
 has posed a bottleneck for large complex designs

 relies on the quality and coverage of the test bench

 Basic assumptions of STA
 No combinational feedback loops
 All register feedback broken by the clock boundary

13-50

Static Timing Analysis

 In STA
 Designs are broken into sets of signal paths
 Each path has a start point and an endpoint

 Start points
 Input ports
 Clock pins of storage elements

 Endpoints
 Output ports
 Data input pins of storage elements

13-51

Four Types of Path Analysis

 Entry path (input-to-D path)
 Stage path (register-to-register path or clock-to-D

path)
 Exit path (clock-to-output path)
 Pad-to-pad path (port-to-port path)

13-52

Path Groups

 Types of path groups
 Path group
 Default path group

13-53

Timing Specifications

 Port-related constraints
 Input delay (offset-in)
 Output delay (offset-out)
 Input-output (pad to pad)
 Cycle time (period)

13-54

Setup Time and Hold Time Checks

 Clock-related constraints
 Clock period
 Setup time
 Hold time

13-55

Timing Analysis

 A critical path
 The path of longest propagation delay
 A combinational logic path that has negative or smallest

slack time

slack = required time – arrival time

 = requirement – datapath (in ISE)

13-56

Timing Exceptions

 Two timing exceptions
 False paths
 Multi-cycle paths

13-57

False Paths

 A false path
 A timing path does not propagate a signal
 STA identifies as a failing timing path

13-58

Multi-Cycle Paths --- A Trivial Example

// a multiple cycle example
module multiple_cycle_example(clk, data_a, data_b, …);
…
// trivial multiple-cycle operations
always @(posedge clk) begin
 qout_a <= data_a * 5;
 @(posedge clk) qout_b <= data_b + 3;
 @(posedge clk) qout_c <= data_c - 7;
end

Q: Explain the operation of above code

13-59

Multi-Cycle Paths --- A Trivial Example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

